数学勾股定理
- 格式:doc
- 大小:351.50 KB
- 文档页数:3
勾股定理公式大全勾股定理是一个基本的几何定理,直角三角形两直角边(即“勾”,“股”)边长平方和等于斜边(即“弦”)边长的平方。
也就是说,设直角三角形两直角边为a和b,斜边为c,那么a²+b²=c²。
勾股定理现发现约有400种证明方法,是数学定理中证明方法最多的定理之一。
勾股数组成a²+b²=c²的正整数组(a,b,c)。
(3,4,5)就是勾股数。
勾股定理是一个初等几何定理,是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。
“勾三,股四,弦五”是勾股定理的一个最著名的例子。
当整数a,b,c满足a²+b²=c²这个条件时,(a,b,c)叫做勾股数组。
也就是说,设直角三角形两直角边为a和b,斜边为c,那么a²+b²=c²。
”常见勾股数有(3,4,5)(5,12,13)(6,8,10)。
远在公元前约三千年的古巴比伦人就知道和应用勾股定理,他们还知道许多勾股数组。
古埃及人在建筑宏伟的金字塔和尼罗河泛滥后测量土地时,也应用过勾股定理。
在中国,商朝时期的商高提出了“勾三股四玄五”的勾股定理的特例。
在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。
勾股定理的公式:在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。
如果设直角三角形的两条直角边长度分别是3 和4 ,斜边长度是5 ,那么可以用数学语言表达:3²+4²=5²勾股定理是余弦定理中的一个特例。
勾股定理及其逆定理一、勾股定理勾股定理是数学中的基础定理之一,它描述了直角三角形中的关系。
根据勾股定理,直角三角形的两条直角边的平方和等于斜边的平方。
用公式表示就是:c² = a² + b²,其中c表示斜边的长度,a和b分别表示两条直角边的长度。
勾股定理的历史可以追溯到公元前6世纪的中国和印度,但最早被发现并应用的是中国的古代数学家勾股。
因此,这个定理被称为勾股定理。
勾股定理的应用非常广泛,特别是在测量和计算方面。
例如,我们可以利用勾股定理来计算三角形的边长、角度以及面积等。
在实际应用中,我们经常会遇到需要使用勾股定理解决问题的情况。
二、勾股定理的逆定理勾股定理的逆定理是指,如果一个三角形的三条边满足c² = a² + b²,那么这个三角形一定是直角三角形。
这个逆定理也被称为勾股定理的逆命题。
为了证明逆定理的正确性,我们可以通过数学推导来证明。
假设一个三角形的三条边为a、b、c,且满足c² = a² + b²。
首先,我们可以假设这个三角形不是直角三角形,即不存在直角。
根据三角形的角度性质可知,三角形的三个角度之和为180度。
如果这个三角形不是直角三角形,那么它的三个角度之和一定小于180度。
假设三个角度分别为A、B、C,且A + B + C < 180度。
然后,我们可以使用余弦定理来推导c²的表达式。
根据余弦定理,c² = a² + b² - 2ab·cosC。
将这个表达式代入c² = a² + b²中,得到a² + b² - 2ab·cosC = a² + b²。
经过简化后可得- 2ab·cosC = 0,即cosC = 0。
根据余弦函数的性质可知,当cosC = 0时,角C等于90度。
勾股定理与勾股数勾股定理是数学中的一条基本定理,它描述了直角三角形中三边之间的关系。
勾股数则是指满足勾股定理的整数组合。
本文将介绍勾股定理的概念和用途,并探讨与之相关的勾股数。
1. 勾股定理的定义与历史勾股定理是由古希腊数学家毕达哥拉斯提出的,被称为“毕达哥拉斯定理”或“勾三股四弦”。
它的数学表达形式如下:在直角三角形中,直角边的平方等于另外两条边的平方之和。
数学公式为:c² = a² + b²其中,c表示斜边(也称为弦),a和b表示直角边。
这一定理在三角学中极其重要,被广泛应用于解决各种直角三角形相关的问题,如测量距离、角度计算等。
2. 勾股定理的应用勾股定理的应用非常广泛,不仅在数学领域中有着重要的地位,还在其他学科和现实生活中发挥着重要作用。
2.1 测量距离勾股定理可以用来计算物体之间的距离。
例如,当我们想要测量两个地点之间的直线距离时,可以使用勾股定理来计算。
假设两个地点的坐标分别为(x₁, y₁)和(x₂, y₂),则它们之间的距离d可以通过以下公式计算:d = sqrt((x₂ - x₁)² + (y₂ - y₁)²)2.2 角度计算勾股定理还可以用于计算角度。
在直角三角形中,我们可以通过已知两边的长度来计算角度的大小。
例如,知道直角边a和斜边c的长度,可以使用如下公式计算角度θ的大小:θ = arccos(a / c)3. 勾股数的定义与性质勾股数指满足勾股定理的整数组合。
即使勾股定理可以应用于各种实数,但整数解具有特殊的数学性质。
3.1 勾股数的性质勾股数具有如下几个性质:- 勾股数由三个互质的整数组成,即它们没有公共因子。
- 勾股数可以通过欧几里得算法生成。
- 勾股数存在无穷多个。
3.2 勾股数的示例以下是一些常见的勾股数示例:- (3, 4, 5)是最简单的勾股数,也被称为“三四五勾股数”。
- (5, 12, 13)也是一个著名的勾股数。
证明勾股定理的多种方法勾股定理是数学中一条重要的几何定理,它是数学中的基础知识之一。
勾股定理的形式可以简洁地表达为:直角三角形的斜边的平方等于两直角边的平方和。
本文将探索并介绍证明勾股定理的多种方法。
方法一:几何证明最常见的证明勾股定理的方法之一是几何证明。
该方法利用了直角三角形的特性,根据三角形的几何关系和平行线的性质,从而得出勾股定理的结论。
以直角三角形ABC为例,其中∠C为直角,假设∠A=α,∠B=β,边长分别为a, b, c。
根据正弦定理和余弦定理,可以推导出以下关系式:sinα = a / c,sinβ = b / c,cosα = b / c,cosβ = a / c由此可得:sin²α + cos²α = a² / c² + b² / c² = (a² + b²) / c²根据三角恒等式sin²α + cos²α = 1,可得:(a² + b²) / c² = 1即 a² + b² = c²,从而证明了勾股定理。
方法二:代数证明除了几何证明外,勾股定理还可以通过代数方法进行证明。
假设直角三角形的边长分别为a, b, c,且∠C为直角。
根据勾股定理,我们有:a² + b² = c²我们可以将其转化为代数方程组,从而进行证明。
构造方程组如下:x² + y² = 1²(x+c)² + y² = a²x² + (y+c)² = b²解方程组可得:x = (a² - b² + c²) / (2c)y = ±√(a² - x²)因此,可得到:a² + b² = (a² - b² + c²)² / (4c²) + (a² - (a² - b² + c²)² / (4c²) = c² · [(a² + b²) / (4c²) + (a² + b² - 2ab)/(4c²)]将a² + b² = c²带入上式,得到:c² = (c² · [(c² + 2ab) / (4c²)])化简后可得:c² = (c² + 2ab) / 4即 a² + b² = c²,从而证明了勾股定理。
勾股定理知识点总结勾股定理是数学中一个著名的定理,也是初中数学学习的重点内容之一。
它描述了直角三角形中三条边的关系,并且可以应用于解决许多与三角形和几何有关的问题。
本文将对勾股定理的相关知识点进行总结和探讨。
一、勾股定理的表述和公式勾股定理的表述是:“直角三角形斜边上的正方形面积等于其他两边上的正方形面积之和。
”这就是我们通常所说的勾股定理。
勾股定理的公式可以表示为:a² + b² = c²其中,a、b代表直角三角形的两条直角边,c代表直角三角形的斜边。
二、勾股定理的证明勾股定理的证明有多种方法,在此我们以几何证明和代数证明为例进行说明。
几何证明:通过图形的构造和推理来证明勾股定理。
一种常见的几何证明方法是构造以a、b、c为边长的正方形,然后计算正方形的面积,从而证明等式成立。
代数证明:通过数学计算和变换来证明勾股定理。
一种常见的代数证明方法是将直角三角形的三条边的平方进行计算,然后将其相加和化简,最终得到等式成立的结果。
三、勾股定理的应用勾股定理不仅仅是一个数学定理,还有着广泛的应用。
1. 解决三角形的边长和角度问题:通过勾股定理,我们可以已知两条边长来求解第三条边长,或者已知两条边长和一个角度来求解其他角度。
2. 判断三角形的形状:我们可以利用勾股定理来判断一个三角形是直角三角形、锐角三角形还是钝角三角形,从而进一步研究和分析三角形的性质。
3. 解决几何问题:勾股定理还可以应用于解决一些几何问题,例如求解两条直线的交点坐标、求解平面图形的面积、判断是否存在重合图形等等。
四、勾股定理的推广除了直角三角形,勾股定理还可以推广到其他形状的图形。
1. 平方和定理:平方和定理是勾股定理的推广,它描述了非直角三角形中三条边平方的关系。
2. 多边形的对角线:在多边形中,通过某个顶点可以连接其他顶点,形成对角线。
对角线之间的关系也可以通过勾股定理进行研究和计算。
3. 空间中的勾股定理:在空间几何中,勾股定理可以推广到三维空间,描述直角棱柱、直角锥等图形的三条棱或边之间的关系。
勾股定理必背10个公式勾股定理是数学学科中最熟悉、最重要的定理之一,大多数学校都会给学生们讲解勾股定理。
它是几何学中解决三角形问题的最重要工具。
勾股定理指出,若三角形的三边分别是a,b,c,那么它们之间具有特定的关系:a+b=c。
尽管勾股定理有着悠久的历史,但今天仍然被经常使用。
有很多变种的勾股定理值得记住,它们中最值得注意的有十个。
首先,是勾股定理的一般形式:a+b=c。
其次是关于锐角三角形的定理:cosα=b/c,sinα=a/c,tanα=a/b。
第三是关于直角三角形的定理:cosα=a/c,sinα=b/c,tanα=a/b。
第四是关于等腰三角形的定理:2a=b+c。
第五是关于30°-60°-90°三角形的定理:a=b/2,c=b√3/2,tan30°=1/√3,cos60°=1/2,sin60°=√3/2。
第六是关于45°-45°-90°三角形的定理:a=b,c=b√2,tan45°=1,cos45°=1/√2,sin45°=1/√2。
第七是关于等边三角形的定理:a=b=c,cosα=cosβ=cosγ=-1/3。
第八是关于半径R圆心角形的定理:tanα/2=b/2R,cosα/2=c/2R,sinα/2=a/2R。
第九是关于梯形的定理:a+(b+c)=2(a+b+c)。
第十是关于双曲线的定理:a-b=c。
勾股定理是中学数学学习中必不可少的一部分,而上面提到的十个公式更是数学课堂上最基本的知识。
它们不仅在几何学中有着广泛的用途,而且也在统计学、概率论等方面都有着重要的应用。
尽管勾股定理的用途多种多样,但有一点是十分重要的:它们能够帮助我们快速有效地解决三角形问题。
若要求解三角形的边长、角度和面积,就可以针对相关的勾股定理,从中去确定相关参数。
总之,勾股定理是几何学中最重要的定理之一,被广泛应用于几何学、概率论等领域。
五年级第一讲勾股定理勾股定理是数学中经典而重要的定理之一,它以古希腊数学家毕达哥拉斯的名字命名。
勾股定理描述了直角三角形中的关系,对于初学者来说会有一定的挑战。
本文将详细介绍勾股定理的概念、证明方法以及一些应用示例。
一、勾股定理的概念勾股定理是指在直角三角形中,直角边的平方和等于斜边的平方。
具体而言,假设直角三角形的两条直角边分别为a和b,斜边长度为c,那么根据勾股定理可以得到以下公式:a² + b² = c²二、勾股定理的证明方法勾股定理的证明有多种方法,这里我们介绍一种基于几何图形的证明方法。
首先,构造一个正方形,边长为a+b,如下图所示:□a b□□c根据正方形的性质,它的对角线长度等于边长的平方根,即(a+b)²的平方根。
接下来,将正方形分割成四个直角三角形,如下图所示:□a b□□ △ □□c可以看出,其中三个直角三角形的直角边分别为a、b和c,斜边长度分别未a+b、a+b和c。
根据三角形的面积公式S = 0.5 ×底 ×高,可以得到以下等式关系:S(△a) + S(△b) + S(△c) = S(□)0.5 × a × a + 0.5 × b × b + 0.5 × c × c = (a+b)²化简上式,可以得到勾股定理的形式:a² + b² = c²因此,我们通过几何图形的分割和面积计算,成功证明了勾股定理。
三、勾股定理的应用示例勾股定理在解决直角三角形问题时起到了重要的作用,我们可以通过一个实际问题来说明其应用。
假设甲地点距离某个高楼的距离为5千米,乙地点距离该高楼的距离为12千米,甲、乙两人正好位于高楼两侧的直角顶点。
现在甲想要测量高楼的高度h,他找到了一个10千米长的测量工具。
根据勾股定理,可以建立以下方程:5² + h² = 10²25 + h² = 100h² = 100 - 25h² = 75h = √75h ≈ 8.66(约等于)因此,高楼的高度约为8.66千米。
勾股定理公式大全勾股定理是初中数学中的重要定理之一,它是数学中的基础知识,也是数学应用中经常用到的定理。
勾股定理的公式有很多种,下面将介绍一些常见的勾股定理公式,希望对大家有所帮助。
1. 直角三角形的勾股定理公式。
在直角三角形中,勾股定理可以表示为,a² + b² = c²,其中a、b分别为直角三角形的两条直角边的长度,c为斜边的长度。
2. 勾股定理的逆定理公式。
勾股定理的逆定理也是很重要的,它可以表示为,如果一个三角形的三条边满足a² + b² = c²,那么这个三角形一定是直角三角形。
3. 勾股定理的推论公式。
勾股定理还有一些重要的推论公式,比如,如果一个三角形的三条边满足a² + b² = c²,那么这个三角形的两个锐角之和一定是90度。
4. 勾股定理的应用公式。
勾股定理在实际应用中有很多用途,比如可以用来计算建筑物的高度、测量地图上的距离等。
在应用中,我们可以根据勾股定理的公式来进行计算,从而得到我们需要的结果。
5. 勾股定理的证明公式。
勾股定理的证明是数学中的经典问题之一,有很多种不同的证明方法。
其中比较常见的有几何法、代数法、物理法等。
在证明中,我们可以利用数学知识和逻辑推理来证明勾股定理的正确性。
总结,勾股定理是数学中的重要定理,它有很多种不同的公式,包括直角三角形的勾股定理公式、勾股定理的逆定理公式、勾股定理的推论公式、勾股定理的应用公式和勾股定理的证明公式等。
掌握这些公式,可以帮助我们更好地理解和应用勾股定理,提高数学水平,也可以在实际生活中帮助我们解决一些问题。
希望大家能够认真学习和掌握勾股定理,将其运用到实际生活和工作中去。
勾股定理五种证明方法1. 几何证明法勾股定理是数学中的基本定理之一,用于描述直角三角形的边长关系。
根据勾股定理,直角三角形的斜边的平方等于两个直角边的平方和。
几何证明法是最直观的证明方法之一。
我们可以通过绘制一个正方形来证明勾股定理。
假设直角三角形的两个直角边分别为a和b,斜边为c。
我们可以将这个三角形绘制在一个边长为a+b的正方形内。
将正方形分成四个小正方形,其中三个小正方形的边长分别为a,b和c。
通过计算小正方形的面积,我们可以得出结论:c^2 = a^2 + b^2。
2. 代数证明法代数证明法是另一种常用的证明勾股定理的方法。
这种方法使用代数运算和方程的性质来证明定理。
假设直角三角形的两个直角边分别为a和b,斜边为c。
我们可以通过使用平方的性质来证明勾股定理。
根据勾股定理,我们有:c^2 = a^2 + b^2。
我们可以将c^2展开为(a + b)2,即:c2 = (a + b)^2 = a^2 + 2ab + b^2。
通过对比等式两边的表达式,我们可以得出结论:2ab = 0。
由于直角三角形的边长必须为正数,因此我们可以得出结论:ab = 0。
这意味着a或b至少有一个为0。
如果a为0,那么直角三角形就变成了一个直角边长为b的直角三角形,此时勾股定理显然成立。
同样地,如果b为0,那么直角三角形就变成了一个直角边长为a的直角三角形,此时勾股定理也成立。
综上所述,勾股定理成立。
3. 数学归纳法证明数学归纳法是一种常用的证明数学命题的方法,它通常用于证明自然数的性质。
虽然勾股定理是针对直角三角形的,但我们可以通过数学归纳法证明勾股定理对于所有正整数的直角三角形都成立。
首先,我们证明当直角三角形的直角边长度为1时,勾股定理成立。
这是显而易见的,因为直角三角形的斜边长度必然大于1,所以直角边长度为1的直角三角形一定满足勾股定理。
然后,我们假设当直角三角形的直角边长度为k时,勾股定理成立。
即假设a^2 + b^2 = c^2,其中a和b分别为直角三角形的直角边,c为斜边。
勾股定理
1. 直角三角形的三边为a-b ,a ,a+b 且a 、b 都为正整数,则三角形其中一边长可能为( )
A 、61
B 、71
C 、81
D 、91
2.在平面直角坐标系中,已知点A (-4,0),B (2,0),若点C 在一次函数y=-
2
1x+2的图象上,且△ABC 为直角三角形,则满足条件的点C 有( )
A 、1个
B 、2个
C 、3个
D 、4个
3、Rt △一直角边的长为11,另两边为自然数,则Rt △的周长为( )
A 、121
B 、120
C 、132
D 、不能确定 4.如图,△P 1OA 1,△P 2A 1A 2是等腰直角三角形,点P 1,P 2在函数x
y 4 (x >0)的图象上,斜边OA 1,A 1A 2都在x 轴上,则点A 2的坐标是 ( )
5、已知,如图:在平面直角坐标系中,O 为坐标原点,四边形OABC 是矩形,点A 、C 的坐标分别为A (10,0)、C (0,4),点D 是OA 的中点,点P 在BC 边上运动,当△ODP 是腰长为5的等腰三角形时,点P 的坐标为 ____________.
6、如图,EF 为正方形ABCD 的对角线,将∠A 沿
DK 折叠,使它的顶点A 落在EF 上的G 点,则∠DKG=_______.
7、以边长为2厘米的正三角形的高为边长作第二个正三角形,以第二个正三角形的高为边长作第三个正三角形,以此类推,则第十个正三角形的边长是( )
A 、2×(22)10厘米
B 、2×(21)9厘米
C 、2×(23)10厘米
D 、2×(2
3)9厘米 8在△ABC 中,AB 边上的中线CD=3,AB=6,BC+AC=8,则△ABC 的面积为_____________.
9如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm ,正方形A 的边长为6cm ,正方形B 的边长为5cm ,正方形C 的边长为5cm ,则正方形D 的面积是_______cm 2.
10如图,直线l 上有三个正方形a ,b ,c ,若a ,c 的面积分别为5和11,则b 的面积为___________.
11如图所示,在边长为2的正三角形ABC 中,已知点P 是三角形内任意一点,则点P 到三角形的三边距离之和PD+PE+PF 等于( )
A 、3
B 、23
C 、43
D 、无法确定
12如图Rt △ABC 中,AB=BC=4,D 为BC 的中点,在AC 边上存在一点E ,连接ED ,EB ,则△BDE 周长的最小值为( )
A 、25
B 、23
C 、25+2
D 、23+2
19、在直线l 上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4= .
10、2002年8月在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小小正方形拼成的一个大正方形(如图1所示),如果大正
方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a ,较长直角边为b ,那么
2)(b a 的值为( ).
A .13
B .19
C .25
D .169
24、已知△ABC 的三边a 、b 、c 满足等式|a-b-1|+|2a-b-14|=-|c-5|,则△ABC 的面积为________. 3、如图,长方体的长为15 cm ,宽为10 cm ,高为20 cm ,点B 离点C 5 cm ,
一只蚂蚁如果要沿着长方体的表面从点A 爬到点B ,需要爬行的最短距离是多少?
4、如图,A 城气象台测得台风中心在A 城正西方向320km 的B 处,以每小时40km 的速度向北偏东60°的BF 方向移动,距离台风中心200km 的范围内是受台风影响的区域.
(1) A 城是否受到这次台风的影响?为什么?
(2) 若A 城受到这次台风影响,那么A 城遭受这次台风影响有多长时间?
图1
31、如图,四边形ABCD 中,F 为DC 的中点,E 为BC 上一点,
且BC CE 4
1 .你能说明∠AFE 是直角吗?(8分)
6、台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气旋风暴,有极强的破坏力,据气象观测,距沿海某城市A 的正南方向220km 的B 处有一台风中心.其中心最大风力为12级,每离台风中心20km ,风力就会减弱一级,该台风中心现在正以15km/h 的速度沿北偏东30°方向往C 移动,且台风中心风力不变,•如图14-10,若城市所受风力达到或超过4级,则称为受台风影响.
(1)该城市是否会受到这次台风的影响?请说明理由;
(2)若会受台风影响,那么台风影响该城市的持续时间有多长?该城市受到台风影响的最大风力为几级?
6、已知:如图,在△ABC 中,∠C=90°
,∠B=30°,AB 的垂直平分线交BC 于D ,垂足为E ,BD=4cm ,求AC 的长。
10、如图,AD 是△ ABC 的中线,角ADC=45o ,把△ ADC 沿 AD 对折,点 C 落在 C ’的位置,若 BC=2,则 BC ’=_________。
′。