2016年七年级数学上册 第一章 有理数 有理数导学案 (新版)新人教版
- 格式:docx
- 大小:110.46 KB
- 文档页数:4
七年级数学(上)师生共用导学案1.1 正数与负数一、学习目标:了解正数和负数是从实际需要中产生的;能正确判断一个数是正数还是负数;明确0既不是正数也不是负数;会用正数、负数表示实际问题中具有相反意义的量。
二、重点:会判断正数、负数,运用正负数表示具有相反意义的量。
三、难点:负数的引入。
四、疑点:负数概念的建立。
五、学习过程:预习检测案:1. 课前预习:看书第2页、第3页、第4页内容。
2. 预习检测:①正数的概念:______________ 负数的概念:______________ 数0___________。
在同一个问题中,分别用正数与负数表示的量具有_______的意义。
②试着完成书上第3页,第4页练习题。
3.我的疑惑是:____________________________________________________________________合作探究案:(一)1.探究点① . 怎样区分正数和负数?读下列各数,并指出其中哪些是正数,哪些是负数:-2,3,0,+3,1.5,-3.14,100,-1.732.正数有:_________________. 负数有:________________.2.探究点②. 如何用正数和负数表示的量具有相反意义的量?在下列横线上填上适当的词,使前后构成意义相反的量:(1)收入3500元,______6500元;(2)_______800米,下降240米;(3)向北前进200米,_______300米。
3.深化知识运用点①. 用正数和负数表示的量具有相反意义的量如果某球队一个赛季胜12场,记作+12场,那么该队这个赛季负6场,可记作_______。
4.深化知识运用点②. 正数、负数在实际生活中的应用某种面粉袋上对面粉的重量这样描述:重量(+50±0.2)kg,下面的理解正确的是()A.一袋面粉的重量是50kgB.一袋面粉的最大重量是50.2kgC.一袋面粉的最小重量是50.2kgD. -0.2kg表示的是比最大重量少0.2kg(二)我的问题是__________________________________________________________________达标检测案:(一)达标检测题:1.在-2,3,0,23,-1.5,五个数中,负数的个数是( ) A. 1 B. 2 C. 3 D. 4 2. 在负整数集合内有一个不合适的,这个数是______。
《第一章 有理数》一、【正负数】 _________ ___统称有理数。
有理数的分类:[基础练习]1.把下列各数填在相应额大括号内: 1,-0.1,-789,25,0,-20,-3.14,-590,6/7, 21正整数集{ …};正有理数集{ …};负有理数集{ …}负整数集{ …};正分数集{ …};负分数集{ …}2.某种食用油的价格随着市场经济的变化涨落,规定上涨记为正,则-5.8元的意义是 ;如果这种油的原价是76元,那么现在的卖价是 。
二、【数轴】规定了 、 、 的直线,叫数轴。
[基础练习]1.在数轴上画出表示下列各数的点,并按从大到小的顺序排列,用“>”号连接起来。
4, -|-2|, -4.5, 1, 02.下列语句中正确的是( )A.数轴上的点只能表示整数B.数轴上的点只能表示分数C.数轴上的点只能表示有理数D.所有有理数都可以用数轴上的点表示出来3.①比-3大的负整数是_______;②已知m是整数且-4<m<3,则m为_______________。
③有理数中,最大的负整数是 ,最小的正整数是 。
最大的非正数是 。
④与原点的距离为三个单位的点有_ _个,他们分别表示的有理数是 _和_ _。
4.在数轴上点A 表示-4,如果把原点O 向负方向移动1个单位,那么在新数轴上点A 表示的数是( )A.-5,B.-4C.-3D.-2三、【相反数】像2和-2、-5和5、2.5和-2.5这样,只有 不同的两个数叫做互为相反数。
0的相反数是 。
一般地:若a 为任一有理数,则a 的相反数为-a 相反数的相关性质:1.相反数的几何意义:表示互为相反数的两个点(除0外)分别在原点O 的两边,并且到原点的距离相等。
2.互为相反数的两个数,和为0。
[基础练习]1. -5的相反数是 ;-(-8)的相反数是 ;- [+(-6)]=0的相反数是 ; a 的相反数是 ;2的相反数的倒数是__2.若a 和b 是互为相反数,则a+b =( ) A. –2a B .2b C. 0 D. 任意有理数有理数有理数·有理数加减法法则· ——口诀记法 先定符号,再计算, 同号相加不变号; 异号相加“大”减“小”, 符号跟着“大数”跑; 减负加正不混淆。
第一章有理数复习复习整理有理数有关概念和有理数的运算法则,运算律以及近似数等有关知识.重点:有理数概念和有理数的运算;难点:对有理数的运算法则的理解.知识回顾(一)正负数、有理数的分类正整数、零、负整数统称整数,试举例说明.正分数、负分数统称分数,试举例说明.整数和分数统称有理数.(二)数轴:规定了原点、正方向、单位长度的直线,叫数轴.(三)相反数的概念,只有符号不同的两个数叫做互为相反数.0的相反数是__0__.一般地:若a为任一有理数,则a的相反数为-a.相反数的相关性质:1.相反数的几何意义:表示互为相反数的两个点(除0外)分别在原点0的两边,并且到原点的距离相等;2.互为相反数的两个数,和为0.(四)绝对值一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作∣a∣;一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是__0__.一个有理数a的绝对值,用式子表示就是:(1)当a是正数(即a>0)时,∣a∣=a;(2)当a是负数(即a<0)时,∣a∣=__-a__;(3)当a =0时,∣a ∣= 0 .(五)有理数的运算(1)有理数加法法则:______________________; (2)有理数减法法则:______________________;(3)有理数乘法法则:______________________;(4)有理数除法法则:______________________;(5)有理数的乘方:________________________.求n 个相同因数的积的运算,叫做有理数的乘方.即:a n=aa …a (有n 个a ).从运算上看式子a n ,可以读作a 的n 次方;从结果上看式子a n ,可以读作a 的n 次幂. 有理数混合运算顺序:(1)先乘方,再乘除,后加减;(2)同级运算,从左到右进行;(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行(六)科学记数法、近似数把一个大于10的数记成a ×10n 的形式(其中a 是整数数位只有一位的数),叫做科学记数法.1.把下列各数填在相应的大括号内:1,,-789,25,0,-20,,-590,78正整数集{1,25,…};正有理数集{1,25,78…}; ,-789,-20,,-590…};负整数集{-789,-20,-590…};自然数集{1,25,0…};正分数集{78…};,,…}.2.如图所示的图形为四位同学画的数轴,其中正确的是( D )3.在数轴上画出表示下列各数的点,并按从大到小的顺序排列,用“>”号连接起来. 4,-|-2|,,1,0.4.下列语句中正确的是( D )A .数轴上的点只能表示整数B .数轴上的点只能表示分数C .数轴上的点只能表示有理数D .所有有理数都可以用数轴上的点表示出来5.-5的相反数是__5__;-(-8)的相反数是-8;-[+(-6)]=__6__;0的相反数是__0__;a 的相反数是-a .6.若a 和b 是互为相反数,则a +b =__0__.7.如果-x =-6,那么x =__6__;-x =9,那么x =-9.8.|-8|=__8__;-|-5|=-5;绝对值等于4的数是±4.9.如果a >3,则|a -3|=__a -3__,|3-a |=a -3. 10.有理数中,最大的负整数是__-1__,最小的正整数是__1__,最大的非正数是__0__.11.33=__27__;(-12)2=__14__;-52=-25;22的平方是__16__. 12.下列各式正确的是( C )A .-52=(-5)2B .(-1)1996=-1996 C .(-1)2003-(-1)=0 D .(-1)99-1=013.用科学记数法表示:1 305 000 000=1.305×109;-1 020=-1.02×103. 14.120万用科学记数法应写成1.20×10624000.15.千万分位;5.47×105精确到__千__位.16.计算:(1)12-(-18)+(-7)-15;解:原式=12+18-7-15=30-22=8;(2)-23÷49×(-23)3; 解:原式=-8×94×(-827) =163; (3)(-1)10×2+(-2)3÷4;解:原式=1×2-8÷4=2-2=0;(4)(-10)4+[(-4)2-(3+32)×2].解:原式=10000+[16-(3+9)×2]=10000+(16-24)=10000-8=9992.。
【学习目标】1.掌握正数和负数概念;2.会区分两种不同意义的量,会用符号表示正数和负数.【重点难点】正数和负数的概念;负数的概念.【复习引入】1.小学里学过哪些数请写出来:、、 .2.阅读课本P1和P2三幅图(重点是三个例子,边阅读边思考).3.在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数? .【自主、合作、展示】1.正数与负数的产生⑴生活中具有相反意义的量如:运进5吨与 3吨;上升7米与 8米;向东50 与 47米等都是生活中遇到的具有相反意义的量.请你也举一个具有相反意义量的例子: .⑵负数的产生同样是生活和生产的需要.2.正数和负数的表示方法一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:、、、、、等规定为负的.正的量就用小学里学过的数表示,有时也在它前面放上一个“”(读作),如前面的5、7、50;负的量用小学学过的数前面放上“”(读作)来表示,如上面的-3、-8、-47.3.正数、负数的概念⑴数叫做正数,数叫做负数.⑵0既不是也不是 .0是正数和负数的 .【课堂检测】1.已知下列各数:51-,432-,3.14,+306,0,-239,π.则正数有_____________________;负数有____________________.2.给出下列各数:-3,0,+5,213-,+3.1,21-,2004,+2010;其中是负数的有()A.2个B.3个C.4个D.5个3.下列结论中正确的是()A.0既是正数,又是负数B.O是最小的正数C.0是最大的负数D.0既不是正数,也不是负数3.零下15℃,表示为_________,比O℃低4℃的温度是_________.4.地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为-5米,其中最高处为_______地,最低处为_______地.5.下列说法正确的有()①一个数不是正数就是负数②海拔-55米表示比海平面低55米③温度0C︒就是没有温度A.1个B.2个C.3个D.0个6.数学考试成绩85分以上的为优秀,以85分为标准,老师将某一小组五名学生的成绩简记为+9,-4,+11,-7,0,这五名学生实际成绩最高的是()A.93分B.85分C.96分D.78分7.如果海平面的高度为0米,一潜水艇在海水下40米处航行,一条鲨鱼在潜水艇上方10米处游动,试用正负数分别表示潜水艇和鲨鱼的高度.【学习目标】1.会用正、负数表示具有相反意义的量;2.通过正、负数导学,培养学生应用数学知识的意识.【重点难点】用正、负数表示具有相反意义的量;实际问题中的数量关系;【复习引入】1.正数是的数,负数是的数.2.通过上节课的导学,我们知道在实际生产和生活中存在着两种不同意义的量,为了区分它们,我们用________和_________来分别表示它们.【自主、合作、展示】1.先认真读题分析题意,再独立完成展示.⑴一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;⑵2001年下列国家的商品进出口总额比上一年的变化情况是:美国减少6.4%, 德国增长1.3%,法国减少2.4%, 英国减少3.5%,意大利增长0.2%, 中国增长7.5%.写出这些国家2001年商品进出口总额的增长率;解:⑴这个月小明体重增长__________ ,小华体重增长_________ ,小强体重增长_________;⑵六个国家2001年商品进出口总额的增长率:美国___________ 德国__________法国___________ 英国__________意大利__________ 中国__________2.认真思考,再独立完成展示.⑴“负”与“正”相对,增长-1就是减少1,增长-6.4%就是 .⑵指出下列各题中正负数表示的意义.①水面上升-8米; .②一个玻璃杯口的直径比标准尺寸大-0.01mm. . 1.下里各组数中,互为相反意义的量是()A.节约4吨水与浪费4吨水B.收入95元与盈利95元C.向东走2千米与向北走2千米D.温度是-2度与温度升高了2度2.“甲比乙大-3岁”表示的意义是 .3.甲冷库温度是-12°C,乙冷库温度比甲冷库低5°C,则乙冷库温度是 .4.商店一月份亏损1.5万元,二月份比1月份少亏损0.6万元,三月份盈利0.7万元,四月份比三月份多盈利40%,五月份盈利1.3万元,六月份盈利比五月份少0.5万元,请填写下表:5.20m处,玩具店位于书店东边100m处,小明从书店沿街向东走了40m,接着又向东走了-60m,此时小明的位置在()A.文具店B.玩具店C.文具店西边20mD.玩具店东边-60m6.一种零件的内径尺寸在图纸上是9±0.05(单位:mm),表示这种零件的标准尺寸是9mm,加工要求最大不超过标准尺寸多少?最小不小于标准尺寸多少?7.某地一天中午12时的气温是7℃,过5小时气温下降了4,又过7小时气温下降了4,第二天0时的气温是多少?单元(章节)课时课型审核人小组评价教师评价1.2.1 1 问题综合解决课王全红【学习目标】1.理解有理数的意义及分类;2.能把给出的有理数按要求分类.【重点难点】把所给各数按要求分类;有理数的两种分类.【复习引入】通过前两节课的学习,你能写出3个不同类的数吗? (4名学生板书)【自主、合作、展示】1.观察黑板上的12个数,我们将这4位同学所写的数做一下分类;该分为几类,又该怎样分呢?2.有理数如何分类?分类方法有哪些?并按照该分类方法自己完成课本第6-7页练习题1,2.1.把下列各数填入它所属于的集合中.15, -91, -5,152,813-, 0.1, -5.32, -80, 123, 2.333;正分数集合负分数集合2.把下列各数填在相应的大括号里:-1,32-,0,+3.6,-17%,3.142,119,-0.088,2008,-506 整数集合:{ …}分数集合:{ …}负整数集合:{ …}正分数集合:{ …}负有理数集合:{ …} 正有理数集合:{ …}3.判断⑴0和正整数统称为自然数()⑵-0.1是分数也是负有理数()⑶有理数包括整数、分数和0()⑷非负数包括正数和0()4.分别写出3个符合下列条件的有理数.⑴是整数又是负数;⑵是分数但不是正数;⑶是正数但不是整数;单元(章节)课时课型审核人小组评价教师评价1.2.2 1 问题综合解决课王全红1.2.2数轴【学习目标】1.掌握数轴概念,理解数轴上的点和有理数的对应关系;2.会正确地画出数轴,利用数轴上的点表示有理数;【重点难点】数轴的概念;用数轴上的点表示有理数.【创设情境】1.观察右面的温度计,读出温度,分别是、、 .2.在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境?(各点分别用O,A,B,C,D,E表示)【自主、合作、展示】1.由上面的两个问题,你受到了什么启发?能用直线上的点来表示有理数吗?2.自己动手操作,看看可以表示有理数的直线必须满足什么条件?画数轴的三要素:、、 .数轴: .请在下面画一条数轴,并总结数轴的画法.并完成课本第9页练习1,2,3. 1.判断⑴有原点、正方向的直线是数轴()⑵数轴上两个不同的点可以表示同一个有理数()⑶有些有理数不能用数轴上的点表示()⑷数轴上的单位长度是根据需要设置的,所以在一条数轴上可以有几个不同的单位长度()⑸数轴上表示-a的点一定在原点的左边()2.以下是四位同学画的数轴,其中正确的是()3.a,b,c在数轴上的位置如图所示,下列说法正确的是()A.a,b,c都表示正数B.a,b,c都表示负数C.a,b表示正数,c表示负数D.a,b表示负数,c表示正数4.数轴上原点及原点左边的点表示()A.正数B.负数C.非正数D.非负数6.若数轴上点A表示的数是-3,则与点A相距4个单位长度的点表示的数是()A.±4B.±1C.-1或7D.-7或17.数轴上点A表示的数是-5,点B表示的数是-7,则点A在点B的侧.9.画出数轴,用数轴上的点表示下列各数:-2,211,-1.5,0,2.5,213.10.如图所示,有几滴墨水洒在数轴上,根据图中标出的数值,写出墨迹盖住的所有整数.东c 0 b a-12.6 -7.4 0 10.5 17.2【学习目标】1.理解并掌握相反数的概念;2.会求一个数的相反数;3.会根据相反数的概念进行多重符号的化简.【重点难点】 相反数的概念;多重符号的化简.【复习引入】1.数轴的三要素是什么?在下面画出一条数轴,并表示5、-2、-5、+2.3.观察上图并填空:数轴上与原点的距离是2的点有 个,这些点表示的数是 ;与原点的距离是5的点有 个,这些点表示的数是 . 从上面问题可以看出,一般地,如果a 是一个正数,那么数轴上与原点的距离是a 的点有两个,即一个表示a ,另一个是 ,它们分别在原点的 和 ,我们说,这两点关于原点对称. 【自主、合作、展示】1.什么样的两个数叫做互为相反数?试举例说明.2.根据相反数的概念,如何求一个数的相反数?并求下列各数的相反数.6,-8,-3.9,25,112,100,03.根据相反数的概念,化简下列各数,由此你能够得到什么结论?-(+2)= ;-(-2)= ;+(-2)= ;+(+2)= .-[+(-3)]= ;+[-(+51)]= ;-[-(-3)]= . 4.画一条数轴,并在数轴上表示3,-3,5,-5这四个数,观察这四个数所表示的点,你能得到什么结论?【课堂检测】1.判断 ⑴一个数的相反数一定是负数( ) ⑵相反数等于本身的数只有0( ) ⑶所有的有理数都有相反数( ) ⑷-a 一定是负数( ) ⑸两个数的符号不相同,这两个数一定是相反数( )2.-1.6的相反数是 ,2x 的相反数是 ,a-b 的相反数是 .3.相反数等于它本身的数是 ,相反数大于它本身的数是 .4.填空: (1)如果a =-13,那么-a = ;(2)如果-a =-5.4,那么a = ; (3)如果-x =-6,那么x = ;(4)-x =9,那么x = .5.化简:-[+(-211)]= ;-{+[-(+1)]}= .6.m+2的相反数是-5,则m= .7.下列各数中,互为相反数的是( ) A.+(-2)和-(+2) B.-(-2)和+(+2) C.-2和-(-2) D.-2和218.若一个数的相反数不是正数,则这个数一定是( ) A.正数 B.非负数 C.负数 D.非正数9.一个数比它的相反数小,这个数是( )A.正数B.负数C.非正数D.非负数 10.数轴上表示互为相反数的两个数之间的距离为10,画出数轴并求这两个数.1.2.41问题综合解决课 王全红【学习目标】1.理解并掌握绝对值概念,体会绝对值的作用与意义;2.掌握求一个已知数的绝对值的方法. 【重点难点】绝对值的概念;对绝对值意义的理解. 【创设情境】1.如图小红和小明从同一处O 出发,分别向东、西方向行走10米,他们行走的路线 (填相同或不相同),他们行走的距离(即路程远近) .2. 由上问题可以知道,10到原点的距离是 ,-10到原点的距离也是 . 到原点的距离等于10的数有 个,它们的关系是一对 . 【自主、合作、展示】1.阅读课本第11页内容,说出绝对值的概念和表示方法,并结合实例谈谈你对绝对值的概念的理解.2.根据绝对值的概念,如何求一个数的绝对值?并写出下列各数的绝对值,6,-8,-3.9,25,112-,100,01.判断⑴符号相反的数互为相反数( )⑵符号相反且绝对值相等的数互为相反数( )⑶一个数的绝对值越大,表示它的点在数轴上越靠右( ) ⑷一个数的绝对值越大,表示它的点在数轴上离原点越远( ) 2.绝对值等于其相反数的数一定是( )A 负数 B.正数 C.负数或零 D.正数或零 3.给出下列说法,正确的有( )①互为相反数的两个数绝对值相等;②绝对值等于本身的数只有正数; ③不相等的两个数绝对值不相等; ④绝对值相等的两数一定相等.A.0个B.1个C.2个D.3个4.填空⑴式子∣-5.7∣表示的意义是 . ⑵-2的绝对值表示它离开原点的距离是 个单位,记作 . ⑶∣24∣= . -∣-3.1∣= ,-∣13∣= ,∣0∣= . 5.如果a 表示一个有理数,那么下面说法正确的是( ) A.a -是负数 B.a 一定是正数 C.a 一定不是负数 D.a -一定是负数 6.如果a 与1互为相反数,则a = . 7.若2=a ,则a = . 【拓展提升】1.若a a =,则a 0;若a a -=,则a 0.2.如果3>a ,则______3=-a ,______3=-a .1.2.41问题综合解决课 王全红【学习目标】1.会比较两个有理数的大小;2.理解绝对值的性质并会运用其解决问题. 【重点难点】绝对值的性质;两个负数的大小比较. 【复习引入】1.绝对值: .2.正数的绝对值是 ,负数的绝对值是 ,0的绝对值是 .【自主、合作、展示】1.观察数轴上数的顺序,你有什么发现?由此你能总结出两个有理数大小比较的方法吗?2.比较下列各对数的大小.⑴()1--和()2+- ⑵218-和73- ⑶()3.0--和31-3.绝对值最小的数是什么?一个数的绝对值有可能是负数吗?由此你能得到什么结论?并利用此结论解决下列问题:若023=-+-b a ,求b a ,的值.1.比较下列各对数的大小. ⑴53-和32- ⑵43-与21-- ⑶()5--和5--2.在数轴上表示出下列各数,并用“<”将它们连接起来.-2,212-,0,-3.5,2,+3.53.若│a │=3,│b │=4,且a<b,求a,b 的值.4.若03123=-+-b a ,求b a ,的值.5.如果a 、b 互为相反数,c 、d 互为倒数,x 的绝对值是1,求代数式x 2+(a+b)x-cd 的值.【学习目标】1.理解有理数加法意义,掌握有理数加法法则,会正确进行有理数加法运算;2.会利用有理数加法运算解决简单的实际问题; 【重点难点】有理数加法法则;异号两数相加. 【复习引入】有理数的绝对值的定义是什么?如何求一个有理数的绝对值?【自主、合作、展示】1.阅读课本16到18页思考前的内容,类比教材的探索过程,完成下面内容. 汽车在公路上行驶,规定向东为正,向西为负,据下列情况,分别列算式,并回答:汽车两次运动后方向怎样?离出发点多远?⑴向东行驶5千米后,又向东行驶3千米, ⑵向西行驶5千米后,又向西行驶3千米, ⑶向东行驶5千米后,又向西行驶3千米, ⑷向西行驶5千米后,又向东行驶3千米, ⑸向东行驶5千米后,又向西行驶5千米, ⑹向东(或西)行驶5千米后,静止不动, 2.通过上面几个算式,你能总结出有理数的加法法则吗?⑴ ⑵ ⑶3.计算 ⑴(-3)+(-9) ⑵(-4.7)+3.9 ⑶⎪⎭⎫ ⎝⎛-+3221【课堂检测】1.填空:(口答)⑴(-4)+(-6)= ⑵3+(-8)= ⑶7+(-7)= ⑷(-9)+1 = ⑸(-6)+0 = ⑹0+(-3) = 2.计算⑴(+10)+(-4) ⑵(-15)+(-32) ⑶(-9)+ 0 ⑷ 43+(-34) ⑸(-10.5)+(+1.3) ⑹(-21)+313.一个正数与一个负数的和是( )A.正数B.负数C.零D.以上三种情况都有可能 4.两个有理数的和( )A.一定大于其中的一个加数B.一定小于其中的一个加数C.大小由两个加数符号决定D.大小由两个加数的符号及绝对值而决定5.如果两个有理数的和是正数,那么这两个数( ) A.都是正数 B.都是负数 C.都是非负数 D.至少有一个正数6..判断⑴两个有理数相加,和一定比加数大( ) ⑵两个负数的和一定是负数( )⑶绝对值相等的两个数的和等于零( )⑷若两个有理数相加和为负数,这两个有理数一定都是负数( ) ⑸若两个有理数相加和为正数,这两个有理数一定都是正数( )【学习目标】1.理解并掌握有理数加法运算法则;2.能运用加法运算律简化加法运算.【重点难点】有理数的加法运算律;用有理数加法法则简化运算.【复习引入】1.想一想,小学里我们学过的加法运算律有哪些?先说说,再用字母表示写在下面:、 .2.计算⑴30+(-20)= ;(-20)+30= .⑵[8+(-5)]+(-4)= ; 8+[(-5)]+(-4)]= .思考:观察上面的式子与计算结果,你有什么发现?换几个数字验证一下,还有上面的规律吗?【自主、合作、展示】认真阅读课本第19-20页内容,思考并完成下列问题.1.有理数的加法运算律有哪些?2.尝试利用有理数的加法运算律计算,并总结规律.⑴()()35242516-++-+⑵()()()()45.244.445.356.4++++-++3.每袋小麦的标准重量为90千克,10袋小麦称重记录如下:(单位:kg)91 91 91.5 89 91.2 91.3 88.7 88.8 91.8 91.1⑴10袋小麦一共多少千克?⑵10袋小麦总计超过标准重量多少千克或不足多少千克?【课堂检测】1.计算:⑴0.75+(-0.6)+0.25+(-5.4) ⑵)31()41(65)32(41-+-++-+⑶)127(25)125()23(-++-+-⑷⎪⎭⎫⎝⎛-++⎪⎭⎫⎝⎛-+5284355324132.某出租车沿公路左右行驶,向左为正,向右为负,某天从A地出发后到收工回家所走的路线如下:(单位:千米)+8,-9,+4,+7,-2,-10,+18,-3,+7,+5⑴问收工时离出发点A多少千米?⑵若该出租车每千米耗油0.3升,问从A地出发到收工共耗油多少升?【学习目标】1.经历探索有理数减法法则的过程.理解并掌握有理数减法法则;2.会正确进行有理数减法运算; 【重点难点】有理数减法法则的理解和运用;有理数减法法则的推导. 【复习引入】1.世界上最高的山峰珠穆郎玛峰海拔高度约是8844米,吐鲁番盆地的海拔高度约为 -154米,两处的高度相差多少呢?试试看,计算的算式应该是 ,试画图说明结果. 2.长春某天的气温是-2°C ~3°C,这一天的温差是多少呢?试试看,计算的算式应该是 ,试利用温度计说明结果. 3.被减数、减数、差之间的关系是:被减数-减数= ;差+减数= .【自主、合作、展示】认真阅读课本第21-22页内容,思考并完成下列问题.1.你能否利用被减数、减数、差之间的关系得到上述两个问题的结果?由此总结有理数的减法法则是什么?2.尝试利用有理数的减法法则计算.⑴(-3)-(-5) ⑵0-7 ⑶7.2-(-4.8)⑷415213-- ⑸()⎪⎭⎫ ⎝⎛+--315.0 ⑹⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-211432【课堂检测】1.计算⑴(-2)-(-5) ⑵(-9.8)-(+6) ⑶4.8-(-2.7) ⑷(-0.5)-(+13) ⑸(-6)-(-6) ⑹ ⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛-312112.下列说法中正确的是( )A.减去一个数,等于加上这个数.B.零减去一个数,仍得这个数.C.两个相反数相减是零.D.在有理数减法中,被减数不一定比减数或差大. 3.下列说法中正确的是( ) A.两数之差一定小于被减数. B.减去一个负数,差一定大于被减数. C.减去一个正数,差不一定小于被减数. D.零减去任何数,差都是负数.4.若两个数的差是不为0的正数,则一定是( ) A.被减数与减数均为正数,且被减数大于减数. B.被减数与减数均为负数,且减数的绝对值大. C.被减数为正数,减数为负数. D.以上都有可能5.填空:⑴(-2)+ =5; (-5)- =2.⑵月球表面的温度中午是1010C ,半夜是-153oC ,则中午的温度比半夜高 .⑶已知一个数加-3.6和为-0.36,则这个数为 . ⑷0减去a 的相反数的差为 .【学习目标】1.理解加减法统一成加法运算的意义;2.能把有理数的加、减混合运算的算式写成几个有理数的和式,并能正确地进行有理数加减混合运算.【重点难点】有理数加减法统一成加法运算;运用加法运算律合理地进行混合运算. 【复习引入】计算:()()()()75320+---++-【自主、合作、展示】1.阅读课本第24页内容,思考如何把有理数的加、减混合运算写成省略括号和加号的形式?你有哪些好的方法?结果有哪些读法?试举例说明.2.把有理数的加、减混合运算写成省略括号和加号的形式后,如何进行计算?应该注意哪些问题?试举例说明. 1.将下列算式写成代数和的形式,并写出其两种读法.⑴()()()()98512+----+-⑵()()()()10457---+++-2.把下列算式写成加法运算的形式.⑴17312621+---⑵9517--+-3.计算:⑴5.0341-+-⑵5.36.45.34.2+-+-⑶()()1571812--+--⑷()()()571018---++-4.抗洪抢险中,人民解放军冲锋舟沿东西方向的河流抢救灾民,早晨从A处出发,晚上到达B处,记向东方向为正方向,当天航行路程记录如下:(单位:千米)14,-9,+8,-7,13,-6,+10,-5⑴B在A何处?⑵若冲锋舟每千米耗油0.5升,油箱容量为29升,球途中还需补充多少升油?【学习目标】1.了解有理数乘法的实际意义,理解有理数的乘法法则;2.能熟练地进行有理数的乘法运算. 【重点难点】有理数的乘法法则;能利用有理数乘法的法则进行计算. 【复习引入】1.计算⑴2+2+2= ⑵(-2)+(-2)+(-2)= 2.你能将上面两个算式写成乘法算式吗?⑴2+2+2= ⑵(-2)+(-2)+(-2)= 【自主、合作、展示】1.一直蜗牛沿直线方向爬行,规定向右为正,向左为负;现在后为正,现在前为负.根据下列情况,分别列算式,并回答:蜗牛爬行后在什么位置?⑴以每分2cm 的速度向右爬行,3分钟后: . ⑵以每分2cm 的速度向左爬行,3分钟后: . ⑶以每分2cm 的速度向右爬行,3分钟前: . ⑷以每分2cm 的速度向左爬行,3分钟前: . 2.通过上面几个算式,你能总结出有理数的乘法法则吗?⑴ ⑵3.直接写出结果.⑴(+8)×(+5) ⑵(-8)×(-5) ⑶(+8)×(-5) ⑷(-8)×(+5) ⑸(-8)×(+8) ⑹(-8)×0 4. 计算221⨯= ;()221-⨯⎪⎭⎫ ⎝⎛-= .观察这两个算式有何特点?总结倒数的概念,并求下列各数的倒数,看看有什么规律?1,-1,31,31-,5,-5,32,32-⑴()()25.04-⨯- ⑵()834.0⨯- ⑶⎪⎭⎫⎝⎛-⨯13224132.填空⑴ ×(-2)=-6 ⑵(-3)× =9 ⑶ ×(-5)=04.一个有理数与它的相反数的积( )A. 是正数B. 是负数C. 一定不大于0D. 一定不小于0 5.两个有理数,和为正数,积为正数,那么这两个有理数( ) A.都是正数 B.都是负数 C.一正一负 D.符号不能确定6.两个有理数,积小于零,和大于零,那么这两个有理数( ) A.符号相反 B.符号相反且绝对值相等 C.符号相反且负数的绝对值大 D.符号相反且正数的绝对值大7.若ab=0,则( )A.a=0B.b=0C.a=0或b=0D.a=0且b=0 8.判断① 同号两数相乘,取原来的符号,并把绝对值相乘. ( ) ② 两数相乘积为正,则这两个因数都为正. ( ) ③ 两数相乘积为负,则这两个因数都为负. ( )【学习目标】1.经历探索多个有理数相乘的符号确定法则;2.会进行多个有理数的乘法运算. 【重点难点】多个有理数乘法运算符号的确定;正确进行多个有理数的乘法运算. 【旧知回顾】1.有理数的乘法法则:⑴ ⑵ 2.倒数: 【自主、合作、展示】1.观察下列算式并计算,总结多个有理数的乘法法则是什么?⑴()5432-⨯⨯⨯= ; ⑵()()5432-⨯-⨯⨯= ; ⑶()()()5432-⨯-⨯-⨯= ; ⑷()()()()5432-⨯-⨯-⨯-= ; ⑸()()6.1901.88.7-⨯⨯-⨯= ; ⑶()()6.1901.88.7-⨯⨯-⨯= .2.计算.⑴()⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯⨯-4159653 ⑵()415465⨯⎪⎭⎫ ⎝⎛-⨯⨯-⑴()()25.0785-⨯-⨯⨯- ⑵5812()()121523-⨯⨯⨯-⑶()5.0124-⨯⨯- ⑷⎪⎭⎫⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯-2475473⑸()81675.251-⨯⎪⎭⎫ ⎝⎛-⨯⨯- ⑹()066553⨯-⨯⎪⎭⎫⎝⎛-⨯-2.绝对值小于4的负整数的积是( )A.6B.-6C.0D.243.若五个有理数a,b,c,d,e 的积是负数,则中正数的个数是( ) A.2个 B.4个C.1个、3个或5个D.0个、2个或4个4.有6张不同数字的卡片:-3,+2,0, -8, 5, +1,如果从中任取3张, (1)使数字的积最小: .【学习目标】1.熟练掌握有理数的乘法法则;2.会运用乘法运算律简化乘法运算. 【重点难点】有理数的乘法法则;运用乘法运算律简化计算. 【复习引入】观察下列各有理数乘法,从中可得到怎样的结论? ⑴()()76-⨯-= ; ()()67-⨯-= . ⑵()()[]253⨯-⨯-= ; ()()[]253⨯-⨯-= .⑶()()534+-⨯-= ; ()()()5434⨯-+-⨯-= . 【自主、合作、展示】1.观察以上计算结果,总结有理数的乘法运算律有哪些?2.用两种方法计算()12216141-⨯⎪⎭⎫ ⎝⎛-+解法一: 解法二: 【课堂检测】运用乘法运算律简化运算. ⑴()125.0328-⨯⎪⎭⎫⎝⎛-⨯ ⑵)914()1531()79(3170-⨯-⨯-⨯ ⑶()361276521-⨯⎪⎭⎫⎝⎛-+ ⑷)725()12()725()7()725()5(-⨯---⨯-+-⨯-⑸()()()33.707.207.4233.7-⨯-+⨯- ⑹32432133218⨯-⨯+⎪⎭⎫ ⎝⎛-⨯⑺20171699⨯ ⑻5252499⨯-【学习目标】1.理解并掌握有理数的除法法则;2.会进行有理数的除法运算和分数的化简. 【重点难点】有理数的除法运算;分数的化简. 【复习引入】1.有理数的乘法法则: .2.倒数的概念: .3.说出下列各数对应的倒数:1,-43,-4.5,1.5,-3 . 4.被除数、除数、商之间有何关系:被除数÷ = ;商× = .5.思考如何计算⑴()48-÷= ;⑵⎪⎭⎫⎝⎛-⨯418= . 【自主、合作、展示】1.结合上述问题,总结有理数的除法法则?法则一: . 法则二: . 2.计算: ⑴⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-532512 ⑵()936÷- ⑶()⎪⎭⎫⎝⎛-÷-312 3.分数的化简:分数可以理解成 ;分数化简的结果为 或 .试化简下列分数.⑴312- ⑵1245-- ⑶93-- ⑷3.06--【课堂检测】 1.计算:⑴()927÷- ⑵38125.0÷- ⑶()()13.091.0-÷-⑷⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-215323 ⑸()5444.2÷- ⑹()10000-÷2.化简下列分数.⑴40- ⑵122--- ⑶648- ⑷321-⑸214- ⑹b a ---【学习目标】1.会将有理数的乘除混合运算统一成乘法运算;2.熟练进行有理数的乘除混合运算. 【重点难点】将有理数的乘除混合运算统一成乘法运算;有理数的乘除混合运算顺序. 【复习引入】1.有理数的除法法则: 法则一: . 法则二: .2.计算: ⑴()714÷- ⑵()⎪⎭⎫ ⎝⎛-÷-312 ⑶⎪⎭⎫ ⎝⎛-÷52511 ⑷()818÷-【自主、合作、展示】1.有理数的乘除混合运算:先将除法转化为 运算,再利用 和 计算.2.计算⑴()89441281÷⎪⎭⎫ ⎝⎛-⨯÷- ⑵()575125-÷⎪⎭⎫ ⎝⎛-⑴911936÷⎪⎭⎫⎝⎛- ⑵74)431()1651()56(⨯-÷-⨯-⑶)]41()52[()3(-÷-÷- ⑷)5()910()101()212(-÷-÷-⨯-⑸)511()3.0()3(12-÷-⨯-÷- ⑹)10()16.0()53(32-÷-÷-⨯【学习目标】1.掌握有理数四则运算法则与混合运算顺序;2.能较为熟练地进行有理数的混合运算. 【重点难点】有理数的混合运算;运算顺序的确定与性质符号的处理. 【复习引入】小学学过的数的加减乘除混合运算如何运算?试计算:()2221227916713⨯÷-⨯【自主、合作、展示】1.有理数加减乘除混合运算的运算顺序是什么?2.计算.⑴()248-÷+- ⑵()()()159057-÷--⨯- ⑴451132131511÷⨯⎪⎭⎫ ⎝⎛-⨯ ⑵()()72843÷-+-⨯⑶ ()31213261⨯÷--⨯ ⑷⎪⎭⎫ ⎝⎛-÷⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛--÷811812312165⑶⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-+--4217214321531⑹⎪⎭⎫ ⎝⎛-+÷2161321812.观察下列等式:211211-=⨯, 3121321-=⨯,4131431-=⨯.⑴猜想并写出:()11+n n = .⑵直接写出下列各式的计算结果:①201420131321211⨯++⨯+⨯Λ= ; ②()11321211+++⨯+⨯n n Λ= . 平凉四中数学导学案(七年级上) 编号:2016.18 编制人:刘前平【学习目标】1.理解有理数乘方的意义;2.掌握有理数的乘方运算. 【重点难点】乘方的意义及运算;乘方、幂、指数、底数的概念及其相互间的关系. 【创设情境】1.从前,有个“聪明的乞丐”他要到了一块面包,他想,天天要饭太辛苦,如果我第一天吃这块面包的一半,第二天再吃剩余面包的一半,……依次每天都吃前一天剩余面包的一半,这样下去,我就永远不要去要饭了!吃到面包 .2.拉面馆师傅用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复多次,就能把这根很粗的面条,拉成许多很细的面条.想想看,捏合 次后,就可以拉出32根面条. 【自主、合作、展示】1.结合上述问题,总结乘方及其相关的概念.一般地,n 个相同因数a 相乘,记作 ,读作 . 求n 个相同因数的 ,叫作乘方,乘方的结果叫做 .在na 中,a 叫做 ,n 叫作 .当n a 看作a 的n 次方的结果时,也可读作 . 2.结合乘方的概念,填空.⑴()34-表示 ,底数是 ,指数是 ,结果是 .⑵()42-表示 ,底数是 ,指数是 ,结果是 .⑶332⎪⎭⎫⎝⎛-表示 ,底数是 ,指数是 ,结果是 .3.通过以下计算,你能总结出负数的幂的正负有什么规律吗?⑴()34- ⑵()42- ⑶332⎪⎭⎫⎝⎛-【课堂检测】⑴()101- ⑵()71- ⑶38 ⑷()35- ⑸31.0 ⑹421⎪⎭⎫ ⎝⎛-【拓展提升】1.思考()22-与22-有何区别?并说出它们的结果分别是什么?()32-与32-呢? 由此你能总结出什么结论?【学习目标】1.能确定有理数加、减、乘、除、乘方混合运算的顺序;2.会进行有理数的混合运算. 【重点难点】有理数的混合运算;运算顺序的确定和性质符号的处理. 【复习引入】1.有理数的乘方:求n 个 的运算,叫做乘方.2.在算式()()3212632-+⎪⎫ ⎛-⨯-÷-中,存在着种运算,并尝试计算.【自主、合作、展示】1.有理数的混合运算顺序⑴ ⑵ ⑶ 2.计算:⑴()()1534323+-⨯--⨯ ⑵()()()[]()()232432223-÷--+-⨯-+-【课堂检测】 1.计算.⑴()432135⎪⎭⎫⎝⎛-⨯-- ⑵()()3225381---÷-+-⑶()()4221310÷-+⨯- ⑷()()()[]233410222⨯+--+-⑸5)4()1(3220132⨯---⨯+- ⑹()()[]2432315.011--⨯⨯---⑺()()1534322+-⨯--⨯ ⑻()()26313222÷--÷-+-1.5.2科学记数法【学习目标】1.能将一个有理数用科学记数法表示;2.已知用科学记数法表示的数,写出原来的数. 【重点难点】用科学记数法表示绝对值大于10的数;科学记数法中指数与整数位数之间的关系.【复习引入】1.2.为:510000000000000平方米.这些数非常大,写起来表较麻烦,能否用一个比较简单的方法来表示这两个数吗?300 000 000= . 5100 000 000 000= . 【自主、合作、展示】1.什么是科学记数法?科学记数法中,a 和n 的范围如何确定?你有哪些方法?2.用科学记数法表示下列各数.⑴1000000= ; ⑵57000000= ;⑶123000000000= ; ⑷800800= ; ⑸-10000= ; ⑹-12030000= . 3.下列用科学记数法写出的数,原数分别是什么数?⑴7101⨯= ; ⑵6105.4⨯= ; ⑶51004.7⨯= ; ⑷41096.3⨯= ; ⑸31023.1⨯-= ; ⑹21001.2⨯-= . 【课堂检测】1.用科学记数法表示下列各数:⑴465000= ; ⑵1200万= ;⑶1000.001= ; ⑷-789= ; ⑸308×106= ; ⑹0.7805×106= . 2.下列用科学记数法写出的数,原数分别是什么数?。
1.2 有理数第1课时 有理数导学案1.掌握有理数的概念,会对有理数按一定标准进行分类,培养分类能力.2.了解分类标准与分类结果的相关性,初步了解“集合”的含义.3.体会分类是数学上常用的处理问题的方法.1.问题:同学们学习了很多种不同类型的数,你能举几个例子吗?2.能否将下列所写的数按如下类型进行归类呢? 15,-19,-5,215,-138,0.1,-5.32,-80,123,2.33.3.填空:按定义分类: 按性质符号分类:有理数{{{ 有理数{ { {1.在1,-3,-2.5,0四个数中,属于负整数的是( )A .1B .-3C .-2.5D .02.下列说法正确的是( )A.正数、0、负数统称为有理数C.正有理数、负有理数统称为有理数3.所有正数组成正数集合,所有负数组成负数集合.把下面的有理数填入它属于的集合的圈内:-17,227,3.1415,0.107,-35,-2313,63%,-0.2·(2的循环). 1.下列不是正有理数的是( )A.-3.14 C.732.在五个数:①-5;②227;③1.3;④0;⑤-23中,属于分数的是( ) A .①②⑤ B .②③④ C .②③⑤ D .①③⑤3.下列说法中正确的是( )A .整数就是正整数和负整数B .分数包括正分数、负分数C .正有理数和负有理数组成全体有理数D .一个数不是正数就是负数4.填空:(1)有理数中,是整数而不是正数的是 ;是负数而不是分数的是 .(2)零是 ,还是 ,但不是 ,也不是 .5.把下列各数放在相应的集合中.10,-0.72,-2,0,-98,25,83,6.3%,3.14.1.写出下列各数中的正数: 、负数: 、整数: 、分数: . -15,+6,-2,-0.9,1,35,0,313,0.63,-4.95,56%.2.正整数、 和 统称整数; 和 统称分数;整数和分数统称 .3.既不是正数也不是负数的数是 ,是正数而不是整数的数是 .4.下列说法错误的是( )A.-0.5是分数B.0不是正数也不是负数,但是自然数C.-3.27是负分数5.观察下面一列数:-1,2,-3,4,-5,6,-7,…,将这列数排成下列形式:参考答案1.正数:+6,1,35,313,0.63,56%;负数:-15,-2,-0.9,-4.95;整数:-15,+6,-2,1,0;分数:-0.9,35,313,0.63,-4.95,56%2.负整数 零 正分数 负分数 有理数3.0 正分数4.D5.(1)按照上述规律排下去,第10行从左边数第9个数是什么?解:(2)数-201在什么位置?(1)依题意得第1行共有数2×1-1=1(个),第2行共有数2×2-1=3(个),第3行共有数2×3-1=5(个),……,第9行共有数9×2-1=17(个).由观察得第偶数行第奇数个数为正数.故第10行从左边数第9个数是1+3+5+…+17+9=(1+17)×92+9=9×9+9=90. (2)同(1)得前14行共有数14×14=196(个),前15行共有数15×15=225(个),201-196=5,所以-201是第15行从左边数第5个数.。
有理数的乘法(第一课时)【学习目标】理解有理数乘法法则,会进行有理数的乘法运算【重点难点】能按有理数乘法法则进行有理数乘法运算.含有负因数的乘法. 【关键问题】确定积的符号【学法指导】自主学习、合作探究.【预习评价】(认真阅读教材28—30页的内容并回答下列问题.) 问题1:通过课本28页思考1你发现了什么规律?问题2:通过课本28页思考2你发现了什么规律?问题3:通过课本29页思考3你发现了什么规律?结论:正数乘以正数积为 数;负数乘正数积为 数正数乘负数积为 数;负数乘负数积为 数 归纳有理数乘法法则:(1)两数相乘,同号得 ,异号得 ,并把绝对值 。
(2)任何数和0相乘,都得 。
直接说出下列两数相乘所得积的符号 1)5×(—3) 2)(—4)×6 3)(—7)×(—9) 4)0.9×8 问题4:计算(1)(-3)×(-9) (2)(-21)×31(3)(—6)×0= (4)29×(-)34(5)(—1)×(—2)×3 (6)(—4)×(—0.5)×(—3) 问题5: -2的倒数是 ,641的倒数是 , 的两个数互为倒数 【我的问题】【多元评价】自我评价: 学科长评价: 教师评价: 1.4.1有理数的乘法(第一课时)问题训练1、写出下列各数的倒数1的倒数是 (理由:1和1的乘积得1) -1的倒数是 (理由: ) 5的倒数是 (理由: )32-的倒数是 (理由: ) 2. 的倒数是31-; 的倒数是它本身, 没有倒数。
3.选择(1)下列说法正确的是( )A.积比每一个因数都大B.两数相乘,如果积为0,则这两个因数异号C.两数相乘,如果积0,则这两个因数至少一个为0。
D.两数相乘,如果积为负数,则这两个因数都为正数。
(2)计算:)213()312(-⨯-的值为( )A 、649 B 、649- C 、616 D 、616-4、商店降价销售某种商品,每件降5元,售出60件后,与按原价销售同样数量的商品相比,销售额有什么变化?5.有理数a 等于它的倒数,有理数b 等于它的相反数,则2008a+2009b 的值是多少?)6(5-⨯ 与 5)6(⨯- = )5()]4(3[-⨯-⨯ 与 )]5()4[(3-⨯-⨯ = )]7(3[5-+⨯ 与 )7(535-⨯+⨯ =回归复习评价 初学日期 3天复习日期 7天复习日期 15天复习日期 自我评价 同伴签字归纳: 试一试:用两种方法计算)12()216141(-⨯-+ 解法一: 解法二:思考:比较上面两种解法,它们在运算顺序上有什么区别?哪种解法运算量小?【我的问题】【多元评价】自我评价: 学科长评价: 教师评价:1.4.1有理数的乘法(第二课时)问题导读【学习目标】1. 能根据有理数乘法法则熟练进行有理数乘法运算;2. 掌握多个数相乘的积的符号法则;3. 能正确应用乘法交换律、结合律、分配律简化运算过程.【重点难点】有理数乘法法则,多个数相乘的积的符号法则. 【关键问题】有理数乘法法则 【学法指导】自主学习、合作探究. 【知识链接】有理数乘法法则及运算律.【预习评价】(认真阅读教材31—33页的内容并回答下列问题.) 问题1:计算下列各题(1) )5(432-⨯⨯⨯ (2))5()4(32-⨯-⨯⨯(3) )5()4()3(2-⨯-⨯-⨯ (4))5()4()3()2(-⨯-⨯-⨯-(5) )5.23(0)5(8.7-⨯⨯-⨯归纳:几个不是0的数相乘,积的符号与 因数的个数有关系,当负因数的个数是 时,积为正数,当负因数的个数 时,积为负数。
人教新课标版七年级上数学第一章有理数优质导学案(46页)第一章有理数《1.1 正数和负数》导学案(1)班级姓名小组小组评价教师评价_____一、学习目标1、掌握正数和负数概念;2、会区分两种不同意义的量,会用符号表示正数和负数;3、体验数学发展是生活实际的需要,提高学习数学的兴趣。
二、自主学习1、阅读教材P2说说数的产生和发展2、(1)如果温度是零上10℃, 记做10℃;那么温度是零下3℃记做什么?(2) 在我国地形图上珠穆朗玛峰处写着8848米,在吐鲁番盆地处写着-155米,它们分别表示什么意思?(3)账本上70元,-40元分别表示什么?为了用数表示具有相反意义的量,一般把其中一种意义的量,如向东、零上温度、收入、前进、上升、高出、超过等规定为正的,常用小学里学过的数表示;把与其相反的量,如向西、零下温度、支出、后退、下降、低于、不足等规定为负的,用小学里学过的数前面加上负号“-”来表示(零除外).3、什么样的数是负数?什么样的数是正数?0是正数还是负数?(举例时要出现整数, 分数, 小数)•4、阅读教材第3页例题【总结】:正数是数,例如负数是在正数前面加上一个的数,例如数0既不是,也不是。
0是正数与负数的分界...[注意]:正数前面也可以加上“+”号如:也可以省去“+”号如5、自学检测(1)向同桌读出下列各数,指出其中哪些是正数,哪些是负数?-2, 0.6, +1, 0,-3.1415, 200,-754200, 3(2)小明的姐姐在银行工作,她把存入5万元记作+5万元,那么支取2万元应记作_______,-3万元表示______________.(3)如果向东为正,那么 -50m表示的意义是()A. 向东行进50m ,B.向南行进50m ,C. 向北行进50m ,D. 向西行进50m ,(4)教材P3练习(直接做在课本上)三、合作探究1、下列说法正确的是()A 、零是正数不是负数B 、零既不是正数也不是负数C 、零既是正数也是负数D 、不是正数的数一定是负数,不是负数的数一定是正数2、下列说法正确的是()A 、带有“—”号的数是负数B 、带有“+”号的数是正数C 、 0是自然数D 、0既是正数,也是负数。
第一章 有理数学法指导:自主训练 启发点拨 讲练结合学习的重点、难点分析:理解有理数的概念 。
有理数大小的比较及绝对值的概念。
有理数的混合运算法则。
确立合理的运算顺序以及运算中的符号问题。
复习目标:1、理解有理数及其运算的意义,并能用数轴上的点表示有理数,会比较有理数的大小.2、借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值。
3、掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步为主)理解有理数的运算律,并能运用运算律简化运算.4、能运用有理数及其运算解决简单的实际问题 。
渗透数形结合的思想 学案导学:1、相反意义的量。
如果前进200米记做200米,那么180-米表示__ __ _,则后退-10米表示___ _。
2、有理数(非负数等)例:)2(--, 3.5 ,54, -.35, 5.2-- , 22-,0 这些数中 正数有________________ 负数有___ ________分数有__________________整数有_______________________ 非正整数____________________,非负整数有_________________ 非负整数又叫 又叫 。
3、数轴1) 数轴上到表示数2的点距离为3的点表示的数是_________. 2) 数轴上到原点的距离是3的点表示的数是 。
3) 数轴上互为相反数的两个数距离是7,这两个数分别是 。
4、求相反数、倒数、绝对值 (1)基本概念:数a 的相反数是 ,0的相反数是 . 若a 、b 互为相反数,则 . 数a 的倒数是 ,0的倒数 。
若a 与b 互为倒数,则 , 倒数是它本身的是______.对任何有理数a,总有︱a ︱ 0.绝对值最小的数是____ ;绝对值等于本身的是______; 绝对值是其相反数的是____4) —0.9的绝对值是_________倒数是 。
若x =5,那么x=_____ 5) 23-的相反数是 ,)(3--是 的相反数。
有理数的加法【学习目标】1.掌握有理数加法法则,会正确进行有理数的加法运算.2.利用有理数的加法运算解决简单的实际问题.【学习重点】掌握有理数加法法则,会正确进行有理数的加法运算.【学习难点】能运用加法运算律简化加法运算.行为提示:在黑板上画一个温度计,规定上升记为正数,下降记为负数,利用数形结合思想,掌握有理数加法法则.行为提示:让学生阅读教材后,独立完成“自学互研”的所有内容,并要求做完了的小组长督促组员迅速完成.提前完成的同学可以主动帮助本组的潜能生分析解题思路.情景导入生成问题旧知回顾:有理数的绝对值的定义是什么?答:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.在小学我们学过正数与0的加法运算,引入负数后,怎样进行加法运算呢?本节课我们共同来研究这个问题.自学互研生成能力知识模块一探究有理数加法的运算法则【自主学习】阅读教材P16~P17“探究”之前的内容,类比教材的探索过程,完成下面的内容:【合作探究】问题:如果规定向东为正,向西为负,则(1)某同学向东走4米,再向东走2米,两次共向东走了6米,这个问题用算式表示为:4+2=6;(2)某同学向西走2米,再向西走4米,两次共向西走多少米?很明显,两次共向西走了6米,这个问题用算式表示为:(-2)+(-4)=-6.提示:首先确定和的符号,再把各加数的绝对值相加.行为提示:教会学生怎么交流.先对学,再群学.充分在小组内展示自己,分析答案,提出疑惑,共同解决(可按结对子学—帮扶学—组内群学来开展).在群学后期教师可有意安排每组展示问题,并给学生板书题目和组内演练的时间.方法指导:已知a>0,b<0,且a+b<0,根据加法法则来确定a、b的绝对值的大小,再利用数轴来比较大小.通过上面几个算式,说说两个有理数相加,和的符号怎样确定?答:①两个正数相加,和的符号为正;②两个负数相加,和的符号为负.归纳:同号两数相加,取相同的符号,并把它们的绝对值相加.阅读教材P17~P18例1之前的部分,用上面的方法探究异号两数相加.归纳:绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.知识模块二有理数加法的运算法则的运用【自主学习】学习教材P18例1.【合作探究】计算:(1)23+(-5); (2)⎝ ⎛⎭⎪⎫-23+47; (3)0+(+10). 解:原式=18; 解:原式=-221; 解:原式=10. 交流展示 生成新知【交流预展】1.将阅读教材时“生成的问题”和通过“自主学习、合作探究”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.【展示提升】知识模块一 探究有理数加法的运算法则知识模块二 有理数加法的运算法则的运用检测反馈 达成目标【当堂检测】1.一个数是11,另一个数比11的相反数大2,那么这两个数的和为( C )A .24B .-24C .2D .-22.下面结论正确的有( C )①两个有理数相加,和一定大于每一个加数;②一个正数与一个负数相加得正数;③两个负数和的绝对值一定等于它们绝对值的和;④两个正数相加,和为正数;⑤两个负数相加,绝对值相减;⑥正数和负数,其和一定等于0.A .0个B .1个C .2个D .3个3.绝对值不小于3且小于5的所有整数的和为0.4.如果a>0,b<0,且a +b<0,比较a 、-a 、b 、-b 的大小.解:b<-a<a<-b.【课后检测】见学生用书课后反思 查漏补缺1.收获:________________________________________________________________________2.存在困惑:________________________________________________________________________。
第3课时:1.2.1 有理数导学目标: 1、掌握有理数的概念,会对有理数按一定标准进行分类,培养分类能力;2、了解分类的标准与集合的含义;3、体验分类是数学上常用的处理问题方法;导学重点:正确理解有理数的概念导学难点:正确理解分类的标准和按照一定标准分类导学指导:一、知识链接1、通过两节课的导学,,那么你能写出3个不同类的数吗?.(4名学生板书)__________________________________________二、新知探究问题1:观察黑板上的12个数,我们将这4位同学所写的数做一下分类;该分为几类,又该怎样分呢?先分组讨论交流,再写出来分为类,分别是:引导归纳:统称为整数,统称为有理数。
问题2:我们是否可以把上述数分为两类?如果可以,应分为哪两类?师生共同交流、归纳2、正数集合与负数集合所有的正数组成集合,所有的负数组成集合三、巩固训练1、P8练习(做在课本上)2.把下列各数填入它所属于的集合的圈内:15, -1, -5,2,813, 0.1, -5.32, -80, 123, 2.333;正整数集合负整数集合正分数集合负分数集合四、总结提升: 有理数分类⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 或者 ⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数零负整数有理数正分数分数负分数五、拓展延伸1、下列说法中不正确的是……………………………………………( ) A .-3.14既是负数,分数,也是有理数 B .0既不是正数,也不是负数,但是整数c .-2000既是负数,也是整数,但不是有理数 D .O 是正数和负数的分界2、在下表适当的空格里画上“√”号。
2 3 有理数
【学习目标】
1.理解并掌握有理数的相关概念.
2.了解分类标准与分类结果的相关性,培养分类能力.
【学习重点】
正确理解有理数的概念.
【学习难点】
正确理解分类的标准并按照一定的标准进行正确分类.
行为提示:创景设疑,帮助学生知道本节课学什么.
行为提示:教会学生看书,自学时对于书中的问题一定要认真探究,书写答案.
教会学生落实重点.
提示:1.有限小数和无限循环小数都能化为分数,所以我们把它们看成有理数;
2.无限不循环小数不是有理数,如:π ;
3.所有正整数组成正整数集合,所有负整数组成负整数集合;
4.集合中的“…”表示填入的数只是集合的一部分.
情景导入 生成问题
旧知回顾:
1.正数:大于 0 的数叫做正数;负数:在正数的前面加上符号“-”的数叫做负数;π 是无限不循环小数.
2.若向南走 10 米记作-10 米,则+5 米表示向北走 5 米.
1 17 3.下列各数:-20,5,- ,0.23,-0.04,0,-6,8, ,其中正数有 4 个,负数有 4 个,整数有 5 个.
自学互研 生成能力
⎪⎩ 分数 正分数
⎪ ⎪⎨0 【自主学习】
阅读教材 P 6 思考,完成下面的内容:
想一想:除了教材 P 6 中列举的数,你还能举出你学过哪些数吗?
归纳:正整数、、负整数统称为整数;正分数、负分数统称为分数;整数和分数统称为有理数.
【合作探究】
1.下面的说法中,正确的个数有( B )
①一个有理数不是整数就是分数;
②一个有理数不是正数就是负数;
③一个整数不是正整数,就是负整数;
④一个分数不是正分数,就是负分数.
A .1 个
B .2 个
C .3 个
D .4 个
2.零是正数与负数的分界,表示基准,它既不是正数,也不是负数.
3.正整数、0、负整数统称为整数;正分数和负分数统称为分数;整数和分数统称为有理数.
4.判断正误:
(1)有理数包括整数、0 和分数.(×)
(2)一个有理数不是正有理数就是负有理数.(×)
(3)π是正数.(√)
知识模块二 有理数的分类
【自主学习】
⎧整数⎧正整数
(1)按定义分类:有理数⎨ ⎪⎩负整数
⎧⎪
⎨ ⎪⎩负分数
提示:有理数的分类:
一要标准统一;
二要不重不漏;
⎧⎪正有理数 正整数
正分数
⎨ 0 ⎪⎩ 负有理数 负整数
15,-3,+1, ,-1.5,0,0.2,3 ,-4 .
正数集合{15,+1, ,0.2,3 ,…};
5 正分数集合{ ,0.2,3 ,…};
5
分数集合{ ,-1.5,0.2,3 ,-4 ,…}.
⎩
行为提示:教会学生怎么交流.先对学,再群学.充分在小组内展示自己,分析答案,提出疑惑,共同解决(可按 结对子学—帮扶学—组内群学来开展).在群学后期教师可有意安排每组展示问题,并给学生板书题目和组内演练 的时间.
方法归纳:小数都看成分数,有理数的两种分类不能相混淆.
⎧⎪
⎨ ⎪
(2)按性质分类:有理数 ⎧⎪ ⎨
⎪⎩负分数
【合作探究】
把下面各数填在相应集合的大括号里:
1
1
3 3
4 5
1 1
3 4
3 负数集合{-3,-1.5,-
4 ,…}
;
整数集合{15,-3,+1,0,…};
1
1 3 4
3 负分数集合{-1.5,-
4 ,…};
1
1
3 3
4 5
交流展示 生成新知
【交流预展】
1.将阅读教材时“生成的问题”和通过“自主学习、合作探究”得出的“结论”展示在各小组的小黑板上.并将 疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.
2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.
【展示提升】
A.不是有理数B.0.1是有理数
5
5
5
7
知识模块一有理数的相关概念
知识模块二有理数的分类
检测反馈达成目标
【当堂检测】
1.下列说法错误的是(D)
π
2
C.自然数就是非负整数D.自然数就是正整数
1
2.把下列各有理数填入相应的集合中:1,0.3,-,0,-321,35%,72,-3.1415,+2.
1
解:负数{-,-321,-3.1415,…};
整数{1,0,-321,72,+2,…};
1
负分数{-,-3.1415,…}.
22 3.将下列各数填在相应的集合圈中:-0.5,0,+2.9,-7,-900,99.9,4,-3.14,.
【课后检测】见学生用书
课后反思查漏补缺
1.收获:________________________________________________________________________ 2.存在困惑:________________________________________________________________________。