2018-2019学年辽宁省大连市沙河口区八年级(下)期末数学试卷
- 格式:doc
- 大小:209.00 KB
- 文档页数:15
大连市八年级下学期期末测试数学卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2019七下·古冶期中) 下列各式正碗的是()A .B .C .D .2. (2分)若一次函数y=kx+b的图象如图所示,则关于x的不等式kx+b≥0的解集为()A . x≤2B . x≥1C . x≥2D . x≥03. (2分)在Rt△ABC中,∠ACB=90°,BC=1,AB=2,则下列结论正确的是()A . sinA=B . cosA=C . tanA=D . cotA=4. (2分)如图,菱形对角线,,则菱形高长为()A .B .C .D .5. (2分)甲和乙一起练习射击,第一轮10枪打完后两人的成绩如图所示.设他们这10次射击成绩的方差为S甲2、S乙2 ,下列关系正确的是()A . S甲2=S乙2B . S甲2>S乙2C . S甲2<S乙2D . 无法确定6. (2分)使有意义的x的取值范围是()A . x≠1B . x≥1C . x>1D . x≥07. (2分)点P(-2,1)关于原点对称的点P′的坐标是()A . (-2,-1)B . (2,1)C . (2,-1)D . (1,-2)8. (2分)已知函数的图象经过点(2,3),下列说法正确的是()A . y随x的增大而增大B . 函数的图象只在第一象限C . 当x<0时,必有y<0D . 点(-2,-3)不在此函数的图象上9. (2分)(2017·深圳模拟) 如图,正方形ABCD中,点E、F分别是BC、CD上的动点(不与点B,C,D重合),且∠EAF=45°,AE、AF与对角线BD分别相交于点G、H,连接EH、EF,则下列结论:① △ABH∽△GAH; ② △ABG∽△HEG; ③ AE= AH; ④ EH⊥AF; ⑤ EF=BE+DF其中正确的有()个。
辽宁省大连市数学八年级下学期期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)国旗上每个五角星().A . 是中心对称图形而不是轴对形;B . 是轴对称图形而不是中心对称图形;C . 既是中心对称图形又是轴对称图形;D . 既不是中心对称图形又不是轴对称图形2. (2分)小亮的父亲想购买同一种大小一样、形状相同的地板铺设地面,小亮根据所学知识告诉父亲,为了能够做到无缝、不重叠地铺设,购买的地板砖形状不能是()A . 正三角形B . 正方形C . 正五边形D . 正六边形3. (2分)将多项式-6a3b2-3a2b2+12a2b3分解因式时,应提取的公因式是()A . -3a2b2B . -3abC . -3a2bD . -3a3b34. (2分)(2016·钦州) 不等式组的解集在数轴上表示为()A .B .C .D .5. (2分) (2018八上·嵊州期末) 下面所说的“平移”,是指只沿方格的格线(即左右或上下)运动,并将图中的任一条线段平移一格称为“1步”.通过平移,使得图中的3条线段首尾相接组成一个三角形,最少需要移动的步数是()A . 7步B . 8步C . 9步D . 10步6. (2分) (2020九上·兰陵期末) 如图,在△ABC中,∠CAB=70°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,连接C′C,使得C′C∥AB,则∠BAB′=()A .B .C .D .7. (2分)下列各式正确的是()A . =-B . =-C . =-D . =-8. (2分) (2020九下·开鲁月考) 穿越青海境内的兰新高铁极大地改善了沿线人民的经济文化生活,该铁路沿线甲,乙两城市相距480km,乘坐高铁列车比乘坐普通快车能提前4h到达,已知高铁列车的平均行驶速度比普通列车快160km/h,设普通列车的平均行驶速度为xkm/h,依题意,下面所列方程正确的是()A .B .C .D .9. (2分)平行四边形的两条对角线长分别为6和10,则平行四边形的一条边的长x的取值范围为()A . 4<x<6B . 2<x<8C . 0<x<10D . 0<x<610. (2分)如图,矩形ABCD的面积为1cm2 ,对角线交于点O;以AB、AO为邻边作平行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边作平行四边形AO1C2B…;依此类推,则平行四边形AO2014C2015B的面积为()A .B .C .D .二、填空题 (共6题;共7分)11. (1分)(2017·镇江) 当x=________时,分式的值为零.12. (2分) (2020九下·盐城月考) 在实数范围内分解因式:2x2﹣32=________.13. (1分)一个八边形的内角和是________14. (1分)若﹣ =2,则的值是________.15. (1分)如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为________ .16. (1分)(2019·上海模拟) 在△ABC中,AB = AC = 5,tanB = . 若⊙O的半径为,且⊙O经过点B与C ,那么线段OA的长等于________.三、综合题 (共9题;共66分)17. (5分) (2017七下·无锡期中) 因式分解:(1) 4a2-16(2) m2(m-1)+4(1-m)(3) (x+y)2+4(x+y+1)(4) a2-4b2-ac+2bc18. (5分)(2019·东台模拟) 解不等式组: .19. (5分)(2011·连云港) 解方程: = .20. (11分) (2020八上·越城期末) 如图,在方格纸中,以格点连线为边的三角形叫格点三角形,请按要求完成下列操作:先将格点△ABC向右平移4个单位得到△A1B1C1 ,再将△A1B1C1绕点C1点旋转180°得到△A2B2C2.21. (5分)(2018·咸安模拟)(1)计算:()﹣1﹣2cos30°+ +(2﹣π)0(2)先化简,再求值:,其中a= ﹣2.22. (5分)如图,矩形ABCD中,点E,F分别在AB,CD边上,连接CE、AF,∠DCE=∠BAF.试判断四边形AECF的形状并加以证明.23. (10分) (2019七下·梅江月考) 如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22﹣02 , 12=42﹣22 , 20=62﹣42 ,因此4,12,20都是“神秘数”(1) 28和2012这两个数是“神秘数”吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方差(k取正数)是神秘数吗?为什么?24. (10分)如图,我国某边防哨所树立了“祖国在我心中”建筑物,它的横截面为四边形BCNM,其中BC⊥CN,BM∥CN,建筑物顶上有一旗杆AB,士兵小明站在D处,由E点观察到旗杆顶部A的仰角为52°,底部B的仰角为45°,已知旗杆AB=2.8米,DE=1.8米.(参考数据:sin52°≈0.788,tan52°≈1.280)(1)求建筑物的高度BC;(2)建筑物长50米,背风坡MN的坡度i=1:0.5,为提高建筑物抗风能力,士兵们在背风坡填筑土石方加固,加固后建筑物顶部加宽4.2米,背风坡GH的坡度为i=1:1.5,施工10天后,边防居民为士兵支援的机械设备终于到达,这样工作效率提高到了原来的2倍,结果比原计划提前20天完成加固任务,士兵们原计划平均每天填筑土石方多少立方米?25. (10分)(2017·樊城模拟) 如图,点E为矩形ABCD中AD边中点,将矩形ABCD沿CE折叠,使点D落在矩形内部的点F处,延长CF交AB于点G,连接AF(1)求证:AF∥CE;(2)探究线段AF,EF,EC之间的数量关系,并说明理由;(3)若BC=6,BG=8,求AF的长.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共7分)11-1、12-1、13-1、14-1、15-1、16-1、三、综合题 (共9题;共66分)17-1、17-2、17-3、17-4、18-1、19-1、20-1、21-1、21-2、22-1、23-1、23-2、23-3、24-1、24-2、25-1、25-2、25-3、。
大连市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)下列哪个是最简二次根式()A .B .C .D .2. (2分) (2019八上·宣城期末) 一次函数y=kx+b的图像经过点(,1)和(-1,)(m≠0),则k、b应满足的条件是().A . k>0,b>0B . k>0,b<0C . k<0,b<0D . k<0,b>03. (2分)(2018·南山模拟) 下列说法正确的是()A . 要了解人们对“低碳生活”的了解程度,宜采用普查方式B . 一组数据5,5,6,7的众数和中位数都是5C . 必然事件发生的概率为100%D . 若甲组数据的方差是3.4,乙组数据的方差是1.68,则甲组数据比乙组数据稳定4. (2分)使代数式有意义的 a 的范围是()A . a>0B . a<0C . a=0D . 不存在5. (2分)(2017·十堰) 下列命题错误的是()A . 对角线互相平分的四边形是平行四边形B . 对角线相等的平行四边形是矩形C . 一条对角线平分一组对角的四边形是菱形D . 对角线互相垂直的矩形是正方形6. (2分) (2016八下·石城期中) 如图,在菱形ABCD中,对角线AC、BD相交于点O,E为AB的中点,且OE=a,则菱形ABCD的周长为()A . 16aB . 12aC . 8aD . 4a7. (2分)(2016·济南) 如图,若一次函数y=﹣2x+b的图象交y轴于点A(0,3),则不等式﹣2x+b>0的解集为()A . x>B . x>3C . x<D . x<38. (2分)化简二次根式得()A . -B .C .D . 309. (2分)将分数﹣化为小数是﹣0.5714,则小数点后第2012位上的数是()A . 8B . 5C . 7D . 110. (2分)如图,△ABC中,CD垂直AB于D,一定能确定△ABC为直角三角形的条件的个数是()①∠1=∠A,②∠B+∠2=90°,③BC:AC:AB=3:4:5,④AC•CD=BC•AD.A . 1B . 2C . 3D . 411. (2分) (2018九上·宁波期中) 如图,CD是⊙O的弦,O是圆心,把⊙O的劣弧沿着CD对折,A是对折后劣弧上的一点,∠CAD=100°,则∠B的度数是()A . 50°B . 60°C . 80°D . 100°12. (2分)(2018·泰州) 如图,平面直角坐标系中,点的坐标为,轴,垂足为,点从原点出发向轴正方向运动,同时,点从点出发向点运动,当点到达点时,点、同时停止运动,若点与点的速度之比为,则下列说法正确的是()A . 线段始终经过点B . 线段始终经过点C . 线段始终经过点D . 线段不可能始终经过某一定点二、填空题 (共6题;共6分)13. (1分)计算:﹣2等于________ .14. (1分)某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要________米15. (1分)把直线y=﹣x+2向上平移3个单位,得到的直线表达式是________.16. (1分)(2017·西乡塘模拟) 函数y= 的自变量的取值范围是________.17. (1分)小明到超市买练习本,超市正在打折促销:购买10本以上,从第11本开始按标价打折优惠,买练习本所花费的钱数y(元)与练习本的个数x(本)之间的关系如图所示,那么在这个超市买10本以上的练习本优惠折扣是________折.18. (1分)(2017·新吴模拟) 如图,反比例函数y=(x<0)的图象经过点A(﹣2,2),过点A作AB⊥y 轴,垂足为B,在y轴的正半轴上取一点P(0,t),过点P作直线OA的垂线l,以直线l为对称轴,点B经轴对称变换得到的点B′在此反比例函数的图象上,则t的值是________.三、解答题 (共6题;共60分)19. (10分)计算(1)sin260°•tan45°﹣(﹣)﹣2(2)﹣(﹣1)+2sin60°﹣3tan30°.20. (15分) (2017九下·盐城期中) 盐城是一让人打开心扉的城市,吸引了很多的国内外游客,春风旅行社对3月份本社接待的外地游客来盐城旅游的首选景点作了一次抽样调查.调查结果如下图表:景点频数频率丹顶鹤8729%麋鹿75盐渎6321%息心寺4715.7%后羿公园289.3%(1)此次共调查了多少人?(2)请将以上图表补充完整.(3)该旅行社预计4月份接待外地来杭的游客2500人,请你估计首选去丹顶鹤的人数约有多少人.21. (10分) (2017八下·容县期末) 一个零件的形状如图1所示,按规定这个零件中∠A和∠DBC都应为直角.工人师傅量得这个零件各边尺寸如图2所示.图1 图2(1)你认为这个零件符合要求吗?为什么?(2)求这个零件的面积.22. (5分) (2017八下·庆云期末) 如图,已知AB∥DE,AB=DE,AF=DC,求证:四边形BCEF是平行四边形.23. (10分)(2017·天津模拟) 在“母亲节”前夕,我市某校学生积极参与“关爱贫困母亲”的活动,他们购进一批单价为20元的“孝文化衫”在课余时间进行义卖,并将所得利润捐给贫困母亲.经试验发现,若每件按24元的价格销售时,每天能卖出36件;若每件按29元的价格销售时,每天能卖出21件.假定每天销售件数y(件)与销售价格x(元/件)满足一个以x为自变量的一次函数.(1)求y与x满足的函数关系式(不要求写出x的取值范围);(2)在不积压且不考虑其他因素的情况下,销售价格定为多少元时,才能使每天获得的利润P最大?24. (10分)(2017·南岸模拟) 对任意一个正整数m,如果m=k(k+1),其中k是正整数,则称m为“矩数”,k 为m的最佳拆分点.例如,56=7×(7+1),则56是一个“矩数”,7为56的最佳拆分点.(1)求证:若“矩数”m是3的倍数,则m一定是6的倍数;(2)把“矩数”p与“矩数”q的差记为 D(p,q),其中p>q,D(p,q)>0.例如,20=4×5,6=2×3,则 D(20,6)=20﹣6=14.若“矩数”p的最佳拆分点为t,“矩数”q的最佳拆分点为s,当 D(p,q)=30时,求的最大值.四、解答题 (共2题;共18分)25. (7分) (2016九下·长兴开学考) 综合题(1)如图①,在△ABC中,点D、F在AB上,点E,G在AC上,且DE∥FG∥BC,若AD=2,AE=1,DF=4,则EG=________,=________.(2)如图②,在△ABC中点D、F在AB上,点E,G在AC上,且DE∥FG∥BC,以AD,DF,FB为边构造△ADM (即AM=BF,MD=DF),以AE,EG,GC为边构造△AEN(即AN=GC,NE=EG),求证:∠M=∠N.26. (11分) (2016九上·苍南期末) 如图.在平面直角坐标系中,点A(3,0),B(0,﹣4),C是x轴上一动点,过C作CD∥AB交y轴于点D.(1)的值是________.(2)若以A,B,C,D为顶点的四边形的面积等于54,求点C的坐标.(3)将△AOB绕点A按顺时针方向旋转90°得到△AO′B′,设D的坐标为(0,n),当点D落在△AO′B′内部(包括边界)时,求n的取值范围.(直接写出答案即可)参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共6题;共60分)19-1、19-2、20-1、20-2、20-3、21-1、21-2、22-1、23-1、23-2、24-1、24-2、四、解答题 (共2题;共18分) 25-1、25-2、26-1、26-2、26-3、。
辽宁省大连市沙河口区八年级(下)期末考试数学试卷一.选择题(共10小题)1.下列各式中,是二次根式的是(B)A.x+y B. C.D.【分析】根据二次根式的定义判断即可.【解答】A、x+y不是二次根式,错误;B、是二次根式,正确;C、不是二次根式,错误;D、不是二次根式,错误;2.在▱ABCD中,∠A=30°,则∠D的度数是(D)A.30°B.60°C.120° D.150°【分析】根据平行四边形的邻角互补即可得出∠D的度数.【解答】∵ABCD是平行四边形,∴∠D=180°﹣∠A=150°.3.直角三角形的两条直角边为a和b,斜边为c.若b=1,c=2,则a的长是(D)A.1 B.C.2 D.【分析】直接利用勾股定理得出a的值.【解答】∵直角三角形的两条直角边为a和b,斜边为c,∴a2+b2=c2,∵b=1,c=2,∴a==.4.下列各点中,在直线y=﹣2x+3上的是(C)A.(﹣2,3)B.(﹣2,0)C.(0,3) D.(1,5)【分析】依此代入x=﹣2、0、1求出y值,再对照四个选项即可得出结论.【解答】A、当x=﹣2时,y=﹣2x+3=7,∴点(﹣2,3)不在直线y=﹣2x+3上;B、当x=﹣2时,y=﹣2x+3=7,∴点(﹣2,0)不在直线y=﹣2x+3上;C、当x=0时,y=﹣2x+3=3,∴点(0,3)在直线y=﹣2x+3上;D、当x=1时,y=﹣2x+3=1,∴点(1,5)不在直线y=﹣2x+3上.5.下列各式中,与是同类二次根式的是(B)A.B. C. D.【分析】根据二次根式的性质把各个二次根式化简,根据同类二次根式的概念判断即可.【解答】=2,=2,是最简二次根式,=3,则与是同类二次根式的是,6.下表是某校12名男子足球队队员的年龄分布:年龄(岁)13141516频数1254该校男子足球队队员的平均年龄为(C)A.13 B.14 C.15 D.16【分析】根据加权平均数的计算公式进行计算即可.【解答】该校男子足球队队员的平均年龄为=15(岁),7.用配方法解一元二次方程x2﹣4x﹣3=0下列变形正确的是(B)A.(x﹣2)2=0 B.(x﹣2)2=7 C.(x﹣4)2=9 D.(x﹣2)2=1【分析】先把常数项移到方程右侧,再把方程两边加上4,然后把方程左边写成完全平方形式即可.【解答】x2﹣4x=3,x2﹣4x+4=7,(x﹣2)2=7.8.下列各图中,可能是一次函数y=kx+1(k>0)的图象的是(A)A. B.C.D.【分析】直接根据一次函数的图象进行解答即可.【解答】∵一次函数y=kx+1(k>0)中,k<0,b=1>0,∴此函数的图象经过一、二、三象限.9.如图,在正方形ABCD中,点E在边CD上,CE=3.若△ABE的面积是8,则线段BE的长为(C)A.3 B.4 C.5 D.8【分析】根据正方形性质得出AD=BC=CD=AB,根据面积求出EM,得出BC=4,根据勾股定理求出即可.【解答】如图,过E作EM⊥AB于M,∵四边形ABCD是正方形,∴AD=BC=CD=AB,∴EM=AD,BM=CE,∵△ABE的面积为8,∴×AB×EM=8,解得:EM=4,即AD=DC=BC=AB=4,∵CE=3,由勾股定理得:BE===5,10.点A在直线y=x+1上运动,过点A作AC⊥x轴于点C,以AC为对角线作矩形ABCD,连接BD,当3≤x≤4时,线段BD长的最小值为(A)A.4 B.5 C.D.7【分析】利用一次函数图象上点的坐标特征结合一次函数的性质可得出4≤AC≤5,再由矩形的对角线相等即可得出BD的取值范围,此题得解.【解答】∵3≤x≤4,∴4≤y≤5,即4≤AC≤5.又∵四边形ABCD为矩形,∴BD=AC,∴4≤BD≤5.二.填空题(共6小题)11.化简:=3.【分析】二次根式的性质:=a(a≥0),利用性质对进行化简求值.【解答】==×=3.12.AC、BD是菱形ABCD的两条对角线,若AC=8,BD=6,则菱形的边长为5.【分析】据菱形对角线互相垂直平分的性质,可以求得BO=OD,AO=OC,在Rt△AOD中,根据勾股定理可以求得AB的长,即可求菱形ABCD的周长.【解答】∵菱形ABCD的两条对角线相交于O,AC=8,BD=6,由菱形对角线互相垂直平分,∴BO=OD=3,AO=OC=4,∴AB==5,13.甲、乙两个班级进行电脑输入汉字比赛,参赛学生每分输入汉字个数统计结果如下:班级参加人数平均数中位数方差甲35135149191乙35135151110两班成绩波动大的是乙班.【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】∵S甲2=149、S乙2=151,∴S甲2<S乙2,则两班成绩波动大的是乙班,14.判断一元二次方程x2+3x﹣1=0根的情况:方程有两个不相等的实数根.【分析】利用一元二次方程根的判别式,得出△>0时,方程有两个不相等的实数根,当△=0时,方程有两个相等的实数根,当△<0时,方程没有实数根.确定住a,b,c的值,代入公式判断出△的符号.【解答】∵△=b2﹣4ac=3 2﹣4×(﹣1)=9+4=13>0,∴方程有两个不相等的实数根,15.《九章算术》中有这样一个问题,大意是:一个竹子高1丈,折断后竹子顶端落在离竹子底端3尺处(其中的丈、尺是长度单位,1丈=10尺).折断处离地面的高度是多少?设折断处离地面的高度是x尺,根据题意可列方程为x2+32=(10﹣x)2.【分析】杆子折断后刚好构成一直角三角形,设杆子折断处离地面的高度是x尺,则斜边为(10﹣x)尺.利用勾股定理解题即可.【解答】1丈=10尺,设折射处高地面的高度为x尺,则斜边为(10﹣x)尺,根据勾股定理得:x2+32=(10﹣x)2.16.如图若将左边正方形剪成四块,恰能拼成右边的矩形,设a=1,则这个正方形的面积是.【分析】从图中可以看出,正方形的边长=a+b,所以面积=(a+b)2,矩形的长和宽分别是2b+a,b,面积=b(a+2b),两图形面积相等,列出方程得=(a+b)2=b(a+2b),其中a=1,求b的值,即可求得正方形的面积.【解答】根据图形和题意可得:(a+b)2=b(a+2b),其中a=1,则方程是(1+b)2=b(1+2b)解得:b=所以正方形的面积为(1+)2=,三.解答题(共10小题)17.计算:(1)(2)【分析】(1)先化简二次根式,再合并同类二次根式可得;(2)根据完全平方公式计算,再计算加法可得.【解答】(1)原式=3﹣=;(2)原式=8﹣4+3=11﹣4.18.解方程:3x2﹣x=3x﹣1【分析】整理后分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】3x2﹣x=3x﹣1,整理得:3x2﹣4x+1=0,(3x﹣1)(x﹣1)=0,3x﹣1=0,x﹣1=0,x1=,x2=1.19.如图,在平行四边形ABCD中,AE平分∠BAD,CF平分∠DCB,两条平分线与BC、DA分别交于点E、F.求证:AE=CF【分析】利用平行四边形的性质得出∠DAE=∠BCF,AD=BC,∠D=∠B,进而结合平行线的性质和全等三角形的判定方法得出答案.【解答】证明:∵四边形ABCD是平行四边形,∴AD=BC,∠D=∠B,∠DAB=∠DCB,又AE平分∠BAD,CF平分∠BCD,∴∠DAE=∠BCF,在△DAE和△BCF中,,∴△DAE≌△BCF(ASA),∴AE=CF.20.某商场服装部为了调动营业员的积极性,计划实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个恰当的年销售目标,商场服装部统计了每位营业员在去年的销售额(单位:万元),并且计划根据统计制定今年的奖励制度.下面是根据统计的销售额绘制的统计表:人数1374年销售额(万元)10853根据以上信息,回答下列问题:(1)年销售额在5万元的人数最多,年销售额的中位数是5万元,平均年销售额是 5.4万元;(2)如果想让一半左右的营业员都能获得奖励,你认为年销售额定位多少合适?说明理由;(3)如果想确定一个较高的奖励目标,你认为年销售额定位多少比较合适?说明理由.【分析】(1)从统计图中可知年销售额在5万元的人最多,把年销售额的数从小到大排列,找出中位数,根据平均数公式求出平均年销售额.(2)根据中位数来确定营业员都能达到的目标.(3)根据平均数来确定较高的销售目标.【解答】(1)年销售额在5万元的人数最多,一共15人,年销售额的中位数是5万元,平均年销售额是=5.4(万元).故答案为:5、5、5.4;(2)如果想让一半左右的营业员都能达到目标而得到奖励,年销售额可定为每月5万元(中位数),因为年销售额在5万元以上(含5万元)的人数有11人,所以可以估计,年销售额定为5万元,将有一半左右的营业员获得奖励.(3)因为平均数、中位数和众数分别为5.4万元、5万元和5万元,而平均数最大,所以年销售额定为每月5.4万元是一个较高的目标.21.一种药品的原价是25元,经过连续两次降价后每盒16元,假设两次降价的平均降价率相同,求平均降价率.【分析】设该药品平均降价率为x,根据“一种药品的原价是25元,经过连续两次降价后每盒16元”得出关于x的一元二次方程,解方程即可得出结论.【解答】设该药品平均降价率为x,根据题意得:25×(1﹣x)2=16,解得:x=20%或x=﹣180%(舍去).答:该药品平均降价率为20%.22.一个有进水管和一个出水管的容器,每分钟的进水量和出水量是两个常数.从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,12分钟后只出水不进水.如图表示的是容器中的水量y(升)与时间t(分钟)的图象(其中0≤t≤4与4<t≤12与12<t ≤a时,线段的解析式不同).(1)当0≤4时,求y关于t的函数解析式;(2)求出水量及a的值;(3)直接写出当y=27时,t的值.【分析】(1)由于从某时刻开始的4分钟内只进水不出水,根据图象可以确定这一段的解析式;(2)根据图象和已知条件可以求出每分钟出水各多少升,然后利用待定系数法确定函数解析式得出a的值;(3)把y=27代入两个解析式解答即可.【解答】(1)当0≤t≤4时,y=(20÷4)t=5t,(2)根据图象知道:每分钟出水[(12﹣4)×5﹣(30﹣20)]÷(12﹣4)=升,∵12分钟以后只出水不进水,∴30÷=8分钟,∴8分钟将水放完,∴函数解析式为y=30﹣(t﹣12)=﹣t+75;把y=0代入解析式,可得:﹣,解得:a=20,(3)当4<t≤12时,设解析式为y=kt+b(k≠0,k,b为常数),依题意得,解之得:k=,b=15,∴y=t+15;当12<t≤20时,解析式为:y=﹣t+75,把y=27代入y=t+15中,可得:,解得:t=9.6,把y=27代入y=﹣t+75中,可得:,解得:t=12.8,23.如图,在正方形ABCD中,AB=2,点F是BC的中点,点M在AB上,点N在CD上,将正方形沿MN对折,点A的对应点是点E,点D恰好与点F重合.(1)求FN的长;(2)求MN的长.【分析】(1)在Rt△NFC中根据勾股定理可求FN的长.(2)连接MF,MD,作MG⊥CD,根据勾股定理可求AM的长,即可求GN的长,在Rt△GMN 中,根据勾股定理可求MN的长.【解答】(1)∵四边形ABCD是正方形,AB=2∴BC=CD=AD=AB=2,∠B=∠C=∠D=∠A=90°∵F是BC中点∴FC=BF=1∵折叠∴MN垂直平分DF,DN=FN在Rt△FNC中,FN2=NC2+FC 2∴FN2=(2﹣FN)2+FC 24FN=5即FN=(2)如图:连接MF,MD,作MG⊥CD∵MN是DF的垂直平分线∴MD=MF.∵DM2=AD2+AM2,MF2=BM2+BF2∴AD2+AM2=(AB﹣AM)2+BF2得AM=∵∠A=90°=∠ADC,MG⊥CD∴四边形ADGM是矩形∴DG=,MG=AD=2∴GN=DN﹣DG=1在Rt△MGN中,MN==24.设M(x,0)是x轴上的一个动点,它与点A(2,0)的距离是y+3.(1)求y关于x的函数解析式;(2)在如图的平面直角坐标系中,画出y关于x的图象;(3)点B是(1)的函数图象与y轴的交点,垂直于y轴的直线与直线AB交于N(x1,y1),与(1)的函数图象交于P(x2,y2)、Q(x3,y3),结合图象,当x1<x2<x3时,求x1+x2+x3的取值范围.【分析】(1)由两点间的距离公式解答;(2)根据函数关系式画函数图象;(3)先说明△DCE是等腰直角三角形,所以P、Q关于直线x=2对称,得:x2+x3=4,确定AB 的解析式,计算点C的坐标,根据x1<x2<x3时,P在线段BC上,N在点B的下方,得x1的取值,相加可得结论.【解答】(1)依题意得:y+3=|2﹣x|,①当x≥2时,y+3=x﹣2,即y=x﹣5;②当x<2时,y+3=2﹣x,即y=﹣x﹣1..综上所述,y=;(2)如图所示,(3)∵OB=OD=1,∠BOD=90°,∴△BO D是等腰直角三角形,∴∠BDO=45°,同理得∠CED=45°,∴∠DCE=90°,∵PQ∥x轴,∴P、Q关于直线x=2对称,∵P(x2,y2)、Q(x3,y3),∴=2,∴x2+x3=4,由,解得,∴C(2,﹣3),∵x1<x2<x3,∴P在线段BC上,N在点B的下方,∵A(2,0),B(0,﹣1),易得AB的解析式为:y=x﹣1,当y=﹣3时,x﹣1=﹣3,x=﹣4,∴﹣4<x1<0,∴当x1<x2<x3时,x1+x2+x3的取值范围是:﹣4+4<x1+x2+x3<0+4,即:0<x1+x2+x3<4.25.如图1,点C在线段AB上,且AC>BC,过点A作AD⊥AB,过点B作BE⊥AB且AC=BE、CD=EC.(1)求证:AD=BC;(2)如图2,连接DE,判断DE与AB的数量关系,并说明理由;(3)如图3,点P在BE上,且EP=AD,连接AP交CE于点Q,求∠PQE的度数.【分析】(1)欲证明AD=BC,只要证明Rt△ACD≌Rt△BEC即可;(2)结论:DE=AB.如图2中,作AM∥DE交BE的延长线于M.想办法证明四边形ADEM 是平行四边形,△ABM是等腰直角三角形即可;(3)如图3中,连接DE交PA于K,连接CK.想办法证明∠BEC=∠EKP,∠BED=45°即可解决问题【解答】(1)证明:如图1中,∵AC⊥AD,BE⊥BC,∴∠A=∠B=90°,∵CD=CE,AC=BE,∴Rt△ACD≌Rt△BEC,∴AD=BC.(2)解:结论:DE=AB.理由:如图2中,作AM∥DE交BE的延长线于M.∵AB⊥AD,AB⊥BM,∴AD∥BM,∵DE∥AM,∴四边形ADEM是平行四边形,∴DE=AM,AD=EM,∵AD=BC,AC=BE,∴BC=EM,∴BA=BM,∴△ABM是等腰直角三角形,∴AM=AB,∠M=45°,∵DE∥AM,∴∠BED=45°,∴DE=AB.(3)解:如图3中,连接DE交PA于K,连接CK.∵AD=PE=BC,AD∥PE,∴∠KDA=∠KEP,∵∠AKD=∠EKP,∴△AKD≌△PKE,∴DK=EK,∵CD=CE,∴CK⊥DE,设AC交DK于O.∵∠DAO=∠CKO=90°,∠AOD=∠KOC,∴△AOD∽△KOC,∴=,∴=,∵∠DOC=∠AOK,∴△DOC∽△AOK,∴∠OCD=∠OKA=∠PKE,∵∠ACD=∠BEC,∴∠PQE=∠PKE+∠QEK=∠PEQ+∠QEK=∠BED=45°【(2)中已经证明】.26.如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标是(﹣4,4),点P从点B出发,沿BO匀速向点O平移,平移的距离记为m,当点P到达点O时运动停止.过点P作PQ ⊥AP,与∠BOC的外角平分线相交于点Q,连接AQ,与y轴交于点E.(1)填空:图中与AP相等的线段是PQ;(2)求点Q的坐标(用含m的代数式表示);(3)是否存在m,使OP=OE?若存在,请求出m的值;若不存在,说明理由.【分析】(1)如图:在AB上截取BF=BP,连接PF,作QD⊥BO于D,可证△APF≌△PQO,可得AP=PQ(2)可证△ABP≌△PQD,可得BP=QD=m,则可求Q点坐标(3))由A(﹣4,4),Q(m,m),可求直线AQ的解析式y=即可求E点坐标,根据OP=OE,列出方程,可求m的值.【解答】(1)AP=PQ理由如下如图:在AB上截取BF=BP,连接PF,作QD⊥BO于D∵四边形ABCO是正方形∴AB=BO,∠B=∠BOC=90°∵BF=BP,BA=BO∴AF=PO,∠BFP=∠BPF=45°∴∠AFP=135°∵AP⊥PQ∴∠APF+∠BPF+∠QPO=90°∴∠APF+∠QPD=45°∵OQ平分∠COD∴∠COQ=∠QOD=45°∴∠POQ=135°,∠QPO+∠PQO=45°∴∠AFP=∠POQ,∠APF=∠PQO且AF=PO∴△APF≌△POQ∴AP=PQ故答案为PQ(2)∵△APF≌△POQ∴AP=PQ,∠BAP=∠QPD,且∠B=∠QDP=90°∴△ABP≌△PQD∴BP=QD=m∵∠QDP=90°,∠QOD=45°∴∠QOD=∠OQD=45°∴OD=QD=m∴Q(m,m)(3)∵A(﹣4,4),Q(m,m)∴直线AQ的解析式y=∴E(0,)∵OP=OE∴4﹣m=∴m2+8m﹣16=0∴m1=﹣4﹣4(不合题意舍去),m2=﹣4+4。
八年级下册数学大连数学期末试卷达标检测(Word 版含解析)一、选择题1.若式子4x -在实数范围内有意义,则x 的取值范围是( )A .4x >B .4x <C .4x ≥D .4x ≤2.下列条件中,满足ABC 是直角三角形的是( ) A .∠A :∠B :∠C =3:4:5 B .a :b :c =1:3:1 C .(a +b )2=c 2+2abD .111,,51213a b c ===3.下列条件中,不能判断四边形ABCD 是平行四边形的是( ) A .,A C B D ∠=∠∠=∠ B .//,AB CD AB CD = C .,//AB CD AD BC =D .//,//AB CD AD BC4.为了丰富校园文化,学校艺术节举行初中生书法大赛,设置了10个获奖名额.结果共有21名选手进入决赛,且决赛得分均不相同.若知道某位选手的决赛得分,要判断它是否获奖,只需知道学生决赛得分的( ) A .平均数B .中位数C .众数D .方差5.如图,在正方形ABCD 和正方形CEFG 中,点D 在CG 上,BC =1,CE =3,H 是AF 的中点,那么CH 的长是( )A .25B .5C .35D .26.如图,点D 在ABC 的BC 边上,把ADC 沿AD 折叠,点C 恰好落在直线AB 上,则线段AD 是ABC 的( )A .中线B .角平分线C .高线D .垂直平分线7.如图,在正方形ABCD 的外侧作等边CDE △,对角线AC 与BD 相交于点O ,连接AE 交BD 于点F ,若1OF =,则AB 的长度为( )A .2B 6C .22D .38.在平面直角坐标系xOy 中,已知直线1:2l y kx =-与x 轴交于点A ,直线2:(3)2l y k x =--分别与1l 交于点G ,与x 轴交于点B .若GAB GOAS S∆<,则下列范围中,含有符合条件的k 的( ) A .01k <<B .12k <<C .23k <<D .3k >二、填空题9.若26x -有意义,则x 的取值范围是____________.10.如图,在菱形ABCD 中,对角线BD =4,AC =3BD ,则菱形ABCD 的面积为 _____.11.图中阴影部分是一个正方形,则此正方形的面积为_______ .12.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,E 为AB 的中点,连接OE .若10CD =,则OE 的长为________.13.饮料每箱24瓶,售价48元,买饮料的总价y (元)与所买瓶数x 之间的函数________.14.在矩形ABCD 中,3AB =,ABC ∠的平分线BE 交AD 所在的直线于点E ,若2DE =,则AD 的长为__________.15.如图,直线142y x =-+与坐标轴分别交于点A ,B ,点P 是线段AB 上一动点,过点P作PM ⊥x 轴于点M ,作PN ⊥y 轴于点N ,连接MN ,则线段MN 的最小值为_________.16.如图,Rt△ABC中,AB92=,BC=3,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为 _____.三、解答题17.计算:(1)23439 3415⨯(2)20511235--⨯18.我国古代数学著作《九章算术》中“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺,折断后竹子顶端落地,离竹子底端3尺处.折断处离地面的高度是多少?(1丈=10尺)19.在学习了勾股定理之后,甲乙丙三位同学在方格图(正方形的边长都为1)中比赛找“整数三角形”,什么叫“整数三角形”呢?他们三人规定:边长和面积都是整数的三角形才能叫“整数三角形”.甲同学很快找到了如图1的“整数三角形”,一会儿后乙同学也找到了周长为24的“整数三角形”.丙同学受到甲、乙两同学的启发找到了两个不同的等腰“整数三角形”.请完成:(1)以点A为一个顶点,在图2中作出乙同学找到的周长为24的“整数三角形”,并在每边周边标注其边长;(2)在图3中作出两个不同的等腰“整数三角形”,并在每边周边标注其边长;(3)你还能找到一个等边“整数三角形”吗?若能找出,请写出它的边长;若不能,请说明理由.20.如图1,两个全等的直角三角板ABC 和DEF 重叠在一起,其中∠ACB =∠DFE =90°,固定△ABC ,将△DEF 沿线段AB 向右平移(即点D 在线段AB 上).回答下列问题:(1)如图2,连接CF ,四边形ADFC 的形状一定是______形;(2)如图3,当点D 移动到AB 的中点时,连接DC ,CF ,FB .求证:四边形CDBF 是菱形.21.先观察下列等式,再回答问题: 2211+2+()1 =1+1=2;2212+2+()212=2 12;③2213+2+()3=3+13=313;…(1)根据上面三个等式提供的信息,请猜想第四个等式;(2)请按照上面各等式规律,试写出用 n (n 为正整数)表示的等式,并用所学知识证明.22.根据天气预报,某地将持续下雨7天,然后放晴.开始下雨的48小时内,某水库记录了水位变化,结果如下: 时间x /h 0 12 24 36 48 … 水位y /m4040.340.640.941.2…在不泄洪的条件下,假设下雨的这7天水位随时间的变化都满足这种关系. (1)在不泄洪的条件下,写出一个函数解析式描述水位y 随时间x 的变化规律; (2)当水库的水位达到43m 时,为了保护大坝安全,必须进行泄洪. ①下雨几小时后必须泄洪?②雨天泄洪时,水位平均每小时下降0.05m ,求开始泄洪后,水库水位y 与时间x 之间的函数关系式;并计算泄洪几小时后水位可以降到下雨前的初始高度?23.如图.正方形ABCD 的边长为4,点E 从点A 出发,以每秒1个单位长度的速度沿射线AD 运动,运动时间为t 秒(t >0),以AE 为一条边,在正方形ABCD 左侧作正方形AEFG ,连接BF .(1)当t =1时,求BF 的长度;(2)在点E 运动的过程中,求D 、F 两点之间距离的最小值; (3)连接AF 、DF ,当△ADF 是等腰三角形时,求t 的值.24.如图1,已知直线24y x =+与y 轴,x 轴分别交于A ,B 两点,以B 为直角顶点在第二象限作等腰Rt ABC ∆.(1)求点C 的坐标,并求出直线AC 的关系式;(2)如图2,直线CB 交y 轴于E ,在直线CB 上取一点D ,连接AD ,若AD AC =,求证:BE DE =.(3)如图3,在(1)的条件下,直线AC 交x 轴于点M ,72P a ⎛⎫- ⎪⎝⎭,是线段BC 上一点,在x 轴上是否存在一点N ,使BPN ∆面积等于BCM ∆面积的一半?若存在,请求出点N 的坐标;若不存在,请说明理由.25.如图1,在矩形ABCD 中,AB =a ,BC =6,动点P 从B 出发沿射线BC 方向移动,作△PAB 关于直线PA 的对称△PAB ′.(1)如图2,当点P 在线段BC 上运动时,直线PB ′与CD 相交于点M ,连接AM ,若∠PAM =45°,请直接写出∠B ′AM 和∠DAM 的数量关系; (2)在(1)的条件下,请求出此时a 的值: (3)当a =8时,①如图3,当点B ′落在AC 上时,请求出此时PB 的长;②当点P 在BC 的延长线上时,请直接写出△PCB ′是直角三角形时PB 的长度.【参考答案】一、选择题 1.C 解析:C 【分析】根据二次根式有意义的条件列出不等式,解不等式得到答案. 【详解】由题意得,40x -≥, 解得,4x ≥, 故选:C . 【点睛】本题考查的是二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键.2.C解析:C 【分析】由直角三角形的定义,只要验证最大角是否是90︒;由勾股定理的逆定理,只要验证两较短边的平方和是否等于最长边的平方即可. 【详解】解:A 、∵::3:4:5A B C ∠∠=,518075345C ∴∠=⨯︒=︒++,故不能判定ABC 是直角三角形;B 、22211(3)+≠,故不能判定ABC 是直角三角形;C 、由22()2a b c ab +=+,可得:222+=a b c ,故能判定ABC 是直角三角形;D 、222111()()()12135+≠,故不能判定ABC 是直角三角形; 故选:C . 【点睛】本题主要考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可,也考查了三角形的内角和定理的应用.3.C解析:C 【解析】 【分析】根据平行四边形的判断方法一一判断即可解决问题. 【详解】解:A 、∵∠A =∠C ,∠B =∠D ,∴四边形ABCD 是平行四边形,正确,故本选项错误; B 、∵AB ∥CD ,AB =CD ,∴四边形ABCD 是平行四边形,正确,故本选项错误;C 、根据AB =CD ,AD ∥BC 可能得出四边形是等腰梯形,不一定推出四边形ABCD 是平行四边形,错误,故本选项正确; D 、∵AB ∥CD ,AD ∥BC ,∴四边形ABCD 是平行四边形,正确,故本选项错误; 故选:C .【点睛】本题考查了平行四边形的判定的应用,注意:平行四边形的判定定理有:①有两组对角分别相等的四边形是平行四边形,②有两组对边分别相等的四边形是平行四边形,③有一组对边相等且平行的四边形是平行四边形,④对角线互相平分的四边形是平行四边形,⑤有两组对边分别平行的四边形是平行四边形.4.B解析:B 【解析】 【分析】由于书法大赛设置了10个获奖名额,共有21名选手进入决赛,根据中位数的意义分析即可. 【详解】解:将21名选手进入决赛不同的分数按从小到大排序后,中位数及中位数之后的共有11个数,故只要知道自己的分数和中位数就可以知道是否获奖了, 故选B . 【点睛】本题主要考查中位数,以及相关平均数、众数、方差的意义,熟练掌握相关知识是解题的关键.5.B解析:B 【分析】连接AC 、CF ,如图,根据正方形的性质得∠ACD =45°,∠FCG =45°,AC =2,CF =32,则∠ACF =90°,再利用勾股定理计算出AF =25,然后根据直角三角形斜边上的中线求CH 的长. 【详解】连接AC 、CF ,如图,∵四边形ABCD 和四边形CEFG 都是正方形,∴∠ACD =45°,FCG =45°,AC =2BC =2,CF =2CE =32, ∴∠ACF =45°+45°=90°, 在Rt △ACF 中,AF =()()22232=25+,∵H 是AF 的中点, ∴CH =12AF =5 . 故选B .【点睛】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.两条对角线将正方形分成四个全等的等腰直角三角形.也考查了直角三角形斜边上的中线性质及勾股定理.6.B解析:B 【解析】 【分析】根据折叠前后对应角相等即可得出CAD C AD '∠=∠,从而得出结论. 【详解】解:根据折叠的性质可得CAD C AD '∠=∠, ∴线段AD 是ABC 的角平分线, 故选:B . 【点睛】本题考查折叠的性质,角平分线的定义.注意折叠前后对应角相等.7.B解析:B 【解析】 【分析】先根据正方形和等边三角形的性质证明△ADE 是等腰三角形,求出∠DAE =∠DEA ,再求出∠OAF =30°,在直角三角形OAF 中即可得出结论. 【详解】解:∵四边形ABCD 是正方形,△CDE 是等边三角形,∴AD =CD ,∠ADC =90°,DC =DE ,∠CDE =∠DEC =60°,∠DAC =45°,AC ⊥BD , ∴AD =DE ,∠ADE =90°+60°=150°,∠AOD =90°,∴∠DAE =∠DEA =12(180°−150°)=15°,∠OAF =45°−15°=30°, ∴AF =2OF =2,∴OA∴AB故选:B . 【点睛】本题考查了正方形的性质和等边三角形的性质、含30°角的直角三角形的性质以及等腰三角形的判定方法;根据正方形和等边三角形的性质弄清各个角之间的关系是解决问题的关键.8.D解析:D 【解析】 【分析】两直线与y 轴的交点相同为(0,-2),求出A 与B 坐标,由S △GAB <S △GOA ,得AB <OA ,由此列出不等式进行解答. 【详解】∵直线l 1:y=kx-2与x 轴交于点A ,直线l 2:y=(k-3)x-2分别与l 1交于点G ,与x 轴交于点B .∴G (0,-2),A (2k ,0),B (23k ,0),∵S △GAB <S △GOA , ∴AB <OA , 即222||<||3k k k ,即 62||<||3kk k当k <0时,62<-3k k k ,解得k <0; 当0<k <3时,-62<3k k k,解得k <0(舍去);当k >3时,62<3k k k,解得k >6,综上,k <0或k >6,∴含有符合条件的k 的是k >3. 故选D . 【点睛】本题主要考查了两直线相交问题,三角形的面积,一次函数图象与坐标轴的交点问题,关键是根据AB <OA 列出k 的不等式.二、填空题 9.3x ≥【解析】 【分析】根据被开方数大于或等于0,列式计算即可得解. 【详解】解:∵∴2x -6≥0, 解得x ≥3. 故答案为:x ≥3. 【点睛】本题考查二次根式有意义的条件.解题的关键是明确二次根式的被开方数是非负数.10.A解析:24 【解析】 【分析】先求出AC ,由菱形的面积公式可求解.【详解】解:∵BD =4,AC =3BD ,∴AC =12,∴菱形ABCD 的面积=2AC BD ⨯=4122⨯=24, 故答案为:24.【点睛】本题考查了菱形的性质,利用菱形的性质求解面积是解题的关键.对角线互相垂直的四边形的面积等于对角线积的一半.11.36cm 2【解析】【分析】利用勾股定理求正方形边长,从而求正方形的面积.【详解】6∴正方形的面积为:6²=36故答案为:36 cm 2.【点睛】本题考查勾股定理解直角三角形,题目比较简单,正确计算是解题关键. 12.A解析:5【分析】根据直角三角形斜边上的中线等于斜边的一半计算即可;【详解】∵四边形ABCD 时菱形,∴AC BD ⊥,∴90AOB ∠=︒,∵E 为AB 的中点,10CD AB ==, ∴152OE AB ==; 故答案是5.【点睛】本题主要考查了菱形的性质和直角三角形的性质,准确分析计算是解题的关键. 13.y=2x .【详解】 试题解析:每瓶的售价是4824=2(元/瓶), 则买的总价y (元)与所买瓶数x 之间的函数关系式是:y=2x .考点:根据实际问题列一次函数关系式.14.5或1【分析】当点E 在AD 上时,根据平行线的性质和角平分线的定义可得3AE AB ==,可得AD 的长;当点E 在AD 的延长线上时,同理可求出AD 的长.【详解】解:如图1,当点E 在AD 上时,四边形ABCD 是矩形,90A ∴∠=︒,//AD BC ,AEB CBE ∴∠=∠, BE 平分ABC ∠,ABE CBE ∴∠=∠,ABE AEB ∴∠=∠,3AE AB ∴==,2DE =,325AD AE DE ∴=+=+=;如图2,当点E 在AD 的延长线上时,同理3AE =,321AD AE DE ∴=-=-=.故答案为:5或1.【点睛】本题主要考查了矩形的性质,等腰直角三角形的性质等知识,解题的关键是正确画出两种图形.15.【分析】如图,连接,依题意,四边形是矩形,则,当时,最小,底面积法求得即可.【详解】如图,连接,PM ⊥x 轴,PN ⊥y 轴,四边形是矩形,,当时,最小,直线与坐标轴分别交于点A ,B , 解析:855【分析】如图,连接OP ,依题意,四边形OMPN 是矩形,则OP MN =,当OP AB ⊥时,OP 最小,底面积法求得OP 即可.【详解】如图,连接OP ,PM ⊥x 轴,PN ⊥y 轴,90AOB ∠=︒∴四边形OMPN 是矩形,∴OP MN =,∴当OP AB ⊥时,OP 最小,直线142y x =-+与坐标轴分别交于点A ,B , 令0,4x y ==,)4(0,A ∴令0,8y x ==,(0,8)B ∴4,8OA OB ∴==,22224845AB OA OB ∴=++=当OP AB ⊥时,1122ABC S OA OB OP AB =⨯=⨯△, 8545OA OB OP AB ⨯∴=== ∴MN OP ==85.85. 【点睛】本题考查了矩形的性质,勾股定理,垂线段最短,找到MN OP =是解题的关键. 16.2【分析】根据题意,设,由折叠,在利用勾股定理列方程解出x ,就求出BN 的长.【详解】∵D 是CB 中点,,∴,设,则,在中,,,解得:,∴.故答案是:2.【点睛】本题考查折叠的解析:2【分析】根据题意,设BN x =,由折叠92DN AN x ==-,在Rt BDN 利用勾股定理列方程解出x ,就求出BN 的长.【详解】∵D 是CB 中点,3BC =, ∴32BD =, 设BN x =,则92DN AN x ==-, 在Rt BDN 中,222BN BD DN +=,22239()()22x x +=-, 解得:2x =,∴2BN =.故答案是:2.【点睛】本题考查折叠的性质和勾股定理,关键是利用方程思想设边长,然后用勾股定理列方程解未知数,求边长.三、解答题17.(1)6;(2)-1【分析】(1)将二次根式的系数相乘,将二次根式相乘,再化简即可得到答案;(2)根据除法法则和乘法法则计算二次根式的乘除法,再将结果相加减即可.【详解】(1)(2).解析:(1)6;(2)-1【分析】(1)将二次根式的系数相乘,将二次根式相乘,再化简即可得到答案;(2)根据除法法则和乘法法则计算二次根式的乘除法,再将结果相加减即可.【详解】(1263=⨯(22121=--=-. 【点睛】此题考查二次根式的计算,正确掌握二次根式的乘除法法则,二次根式混合运算法则,以及二次根式的性质化简二次根式是解题的关键.18.55尺【分析】竹子折断后刚好构成一直角三角形,设竹子折断处离地面x 尺,则斜边为(10﹣x )尺,利用勾股定理解题即可.【详解】设竹子折断处离地面x 尺,则斜边为(10﹣x )尺,根据勾股定理得:解析:55尺【分析】竹子折断后刚好构成一直角三角形,设竹子折断处离地面x 尺,则斜边为(10﹣x )尺,利用勾股定理解题即可.【详解】设竹子折断处离地面x 尺,则斜边为(10﹣x )尺,根据勾股定理得:x 2+32=(10﹣x )2.解得:x =4.55,答:折断处离地面的高度为4.55尺.【点睛】此题考查了勾股定理的应用,解题的关键是利用题目信息构造直角三角形,从而运用勾股定理解题.19.(1)见解析;(2)见解析;(3)不能,理由见解析;【解析】【分析】(1)根据勾股定理以及题目给的数据作出边长分别为的“整数三角形”;(2)根据勾股定理,作出两个不同的等腰“整数三角形”可以解析:(1)见解析;(2)见解析;(3)不能,理由见解析;【解析】【分析】(1)根据勾股定理以及题目给的数据作出边长分别为6,8,10的“整数三角形”;(2)根据勾股定理,作出两个不同的等腰“整数三角形”可以是边长为5,5,8;5,5,6的等腰三角形;(3)根据题意先求得等边三角形的面积,比较面积和边长的关系即可得出不能找到等边“整数三角形”.【详解】(1)如图1,以A为顶点,周长为12的直角“整数三角形”的边长为3,4,5以A为顶点,周长为24的直角“整数三角形”的边长为6,8,10如图:(2)如图,根据勾股定理,作出两个不同的等腰“整数三角形”可以是边长为5,5,8;5,5,6的等腰三角形(3)不存在,理由如下:如图,ABC 是等边三角形,AD 是三角形BC 边上的高,设AB =a (a 为正整数) 则1122BD AB a ==2233a AD AB BD BD =-=211133222ABC S BC AD a a ∴=⨯==△ a 23是无理数, ∴不存在边长和面积都是整数的等边三角形故找不到等边“整数三角形”.【点睛】本题考查了勾股定理的应用,等边三角形的性质,熟练利用勾股定理找到勾股数是解题的关键.20.(1)平行四边;(2)见解析【分析】(1)根据平移可得AC ∥DF ,AC=DF ,可得四边形ADFC 是平行四边形;(2)①根据直角三角形斜边上的中线等于斜边的一半,可得CD=AD=BD ,由题意可证解析:(1)平行四边;(2)见解析【分析】(1)根据平移可得AC ∥DF ,AC =DF ,可得四边形ADFC 是平行四边形;(2)①根据直角三角形斜边上的中线等于斜边的一半,可得CD =AD =BD ,由题意可证CDBF 是平行四边形,即可得四边形CDBF 是菱形.【详解】解:(1)∵平移,∴AC ∥DF ,AC =DF ,∴四边形ADFC 是平行四边形,故答案为:平行四边;(2)∵△ACB 是直角三角形,D 是AB 的中点,∴CD =AD =BD ,∵四边形ADFC 是平行四边形,∴AD =CF ,AD ∥FC ,∴BD =CF ,∵AD ∥FC ,BD =CF ,∴四边形CDBF 是平行四边形,又∵CD =BD ,∴四边形CDBF 是菱形.【点睛】本题考查了平移的性质,平行四边形的判定,菱形的判定,灵活运用这些性质解决问题是本题的关键.21.(1);(2),证明见解析.【解析】【分析】(1)根据“第一个等式内数字为1,第二个等式内数字为2,第三个等式内数字为3”,即可猜想出第四个等式为44;(2)根据等式的变化,找出变化规律“n解析:(1144+=144;(2211n n n n ++=,证明见解析.【解析】【分析】(1)根据“第一个等式内数字为1,第二个等式内数字为2,第三个等式内数字为3”,即=414+=414;(2)根据等式的变化,找出变化规律=n 211n n n ++=”,再利用222112n n n n++=+()()开方即可证出结论成立. 【详解】(1)∵1+1=2;=212+=212;=313+=313;里面的数字分别为1、2、3,∴ 144+= 144.(21+1=2,212+=212313+=313=414+=414,…,∴= 211n n n n ++=.证明:等式左边==n 211n n n ++==右边.=n 211n n n ++=成立. 【点睛】本题考查了二次根式的性质与化简以及规律型中数的变化类,解题的关键是:(1)猜测出第四个等式中变化的数字为4;(2)找出变化规律n 211n n n ++=”.解决该题型题目时,根据数值的变化找出变化规律是关键.22.(1);(2)①120小时;② (120≤x <168),y =(x >168),泄洪56小时后,水位降到下雨前的初始高度【分析】(1)观察数据的变化符合一次函数,设出一次函数的解析式,拥待定系数法即 解析:(1)14040y x =+;(2)①120小时;②14920y x =-+ (120≤x <168),y =353.240x -+(x >168),泄洪56小时后,水位降到下雨前的初始高度 【分析】(1)观察数据的变化符合一次函数,设出一次函数的解析式,拥待定系数法即可求出解析式;(2)①取y =43,算出对应的x 即可;②开始泄洪后的水位为水库的量减去泄洪的量,分别用x 表示出对应的值,即可写出y 与x 的关系式,取y =40,求出x 即可.【详解】解:(1)观察发现x 和y 满足一次函数的关系,设y =kx +b ,代入(0,40)(12,40.3)得:4040.312b k b=⎧⎨=+⎩, 解得:14040k b ⎧=⎪⎨⎪=⎩, ∴14040y x =+; (2)①当y =43时,有1434040x =+, 解得x =120,∴120小时时必须泄洪; ②在下雨的7天内,即120≤x <168时,1430.05(120)4920y x x =--=-+,7天后,即x >168时,此时没有下雨,水位每小时下降10.050.07540+=米, 13(72440)0.075(120)53.24040y x x =⨯⨯+--=-+, 当y =40时,有:1494020x -+=, 解得x =180(不合,舍去), 或者353.24040x -+=,则x =176, 176﹣120=56,∴泄洪56小时后,水位降到下雨前的初始高度.【点睛】本题主要考查一次函数的应用,关键是要会用待定系数法求出一次函数的解析式,根据解析式求出y 满足一定条件时对应的x 的值.23.(1) (2) (3)2或或4【分析】(1)由勾股定理可求出答案;(2)延长AF ,过点D 作射线AF 的垂线,垂足为H ,设AH =DH =x ,在Rt △AHD 中,得出x2+x2=42,解方程解析:(1)(2) (3)2或或4【分析】(1)由勾股定理可求出答案;(2)延长AF ,过点D 作射线AF 的垂线,垂足为H ,设AH =DH =x ,在Rt △AHD 中,得出x 2+x 2=42,解方程求出x 即可得出答案;(3)分AF =DF ,AF =AD ,AD =DF 三种情况,由正方形的性质及直角三角形的性质可得出答案.【详解】解:(1)当t =1时,AE =1,∵四边形AEFG 是正方形,∴AG =FG =AE =1,∠G =90°,∴BF ===, (2)如图1,延长AF ,过点D 作射线AF 的垂线,垂足为H ,∵四边形AGFE是正方形,∴AE=EF,∠AEF=90°,∴∠EAF=45°,∵DH⊥AH,∴∠AHD=90°,∠ADH=45°=∠EAF,∴AH=DH,设AH=DH=x,∵在Rt△AHD中,∠AHD=90°,∴x2+x2=42,解得x1=﹣2(舍去),x2=2,∴D、F两点之间的最小距离为2;(3)当AF=DF时,由(2)知,点F与点H重合,过H作HK⊥AD于K,如图2,∵AH=DH,HK⊥AD,∴AK==2,∴t=2.当AF=AD=4时,设AE=EF=x,∵在Rt△AEF中,∠AEF=90°,∴x2+x2=42,解得x1=﹣2(舍去),x2=2,∴AE=2,即t=2.当AD=DF=4时,点E与D重合,t=4,综上所述,t 为2或2或4.【点睛】 本题是四边形综合题,考查了勾股定理,正方形的性质,等腰三角形的性质等知识,解题的关键是熟练掌握正方形的性质,学会用分类讨论的思想思考问题.24.(1)y =x+4;(2)见解析;(3)存在,点N (﹣,0)或(,0).【解析】【分析】(1)根据题意证明△CHB ≌△BOA (AAS ),即可求解;(2)求出B 、E 、D 的坐标分别为(-1,0)、解析:(1)y =13x+4;(2)见解析;(3)存在,点N (﹣463,0)或(343,0). 【解析】【分析】(1)根据题意证明△CHB ≌△BOA (AAS ),即可求解;(2)求出B 、E 、D 的坐标分别为(-1,0)、(0,12)、(1,-1),即可求解; (3)求出BC 表达式,将点P 代入,求出a 值,再根据AC 表达式求出M 点坐标,由S △BMC =12MB×y C =12×10×2=10,S △BPN =12S △BCM =5=12 NB×a=38NB 可求解. 【详解】解:(1)令x =0,则y =4,令y =0,则x =﹣2,则点A 、B 的坐标分别为:(0,4)、(﹣2,0),过点C 作CH ⊥x 轴于点H ,∵∠HCB+∠CBH =90°,∠CBH+∠ABO =90°,∴∠ABO =∠BCH ,∠CHB =∠BOA =90°,BC =BA ,在△CHB 和△BOA 中,===BCH ABO CHB BOA BC BA ∠∠∠∠⎧⎪⎨⎪⎩, ∴△CHB ≌△BOA (AAS ),∴BH =OA =4,CH =OB=2,∴ 点C (﹣6,2),将点A 、C 的坐标代入一次函数表达式:y= m x+ b 得:426b m b =⎧⎨=-+⎩, 解得:134m b ⎧=⎪⎨⎪=⎩, 故直线AC 的表达式为:y =13x+4;(2)同理可得直线CD 的表达式为:y =﹣12x ﹣1①,则点E (0,﹣1),直线AD 的表达式为:y =﹣3x+4②,联立①②并解得:x =2,即点D (2,﹣2),点B 、E 、D 的坐标分别为(﹣2,0)、(0,﹣1)、(2,﹣2),故点E 是BD 的中点,即BE =DE ;(3)将点BC 的坐标代入一次函数表达式并解得:直线BC 的表达式为:y =﹣12x-1,将点P (﹣72,a )代入直线BC 的表达式得:34a =, 直线AC 的表达式为:y =13x+4, 令y=0,则x=-12,则点M (﹣12,0),S △BMC =12MB×y C =12×10×2=10, S △BPN =12S △BCM =5=12NB×a=38NB , 解得:NB =403, 故点N (﹣463,0)或(343,0). 【点睛】本题考查的是一次函数综合运用,涉及到三角形全等、求函数表达式、面积的计算等,综合性较强,理清题中条件关系,正确求出点的坐标是解题的关键. 25.(1);(2);(3)①;②PB 的长度为8或或.【分析】(1)证明Rt △MAD ≌Rt △M AB′(AAS),即可得到∠B′AM=∠DAM ;(2)由Rt △MAD ≌Rt △MAB′(AAS),得到AD解析:(1)B AM DAM '∠=∠;(2)6a =;(3)①93;②PB 的长度为83287+或3287- 【分析】(1)证明Rt△MAD≌Rt△MAB′(AAS),即可得到∠B′AM=∠DAM;(2)由Rt△MAD≌Rt△MAB′(AAS),得到AD=AB′=AB=a,即可求得a=6;(3)①利用勾股定理求出AC,在Rt△PB′C中利用勾股定理即可解决问题;②分三种情形分别求解即可,如图2-1中,当∠PCB′=90°时.如图2-2中,当∠PCB′=90°时.如图2-3中,当∠CPB′=90°时,利用勾股定理即可解决问题.【详解】解:(1)∵四边形ABCD是矩形,∴∠D=∠B=∠BAD=90°,∵△PAB′与△PAB关于直线PA的对称,∴△PAB≌△PAB′,∴AB′=AB,∠AB′P=∠B=90°,∠B′AP=∠BAP,∵∠PAM=45°,即∠B′AP +∠B′AM =45°,∴∠DAM +∠BAP =45°,∴∠DAM=∠B′AM,∵AM=AM,∴Rt△MAD≌Rt△MAB′(AAS),∴∠B′AM=∠DAM;(2)∵由(1)知:Rt△MAD≌Rt△MAB′,∴AD=AB′=AB=a,∵AD=BC=6,∴a=6;(3)①在Rt△ABC中,∠ABC=90°,由勾股定理得:AC,设PB=x,则PC=6−x,由对称知:PB′=PB=x,∠AB′P=∠B=90°,∴∠PB′C=90°,又∵AB′=AB=8,∴B′C=2,在Rt△PB′C中,222'PC B C PB=+,∴(6−x)2=22+x2,解得:x=93,即PB=93;②∵△PAB′与△PAB关于直线PA的对称,∴△PAB≌△PAB′,∴AB′=AB,∠AB′P=∠B=90°,PB′=PB,设PB′=PB=t,如图2-1中,当∠PCB'=90°,B'在CD上时,∵四边形ABCD 是矩形,∴∠D =90°,AB ′=AB =CD =8,AD =BC =6,∴DB ′2227AB AD '=-=,∴CB ′=CD −DB ′=8−27,在Rt △PCB '中,∵B 'P 2=PC 2+B 'C 2,∴t 2= (8−27)2+(6−t )2,∴t =32873-; 如图2-2中,当∠PCB '=90°,B '在CD 的延长线上时,在Rt △ADB '中,DB ′2227AB AD '-=∴CB 7在Rt △PCB '中,则有:7)2+(t −3)2=t 2,解得t 3287+; 如图2-3中,当∠CPB '=90°时,∵∠B=∠B′=∠BPB′=90°,AB=AB′,∴四边形AB'PB为正方形,∴BP=AB=8,∴t=8,综上所述,PB的长度为83287+3287-【点睛】本题考查了轴对称的性质,矩形的性质,正方形的判定和性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是正确寻找全等三角形解决问题.。
辽宁省大连市八年级下学期数学期末试卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分) (2019八下·盐湖期中) 剪纸是我国最古老民间艺术之一,被列入第四批(人类非物质文化遗产代表作名录),下列剪纸作品中,是中心对称图形但不是轴对称图形的是()A .B .C .D .2. (2分) (2020七下·南宁期末) 已知a<b,则下列四个不等式中不正确的是()A . 4a<4bB . ﹣4a<﹣4bC . a+4<b+4D . a﹣4<b﹣43. (2分)下列各式不能用平方差公式进行因式分解的是()A . ﹣x2+y2B . ﹣x2﹣y2C . x2﹣y2D . y2﹣x24. (2分)当分式有意义时,字母x应满足()A . x≠-1B . x=0C . x≠1D . x≠05. (2分)在平移过程中,对应线段()A . 互相垂直且相等B . 互相平行且相等C . 相互平行一相等D . 相等但不平行6. (2分) (2017八下·鄞州期中) 下列条件不能用来判定四边形ABCD是平行四边形的是()A . ∠A:∠B:∠C:∠D=1:4:1:4B . AB∥CD,AD=BCC . AB=CD,AD=BCD . AB∥CD,AD∥CB二、填空题 (共6题;共6分)7. (1分) (2019七下·江阴期中) 已知一个多边形的每一个内角都是,则这个多边形是________边形.8. (1分)若分式中的a、b都同时扩大2倍,则该分式的值________.(填“扩大”、“缩小”或“不变”)9. (1分) (2020八下·温岭期末) 如图,直线y= x+2与y轴相交于G,矩形ABCD,AB=2,BC=2 ,且两边分别与两坐标轴平行,对角线交点E在直线y= x+2上,横坐标为- ,若矩形沿着直线y= x+2的方向以每秒个单位的速度向上平移,移动时间为t秒,则当点G落在矩形ABCD的内部(不包括矩形的边上)时,t的取值范围为________.10. (1分)小明家准备春节前举行80人的聚餐,需要去某餐馆订餐.据了解餐馆有10人坐和8人坐两种餐桌,要使所订的每个餐桌刚好坐满,则订餐方案共有________ 种.11. (1分)如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A'B'C',连接AA′,若∠1=25°,则∠BAA'的度数是________.12. (1分) (2019九上·抚顺月考) 如图,在平面直角坐标系中,OA1=2,∠A1Ox=30°,以OA1为直角边作Rt△OA1A2 ,并使∠A1OA2=60°,再以A1A2为直角边作Rt△A1A2A3 ,并使∠A2A1A3=60°,再以A2A3为直角边作Rt△A2A3A4 ,并使∠A3A2A4=60°,…,按此规律进行下去,则A2020的坐标是________.三、解答题 (共11题;共89分)13. (10分) (2019七上·杨浦月考) 因式分解14. (2分)(2017·天门) 解不等式组,并把它的解集在数轴上表示出来.15. (5分)(2017·冠县模拟) 综合题。
辽宁省大连市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019八上·民勤期末) 在、、、、中分式的个数有()A . 1个B . 2个C . 3个D . 4个2. (2分)(2018·肇庆模拟) 函数y= 的自变量x的取值范围是()A . x>-1B . x≠-1C . x≠1D . x<-13. (2分) (2019八上·台州期末) 用科学记数法表示 0.000 006 1,结果是()A . 6.1×10-5B . 6.1×10-6C . 0.61×10-5D . 61×10-74. (2分)下列命题为真命题的是()A . 平面内任意三点确定一个圆B . 五边形的内角和为540°C . 如果a>b,则ac2>bc2D . 如果两条直线被第三条直线所截,那么所截得的同位角相等5. (2分)在一次投掷实心球训练中,小丽同学5次投掷成绩(单位:m)为:6、8、9、8、9。
则关于这组数据的说法不正确的是()A . 极差是3B . 平均数是8C . 众数是8和9D . 中位数是96. (2分)(2017·莒县模拟) 为了进一步落实“节能减排”工作,某单位决定对3600平方米的“外墙保温”工程进行招标,现有甲、乙两个工程队参与投标.比较两个工程队的标书发现:乙队每天完成的工程量是甲队的2倍,这样乙队单独干比甲队单独干能提前10天完成任务.设甲队每天完成x平方米,可列方程为()A . ﹣ =10B . ﹣ =10C . + =10D . 10(2x+x)=36007. (2分) (2017八下·德惠期末) 矩形,菱形,正方形都具有的性质是()A . 每一条对角线平分一组对角B . 对角线相等C . 对角线互相平分D . 对角线互相垂直8. (2分) (2018九上·南山期末) 如图,在平面直角坐标系中,直线y1=2x-2与坐标轴交于A、B两点,与双曲线y2= (x>0)交于点C,过点C作CD⊥x轴,且OA=AD,则以下结论错误的是()A . 当x>0时,y1随x的增大而增大,y2随x的增大而减小;B . k=4:C . 当0<x<2时,y1< y2D . 当x=4时,EF=4.9. (2分) (2017八下·凉山期末) 下列说法中错误的有()个.⑴平行四边形对角线互相平分且相等;⑵对角线相等的平行四边形是矩形;⑶菱形的四条边相等,四个角也相等;⑷对角线互相垂直的矩形是正方形;⑸顺次连接四边形各边中点所得到的四边形是平行四边形.A . 1B . 2C . 3D . 410. (2分)若函数y= ,则当函数值y=8时,自变量x的值是()A . ±B . 4C . ± 或4D . 4或﹣二、填空题 (共6题;共8分)11. (1分) (2016八上·灌阳期中) 若分式的值为0,则x=________.12. (1分) (2019八下·左贡期中) 若函数是正比例函数,则m=________.13. (1分)(2018·巴中) 甲、乙两名运动员进行了5次百米赛跑测试,两人的平均成绩都是13.3秒,而S 甲2=3.7,S乙2=6.25,则两人中成绩较稳定的是________.14. (1分) (2015八下·嵊州期中) 方程(x﹣1)2=3的解为________15. (3分) (2017八下·临沂开学考) 如图1,一张三角形ABC纸片,点D、E分别是△ABC边上两点.研究(1):如果沿直线DE折叠,使A点落在CE上,则∠BDA′与∠A的数量关系是________研究(2):如果折成图2的形状,猜想∠BDA′、∠CEA′和∠A的数量关系是________研究(3):如果折成图3的形状,猜想∠BDA′、∠CEA′和∠A的数量关系是________.16. (1分)如图,AD=8,CD=6,∠ADC=90°,AB=26,BC=24,该图形的面积等于________.三、解答题 (共7题;共72分)17. (5分)(2017·兴庆模拟) 先化简,后求值.(﹣)÷ ﹣,其中a= +1.18. (15分) (2015九下·武平期中) 为了参观上海世博会,某公司安排甲、乙两车分别从相距300千米的上海、泰州两地同时出发相向而行,甲到泰州带客后立即返回,下图是它们离各自出发地的距离y(千米)与行驶时间x(小时)之间的函数图像.(1)请直接写出甲离出发地的距离y(千米)与行驶时间x(小时)之间的函数关系式,并写出自变量x的取值范围;(2)当它们行驶4.5小时后离各自出发点的距离相等,求乙车离出发地的距离y(千米)与行驶时间x(小时)之间的函数关系式,并写出自变量x的取值范围;(3)在(2)的条件下,甲、乙两车从各自出发地驶出后经过多少时间相遇?19. (5分) (2019九上·十堰期末) 如图,⊙C经过原点,并与两坐标轴分别相交于A,D两点,已知∠OBA =30°,点A的坐标为(4,0),求圆心C的坐标.20. (5分) (2019八上·大庆期末) 如图,已知E、F为平行四边形ABCD的对角线上的两点,且BE=DF,∠AEC=90°.求证:四边形AECF为矩形.21. (20分)(2016·余姚模拟) 某同学进行社会调查,随机抽查了某小区的40户家庭的年收入(万元)情况,并绘制了如图不完整的频数直方图,每组包括前一个边界值,不包括后一个边界值.(1)补全频数直方图.(2)年收入的中位数落在哪一个收入段内?(3)如果每一组年收入均以最低计算,这40户家庭的年平均收入至少为多少万元?(4)如果该小区有1200户住户,请你估计该小区有多少家庭的年收入低于18万元?22. (15分) (2017八下·澧县期中) 如图,四边形ABDC中,∠D=∠ABD=90°,点O为BD的中点,且OA平分∠BAC.(1)求证:OC平分∠ACD;(2)求证:OA⊥OC;(3)求证:AB+CD=AC.23. (7分)(2017·日照模拟) 如图,AB为⊙O的直径,点C为AB延长线上一点,动点P从点A出发沿AC 方向以lcm/s的速度运动,同时动点Q从点C出发以相同的速度沿CA方向运动,当两点相遇时停止运动,过点P 作AB的垂线,分别交⊙O于点M和点N,已知⊙O的半径为l,设运动时间为t秒.(1)若AC=5,则当t=________时,四边形AMQN为菱形;当t=________时,NQ与⊙O相切;(2)当AC的长为多少时,存在t的值,使四边形AMQN为正方形?请说明理由,并求出此时t的值.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共7题;共72分)17-1、18-1、18-2、18-3、19-1、20-1、21-1、21-2、21-3、21-4、22-1、22-2、22-3、23-1、23-2、。
辽宁省大连市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2019七下·重庆期中) 小明骑自行车上学,开始以正常速度匀速行驶,但行驶中途自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,便以更快的速度匀速行驶去学校。
下面能大致反映小明离家距离与出发时间的关系的图象是()A .B .C .D .2. (2分) (2020七下·鼓楼期末) 下列命题与它的逆命题均为真命题的是()A . 内错角相等B . 对顶角相等C . 如果ab=0,那么a=0D . 互为相反数的两个数和为03. (2分) (2019九上·重庆开学考) 分式有意义,则的取值范围为().A .B .C . 且D . 为任意实数4. (2分)(2019·盘锦) 在中考体育加试中,某班30名男生的跳远成绩如下表:成绩/m1.952.002.052.102.152.25人数239853这些男生跳远成绩的众数、中位数分别是()A . 2.10,2.05B . 2.10,2.10C . 2.05,2.10D . 2.05,2.055. (2分) (2019八下·马鞍山期末) 若ab>0,ac<0,则一次函数y=﹣ x﹣的图象不经过下列个象限()A . 第一象限B . 第二象限C . 第三象限D . 第四象限6. (2分)有一个正方体的六个面上分别标有数字1、2、3、4、5、6,从三个不同的角度观察这个正方体所得到的结果如图所示,如果标有数字6的面所对面上的数字记为a,2的面所对面上数字记为b,那么a+b的值为()A . 6B . 7C . 8D . 97. (2分) (2016七上·高密期末) 如果a2+ab=8,ab+b2=9,那么a2﹣b2的值是()A . ﹣1B . 1C . 17D . 不确定8. (2分) (2019八上·下陆月考) 如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为()A .B .C .D . 不能确定二、填空题 (共6题;共6分)9. (1分)已知a,b是正整数,且满足2(+)是整数,则这样的有序数对(a,b)共有________ 对.10. (1分)(2019·临海模拟) 如图,矩形ABCD周长为30,经过矩形对称中心O的直线分别交AD,BC于点E,F.将矩形沿直线EF翻折,A′B′分别交AD,CD于点M,N,B'F交CD于点G.若MN:EM=1:2,则△DMN的周长为________.11. (1分)直线y=-2x+4经过点P(m,6),则m的值为________.12. (1分) (2016九下·宁国开学考) 如图,在平行四边形ABCD中,点E在BC边上,且CE:BC=2:3,AC 与DE相交于点F,若S△AFD=9,则S△EFC=________.13. (1分)已知函数y=(m-1) +3是一次函数,则m= ________ .14. (1分)(2016·宝安模拟) 将边长为1的正方形纸片按图1进行二等分分割,其阴影图形面积为S1 ,继续将图2剩下空白部分二等分分割的图形面积为S2 ,…,按此方法如图3第n次分割后得到的图形面积为Sn ,求S1+S2+S3+…+Sn=________.三、解答题 (共9题;共91分)15. (10分) (2019七上·瑞安期中) 计算(1) -1+2-3(2) |+6.5|-|-3.5|(3)12×()(4)16. (5分) (2019八下·方城期末) 先化简,再求代数式的值,其中 .17. (16分)某商场服装部分为了解服装的销售情况,统计了每位营业员在某月的销售额(单位:万元),并根据统计的这组销售额的数据,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)该商场服装营业员的人数为________,图①中m的值为________;(2)求统计的这组销售额数据的平均数、众数和中位数.18. (10分)(2017·平顶山模拟) 某单位举行“健康人生”徒步走活动,某人从起点体育村沿建设路到市生态园,再沿原路返回,设此人离开起点的路程s(千米)与走步时间t(小时)之间的函数关系如图所示,其中从起点到市生态园的平均速度是4千米/小时,用2小时,根据图像提供信息,解答下列问题.(1)求图中的a值.(2)若在距离起点5千米处有一个地点C,此人从第一次经过点C到第二次经过点C,所用时间为1.75小时.①求AB所在直线的函数解析式;②请你直接回答,此人走完全程所用的时间.19. (10分)如图,△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.(1)求证:△ABE≌△CBF;(2)若∠CAE=15°,AE=2,求△ACF的周长.20. (10分)如图是一束平行的阳光从教室窗户射入的平面示意图,小强同学测量出BC=1m,NC= m,BN= m,AC=4.5m,MC=6m,求MA的长.21. (5分)如图,在平行四边形ABCD中,点E、F分别在AD、BC上,且AE=CF.求证:BE∥DF.22. (10分)(2017·江汉模拟) 如图所示,破残的圆形轮片上,弦AB的垂直平分线交弧AB于点C,交弦AB 于点D.已知:AB=24cm,CD=8cm.(1)求作此残片所在的圆(不写作法,保留作图痕迹);(2)求(1)中所作圆的半径.23. (15分) (2020七下·莲湖期末) 长方形的长为a厘米,宽为b厘米,其中,将原长方形的长和宽各增加3厘米,得到的新长方形的面积为;将原长方形的长和宽分别减少2厘米,得到的新长方形的面积为 .(1)若a,b为正整数,请说明与的差一定是5的倍数;(2)若,求将原长方形的长和宽分别减少7厘米后得到的新长方形的面积.参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共6题;共6分)9-1、10-1、11-1、12-1、13-1、14-1、三、解答题 (共9题;共91分)15-1、15-2、15-3、15-4、16-1、17-1、17-2、18-1、18-2、19-1、19-2、20-1、21-1、22-1、22-2、23-1、23-2、。
一、选择题(每题4分,共20分)1. 下列各数中,绝对值最小的是()A. -3B. -2C. 0D. 12. 已知函数y=2x-3,当x=2时,y的值为()A. 1B. 3C. 5D. 73. 下列图形中,不是轴对称图形的是()A. 正方形B. 等腰三角形C. 圆D. 长方形4. 下列方程中,x=3是它的解的是()A. 2x+1=7B. 3x-5=4C. 4x+2=10D. 5x-1=145. 已知一个长方体的长、宽、高分别为a、b、c,则它的体积V为()A. abcB. ab+cC. ac+bD. a+b+c二、填空题(每题4分,共20分)6. 如果a=5,b=-3,那么a-b的值为______。
7. 已知直线y=3x+2与x轴的交点坐标为______。
8. 在直角三角形ABC中,∠C=90°,∠A=30°,那么∠B的度数为______。
9. 如果一个长方形的对边分别为6cm和8cm,那么它的周长为______cm。
10. 下列分数中,分子分母互质的是______。
三、解答题(每题10分,共30分)11. (10分)解下列方程:3x-2=5x+112. (10分)已知一个等腰三角形的底边长为8cm,腰长为10cm,求这个三角形的面积。
13. (10分)小明家到学校的距离是3km,他骑自行车以每小时12km的速度去学校,骑了30分钟后到达学校,求小明家到学校的路程。
四、应用题(每题15分,共30分)14. (15分)某商店计划在一个长方形的地板上铺设地板砖,长方形的长为6m,宽为4m。
如果每块地板砖的边长为1m,那么需要铺设多少块地板砖?15. (15分)某班级有50名学生,男生人数是女生人数的2倍。
如果再增加5名女生,那么男生人数是女生人数的1.5倍。
求原来男生和女生的人数。
五、附加题(10分)16. (10分)请根据以下条件,画出相应的图形:(1)一个长为8cm,宽为5cm的长方形;(2)一个半径为4cm的圆;(3)一个对边分别为6cm和8cm的平行四边形。
一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √2B. πC. -√3D. 0.1010010001……2. 下列等式中,正确的是()A. (a + b)² = a² + 2ab + b²B. (a - b)² = a² - 2ab + b²C. (a + b)² = a² - 2ab + b²D. (a - b)² = a² + 2ab - b²3. 若x² - 5x + 6 = 0,则x的值为()A. 2或3B. 1或4C. 2或4D. 1或34. 下列函数中,自变量x的取值范围是全体实数的是()A. y = √(x - 2)B. y = √(x² + 1)C. y = √(-x)D. y = √(x² - 4)5. 若等腰三角形底边长为6cm,腰长为8cm,则该三角形的周长为()A. 20cmB. 22cmC. 24cmD. 26cm6. 已知一元二次方程ax² + bx + c = 0(a ≠ 0)的判别式为b² - 4ac = 0,则该方程有两个相等的实数根,且a的值为()A. 1B. -1C. 2D. -27. 在直角坐标系中,点A(-2,3)关于原点的对称点是()A.(-2,-3)B.(2,-3)C.(-2,3)D.(2,3)8. 下列数列中,是等比数列的是()A. 1, 2, 4, 8, 16, …B. 1, 3, 6, 10, 15, …C. 1, 3, 9, 27, 81, …D. 1, 4, 9, 16, 25, …9. 若直角三角形的两条直角边长分别为3cm和4cm,则该三角形的斜边长为()A. 5cmB. 7cmC. 9cmD. 11cm10. 下列函数中,是奇函数的是()A. y = x²B. y = |x|C. y = x³D. y = x + 1二、填空题(每题5分,共50分)1. 若a = -3,b = 2,则a² - b² = __________。
2018-2019学年辽宁省大连市沙河口区八年级(下)期末数学试卷一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项正确)1.(3分)要使得式子有意义,则x的取值范围是()A.x>2B.x≥2C.x<2D.x≤22.(3分)下列四组线段中,可以构成直角三角形的是()A.2,3,4B.3,4,5C.4,5,6D.1,,33.(3分)在▱ABCD中,若∠A=40°,则∠C的度数是()A.20°B.40°C.80°D.140°4.(3分)正比例函数y=﹣2x的图象向上平移1个单位后得到的函数解析式为()A.y=﹣2x+1B.y=﹣2x﹣1C.y=2x+1D.y=2x﹣15.(3分)下列运算中正确的是()A.+=B.×=C.÷=3D.(﹣)2=﹣36.(3分)下列属于菱形性质的是()A.对角线相等B.对角线互相垂直C.对角互补D.四个角都是直角7.(3分)函数y=kx+b的图象如图所示,则关于x的不等式kx+b>0的解集是()A.x>0B.x<0C.x>﹣2D.x<﹣28.(3分)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分7个有效评分与9个原始评分相比,不变的数字特征是()A.平均数B.中位数C.众数D.方差9.(3分)某商品经过连续两次降价,销售单价由原来100元降到81元.设平均每次降价的百分率为x,根据题意可列方程为()A.81(1﹣x)2=100B.100(1+x)2=81C.81(1+x)2=100D.100(1﹣x)2=8110.(3分)在矩形ABCD中,AB=3,AD=5,点E是CD上一点,翻折△BCE,得△BEC’,点C落在AD上,则EC’的值是()A.1B.C.D.二、填空题(本题共6小题,每小题3分,共18分)11.(3分)计算:(﹣1)(+1)=.12.(3分)若一元二次方程x2+bx+1=0(b为常数)有两个相等的实数根,则b=.13.(3分)如图,▱ABCD的对角线AC,BD交于点O,点E是CD的中点,若AD=6,则OE的长是.14.(3分)秀水村的耕地面积是106平方米,这个村的人均占地面积y(单位:平方米)随这个村人数n的变化而变化,则y与n的函数解析式为.15.(3分)某公司要招聘职员,竞聘者需通过计算机、语言表达和写作能力测试,李丽的三项成绩百分制依次是70分,90分,80分,其中计算机成绩占50%,语言表达成绩占30%,写作能力成绩占20%,则李丽最终的成绩是分.16.(3分)在平面直角坐标系中,直线y=﹣2x+2交x轴与点A,交y轴于点B,点C(2,0)在x轴上,点D在线段AB上,且CD=AB,则点D的坐标是.三、解答题(本题共4小题,第17、18、19题各9分,第20题12分,共39分)17.(9分).18.(9分)解方程:x2﹣5x=﹣6.19.(9分)如图,矩形ABCD的对角线AC,BD相交于点O,DE∥AC,CE∥BD.求证:四边形OCED是菱形.20.(12分)某校为了解八年级学生课外阅读情况,随机抽取20名学生平均每周用于课外阅读的时间(单位:min),过程如表;【收集数据】30608150401101301469010060811201407081102010081【整理数据】课外阅读时间x0≤x<4040≤x<8080≤x<120120≤x<160(min)等级D C B A人数3a8b【分析数据】平均数中位数众数80m n请根据以上提供的信息,解答下列问题:(1)填空:a=,b=,m=,n=;(2)如果每周用于课外阅读的时间不少于80min为达标,该校八年级现有学生200人,估计八年级达标的学生有多少人?四、解答题(本题共3小题,第21、22题各9分,第23题10分,共28分)21.(9分)如图,矩形花坛ABCD面积是24平方米,两条邻边AB,BC的和是10米(AB<BC),求边AB的长.22.(9分)小聪从家里跑步去体育场,在那里锻炼了一会儿后,又走到文具店去买笔,然后走回家,如图是小聪离家的距离y(单位:km)与时间x(单位:min)的图象,根据图象回答下列问题:(1)体育场离小聪家km.(2)小聪在体育场锻炼了min.(3)小聪从体育场走到文具店的平均速度是km/min:(4)小聪在返回时,何时离家的距离是1.2km?23.(10分)按要求画出图形:(1)在平面直角坐标系中,四边形ABCD位于第一象限内,且四个顶点的横、纵坐标都是正整数.①若点A(2,1),点B(1,3),在图1、图2中,以线段AB为一边,分别画一个平行四边形和菱形(要求两个四边形不全等);②若点A(4,1),在图3中,以点A为顶点,画一个面积是10的正方形:(2)有5个边长为1正方形,排列形式如图4,请把它们分割后拼接成一个正方形,在图5中画出拼接的正方形(保留分割与拼接的痕迹).五、解答题(本题共3小题,第24题11分,第25、26题各12分,共35分)24.(11分)如图,在平面直角坐标系中,直线AB交x轴于点A(6,0),交y轴于点B(O,3),正方形CDEF 的点C在线段AB上,点D,E在x轴正半轴上,点E在点D的右侧,CD=2.将正方形CDEF沿x轴正方向平移,得到正方形C′D′E′F′,当点D与点A重合时停止运动,设平移的距离为m,正方形C′D′E′F′与△AOB重合部分的面积为S.(1)求直线AB的解析式;(2)求点C的坐标;(3)求S与m的解析式,并直接写出自变量m的取值范围.25.(12分)阅读下列材料数学课上,老师出示了这样一个问题:如图,菱形ABCD和四边形ABCE,∠BAD=60°,连接BD,BE,BD=BE.求证:∠ADC=∠AEC;某学习小组的同学经过思考,交流了自己的想法:小明:“通过观察分析,发现∠ABE与∠EBC存在某种数量关系”;小强:“通过观察分析,发现图中有等腰三角形”;小伟:“利用等腰三角形的性质就可以推导出∠ADC=∠AEC”.…老师:“将原题中的条件‘BD=BE’与结论‘∠ADC=∠AEC’互换,即若∠ADC=∠AEC,则BD=BE,其它条件不变,即可得到一个新命题”…请回答:(1)在图中找出与线段BE相关的等腰三角形(找出一个即可),并说明理由;(2)求证:∠ADC=∠AEC;(3)若∠ADC=∠AEC,则BD=BE是否成立?若成立,请证明;若不成立,请说明理由.26.(12分)在平面直角坐标系中,定义:直线y=mx+n的关联直线为y=nx+m(m≠0,n≠0,m≠n).例如:直线y=2x﹣3的关联直线为y=﹣3x+2.(1)如图1,对于直线y=﹣x+2.①该直线的关联直线为,该直线与其关联直线的交点坐标为;②点P是直线y=﹣x+2上一点,过点P的直线PQ垂直于x轴,交直线y=﹣x+2的关联直线于点Q.设点P的横坐标为t,线段PQ的长度为d(>0),求当d随t的增大而减小时,d与t之间的函数关系式,并写出自变量t的取值范围.(2)对于直线y=ax+2a(a≠0).直线x=a交直线y=ax+2a于点M,交直线y=ax+2a的关联直线于点N.①设直线y=ax+2a交y轴于点A,当以点O、A、M、N为顶点的四边形是平行四边形时,求a的值;②设点M的纵坐标为b,点N的纵坐标为c.当c>b时,直接写出a的取值范围.2018-2019学年辽宁省大连市沙河口区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项正确)1.【解答】解:根据题意,得x﹣2≥0,解得x≥2.故选:B.2.【解答】解:A、∵22+32≠42,∴此时三角形不是直角三角形,故本选项不符合题意;B、∵32+42=52,∴此时三角形是直角三角形,故本选项符合题意;C、∵42+52≠62,∴此时三角形不是直角三角形,故本选项不符合题意;D、∵12+()2≠32,∴此时三角形不是直角三角形,故本选项不符合题意;故选:B.3.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C,∵∠A=40°,∴∠C=40°,故选:B.4.【解答】解:正比例函数y=﹣2x的图象向上平移1个单位,则平移后所得图象的解析式是:y=﹣2x+1.故选:A.5.【解答】解:A、与不能合并,所以A选项错误;B、原式==,所以B选项正确;C、原式==,所以C选项错误;D、原式=3,所以D选项错误.故选:B.6.【解答】解:A、菱形的对角线互相垂直,但不一定相等,故原命题错误,不符合题意;B、菱形的对角线互相垂直,故原命题正确,符合题意;C、菱形的对角相等,故原命题错误,不符合题意;D、矩形的四个角都是直角,菱形不一定是,故原命题错误,不符合题意,故选:B.7.【解答】解:由图象可得:当x>﹣2时,kx+b>0,所以关于x的不等式kx+b>0的解集是x>﹣2,故选:C.8.【解答】解:根据题意,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分7个有效评分与9个原始评分相比,不变的数字特征是中位数.故选:B.9.【解答】解:由题意可列方程是:100×(1﹣x)2=81.故选:D.10.【解答】解:由折叠得:BC=BC′=5,EC=EC′,在Rt△ABC′中,AC′===4,∴C′D=AD﹣AC′=5﹣4=1,在Rt△DEC′中,设EC=x=EC′,则DE=3﹣x,由勾股定理得:12+(3﹣x)2=x2,解得:x=,故选:D.二、填空题(本题共6小题,每小题3分,共18分)11.【解答】解:原式=7﹣1=6.故答案为6.12.【解答】解:∵一元二次方程x2+bx+1=0(b为常数)有两个相等的实数根,∴△=b2﹣4×1×1=0,解得:b=±2,故答案为:±2.13.【解答】解:∵▱ABCD的对角线AC、BD相交于点O,∴OA=OC,∵点E是CD的中点,∴CE=DE,∴OE是△ACD的中位线,∵AD=6,∴OE=AD=×6=3.故答案为3.14.【解答】解:由题可得,y与n的函数解析式为:y=.故答案为:y=.15.【解答】解:由题意可得:70×50%+90×30%+80×20%=78(分).故答案为78.16.【解答】解:令y=0,则﹣2x+2=0,解得x=1,∴A(1,0),令x=0,则y=2,∴B(0,2),∴AB2=12+22=5,设D(x,﹣2x+2),∵CD=AB,C(2,0),∴(x﹣2)2(﹣2x+2﹣0)2=5,解得x1=,x2=,∵点D在线段AB上,∴D(,),故答案为:(,).三、解答题(本题共4小题,第17、18、19题各9分,第20题12分,共39分)17.【解答】解:原式=2﹣﹣+=3﹣.18.【解答】解:∵x2﹣5x=﹣6.∴x2﹣5x+6=0,∴(x﹣2)(x﹣3)=0,∴x﹣2=0或x﹣3=0,∴x1=2,x2=3.19.【解答】证明:∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,∵矩形ABCD,∴AO=OC=OB=OD=AC=BD,∴四边形OCED是菱形.20.【解答】解:(1)由统计表收集数据可知a=5,b=4,m=81,n=81;(2)200×=120(人),所以估计八年级达标的学生有120人.四、解答题(本题共3小题,第21、22题各9分,第23题10分,共28分)21.【解答】解:设AB的长为x米,则BC的长为(10﹣x)米,根据题意得,x(10﹣x)=24,解得:x1=4,x2=6,当x=4时,10﹣x=6,当x=6时,10﹣x=4<6(不合题意舍去),答:边AB的长为4米.22.【解答】解:(1)由图象可得,体育场离小聪家2.5km,故答案为:2.5;(2)小聪在体育场锻炼了30﹣15=15(min),故答案为:15;(3)小聪从体育场走到文具店的平均速度是:=(km/min),故答案为:;(4)设DE段小聪的速度为:(km/min),(min),65+8=73(min),即小聪在返回时,73min时离家的距离是1.2km.23.【解答】解:(1)①如图1中,平行四边形ABCD即为所求,如图2中,菱形ABCD即为所求.②如图3中,正方形ABCD即为所求.(2)分割线如图4中所示,正方形如图5中所示.五、解答题(本题共3小题,第24题11分,第25、26题各12分,共35分)24.【解答】解:(1)设直线AB解析式为y=kx+b,过点A(6,0),点B(O,3),根据题意得:解得:∴直线AB解析式为y=﹣x+3(2)∵CD=2,∴2=﹣x+3∴x=2∴点C坐标(2,2)(3)如图,当0≤m≤2时,∵点C坐标(2,2)∴点D(2,0),点E(4,0)∵平移的距离为m∴点D'(2+m,0),E'(4+m,0)当x=2+m时,y=﹣(2+m)+3=﹣m+2当x=4+m时,y=﹣(4+m)+3=﹣m+1∴S=×2×[(﹣m+2)+(﹣m+1)]=﹣m+3如图,当2<m≤4时,∴AD'=6﹣(2+m)=4﹣m∴S=×(4﹣m)×(﹣m+2)=m2﹣2m+4综上所述S=25.【解答】解:(1)△ABE或△BCE是等腰三角形;理由如下:∵四边形ABCD是菱形∴AB=AD=CD=BC又∵∠BAC=60°∴△ABD是等边三角形∴AB=BD,且BD=BE∴AB=BE=BC∴△ABE或△BCE是等腰三角形;(2)∵AB∥CD,∠BAD=60°∴∠ADC=120°=∠ABC由(1)可知:AB=BE=BC∴∠BAE=∠AEB=,∠BEC=∠BCE=∴∠BEA+∠BEC=+===120°∴∠AEC=∠ADC(3)成立,理由如下如图,∵四边形ABCD是菱形∴AB=AD=CD=BC又∵∠BAC=60°∴△ABD是等边三角形∴AB=AD=BD=BC∴点A,点D,点C在以点B为圆心,AB为半径的圆上,∵∠ADC=∠AEC∴点A,点D,点C,点E四点共圆,∵不共线的三点(点A,点D,点C)确定一个圆∴点E在以点B为圆心,AB为半径的圆上,∴BE=BD26.【解答】解:(1)①由关联直线定义可得直线y=﹣x+2的关联直线为:y=2x﹣1∴解得:∴交点坐标(1,1)故答案为:y=2x﹣1,(1,1)②设点P(t,﹣t+2),点Q(t,2t﹣1)由题意可得:当t<1时,符合题意∴d=(﹣t+2)﹣(2t﹣1)=﹣3t+3(2)①由关联直线定义可得直线y=ax+2a的关联直线为:y=2ax+a∵直线y=ax+2a交y轴于点A,∴当x=0时,y=2a,∴点A(0,2a)∵直线x=a交直线y=ax+2a于点M,交直线y=ax+2a的关联直线于点N.∴当x=a时,y=a2+2a,即点M(a,a2+2a)当x=a时,y=2a2+a,即点N(a,2a2+a)∴AO∥MN∵以点O、A、M、N为顶点的四边形是平行四边形∴OA=MN∴|2a|=|(a2+2a)﹣(2a2+a)|∴a2﹣a=±2a当a2﹣a=2a,解得a1=3,a2=0(不合题意舍去)当a2﹣a=﹣2a,解得a3=﹣1,a4=0(不合题意舍去)∴a的值为3或﹣1②∵设点M的纵坐标为b,点N的纵坐标为c,且c>b,∴2a2+a>a2+2a∴a(a﹣1)>0∴或∴a>1或a<0。