完整版荧光和化学发光免疫分析方法
- 格式:doc
- 大小:19.20 KB
- 文档页数:6
免疫荧光层析法化学发光免疫荧光层析法(Immunofluorescence Assay,简称IFA)和化学发光(Chemiluminescence)是两种常用的检测技术,广泛应用于生物医学研究、临床诊断和生物工程等领域。
本文将介绍这两种技术的原理、步骤和应用,以及它们之间的区别和优缺点。
免疫荧光层析法是一种利用抗体与特定抗原结合后可发出荧光信号的检测方法。
它的原理是将标记有荧光染料(如荧光素)的抗体与待检样品中的目标抗原结合,形成免疫复合物。
通过荧光显微镜观察,可以检测到目标抗原的存在与否。
这种方法具有高灵敏度、高特异性和无需放射性标记物的优点,被广泛应用于病原微生物的检测、抗体的定量和细胞蛋白的定位等研究领域。
化学发光是一种利用化学反应产生的光信号来检测目标物质的方法。
它的原理是将待检样品中的目标物与标记有化学发光底物的抗体结合,形成免疫复合物。
当加入特定的激发剂后,底物会发生化学反应,产生可见的光信号。
通过光电倍增管或摄像机的检测,可以定量地测量化学发光强度,从而判断目标物的含量。
化学发光方法具有高灵敏度、宽线性范围和较低的背景信号等优点,因此在临床诊断和生物工程领域得到广泛应用。
免疫荧光层析法和化学发光在实验步骤上存在一些差异。
免疫荧光层析法的步骤包括样品制备、抗体标记、免疫反应、洗涤和显微镜观察等。
而化学发光的步骤则包括样品制备、抗体标记、免疫反应、洗涤和化学反应等。
两种方法的原理都是基于抗体与抗原的特异性结合,但在标记物和检测信号的产生上有所不同。
免疫荧光层析法和化学发光在应用上也存在一些差异。
免疫荧光层析法常用于检测细胞表面标记物、病原微生物和抗体等,广泛应用于免疫学研究和临床诊断。
而化学发光常用于检测肿瘤标志物、药物残留和基因表达等,被广泛应用于药物研发和生物工程领域。
两种方法在不同领域有着各自的优势和适用范围。
总的来说,免疫荧光层析法和化学发光是两种常用的生物分析技术,具有高灵敏度、高特异性和广泛应用的特点。
化学发光与免疫荧光方法学对比一、《化学发光与免疫荧光方法学对比》1.概述化学发光(CL)和免疫荧光(IF)是用于检测特定病原体或病原体的特异性抗体的两种测定方法。
CL和IF之间的最显著差异是不同的技术原理,以及其具有不同的优势和劣势。
下面将比较这两种技术的方法学、特点和限制。
2.方法学对比化学发光和免疫荧光是两种完全不同的化学和物理技术。
(1)化学发光:CL技术使用放射性核素结合到抗体或含有特异性抗原的配体上,将其作为一种探针来检测特定目标物质。
检测物质特异性结合探针后,将其照射到发射波长范围的暗室,从而得到特定的发光细胞图像。
(2)免疫荧光:IF技术通过使用荧光标记抗体或特异性抗原,以可见光范围的荧光作为探针,检测特定的抗原或抗体。
被检测物质与荧光探针结合后,将其照射到可见光范围的暗室,从而得到特定的荧光细胞图像。
3.特点对比(1)CL技术可用于快速检测特定的物质:通过使用核素,可以迅速检测出特定的物质,这种技术不受受体或抗原的数量或特性影响。
(2)IF技术可以更简单、更灵敏地检测出特定物质:在IF技术中,荧光标记的抗体和抗原可以特异性地结合,使得能够更灵敏地检测出特定的物质,且不会受受体或抗原的数量或特性影响。
4.限制对比(1)CL技术存在一定的检测限制:CL技术受探针的数量的影响,抗原和抗体的结合特异性不强,因此无法准确检测受体或抗原的特定性。
(2)IF技术存在一定限度的检测效果:IF技术受荧光标记抗体和抗原的数量以及荧光强度的影响,因此无法准确检测受体或抗原的特定性。
综上所述,化学发光和免疫荧光有许多不同的方法学特点和限制,因此它们有不同的优势和劣势。
取决于检测病原体的要求,可以根据检测目标的特点,选择适合自己的技术来使用。
荧光和化学发光免疫分析方法荧光和化学发光免疫分析方法是一种常用的生物分析技术,广泛应用于生命科学研究、临床诊断和药物研发等领域。
本文将详细介绍荧光和化学发光免疫分析方法的原理、应用以及优缺点等方面。
首先,荧光免疫分析方法利用标记有荧光物质的抗体或抗原与待检测物相互作用,通过检测荧光信号来定量分析目标物。
其原理是当荧光标记物被激发后,会发射出特定波长的荧光信号,利用荧光光谱仪测量荧光强度来确定目标物的浓度。
荧光免疫分析方法具有高灵敏度、高选择性和多样性的优点,可用于检测蛋白质、核酸、细胞等生物分子。
化学发光免疫分析方法则是利用特定的化学反应产生荧光信号来检测目标物。
常用的化学发光免疫分析方法有酶免疫分析和化学发光免疫分析。
在酶免疫分析中,酶标记的抗体或抗原与待检测物相互作用后,加入底物,酶催化底物发生化学反应产生荧光信号。
而化学发光免疫分析则是通过特定的化学反应产生激发态分子,激发态分子发生无辐射跃迁产生荧光信号。
化学发光免疫分析方法具有高灵敏度、快速、稳定性好的特点,常用于临床诊断和药物研发等领域。
荧光和化学发光免疫分析方法在生命科学研究中有广泛的应用。
例如,在蛋白质研究中,可以利用荧光免疫分析方法检测蛋白质的表达水平、相互作用以及酶活性等。
在细胞研究中,荧光免疫分析方法可以用于检测细胞的分子分布、内源性蛋白质的表达和细胞信号传导等。
此外,荧光和化学发光免疫分析方法还可以用于检测病原体、药物残留和环境污染物等。
荧光和化学发光免疫分析方法具有许多优点。
首先,这些方法具有高灵敏度,可以检测到非常低浓度的目标物。
其次,这些方法具有高选择性,能够在复杂的样品中准确地检测目标物。
此外,荧光和化学发光免疫分析方法还可以实现高通量分析,节省时间和成本。
然而,荧光和化学发光免疫分析方法也存在一些缺点。
首先,荧光信号受到背景干扰的影响,可能导致误差的产生。
其次,荧光标记物的稳定性较差,容易受到光照和温度等因素的影响。
化学发光免疫分析与荧光免疫分析的差别
在体外诊断领域,化学发光免疫分析CLIA与免疫荧光分析IFA都是常⽤的检测⽅法,最终也都是以光度计进⾏检测,不过两者的原理是有本质区别的。
化学发光免疫分析相⽐于放射免疫、荧光免疫、酶联免疫,这种⽅法更有优势,它具有灵敏度⾼、特异性强、线性范围宽、操作简便、不需要⼗分昂贵的仪器设备等特点,⽽且⽆辐射、
标记物有效期长并可实现全⾃动化。
化学发光试剂吖啶酯
化学发光免疫与荧光免疫区别:
虽然两者都是发光反应,最直观的区别就是,化学发光是试剂⾃⾝发光,⽽荧光是⽤光源照射(通常是紫外线)后再发光。
两者的发光原理是不⼀样的,因此检测的结果也会产⽣差异。
化学发光是利⽤化学反应产⽣的能量促使产⽣能级跃迁,从⽽发光,典型的如鲁⽶诺检测⾎迹;荧光是⼀种光致发光现象,必须提供光源去激发分⼦产⽣能级跃迁,进⽽发光。
化学发光⽐荧光免疫⼲扰⼩:
使⽤这两种⽅法进⾏免疫分析时,区别很明显,化学发光⽆需外加光源,背景⼲扰⼩;⽽荧光则需要外加光源,在垂直光源的⽅向上检测,⽣物样品中的蛋⽩质、氨基酸等分⼦也会产⽣
背景荧光,背景稍⾼⼀些,需要选择合适的荧光试剂,以及样品处理⽅法以减少⾮特异性吸附
蛋⽩的影响。
直接法是每个抗原的抗体都要荧光标记,⽽且荧光标记后可能会影响抗体效价甚⾄失效。
间接法只要对相应的抗原做出相应的抗体,再⽤标记好的⼆抗结合上就⾏了,不⽤每个抗体都要
荧光标记,⽽且对⼀抗的效价影响甚微。
化学发光⼲扰很⼩,特异性⾮常⾼,整个⽅法的使⽤
受到化学分析本⾝不特异性的制约。
磁珠材料的发展使化学发光技术的发展越来越成熟。
荧光和化学发光免疫分析方法免疫分析是利用抗原抗体反应进行的检测方法,即利用抗原与抗体的特异性反应, 应用制备好的抗原或抗体作为试剂,以检测标本中的相应抗体或抗原.由于免疫的特异性结合,免疫分析方法具有很好的选择性,荧光免疫分析和化学发光免疫分析是其中典型的两种。
本文将对这两种免疫分析方法进行详细的介绍。
一、免疫免疫是指机体免疫系统识别自身与异己物质,并通过免疫应答排除抗原性异物,以维持机体生理平衡的功能。
免疫是人体的一种生理功能,人体依靠这种功能识别“自己”和“非己”成分,从而破坏和排斥进入人体的抗原物质,或人体本身所产生的损伤细胞和肿瘤细胞等,以维持人体的健康.特异性免疫系统,是一个专一性的免疫机制,针对一种抗原所生成的免疫淋巴细胞(浆细胞)分泌的抗体,只能对同一种抗原发挥免疫功能.而对变异或其他抗原毫无作用。
1、抗原1。
1抗原的定义抗原:是一类能刺激机体免疫系统使之产生特异性免疫应答(免疫原性) ,并能与相应抗体在体内或体外发生特异性结合的物质(免疫反应性)。
抗原一般为大分子物质,其分子量在10kD以上.1。
2抗原的分类完全抗原:同时具有免疫原性和免疫反应性的抗原,如细菌、病毒、异种动物血清等。
半抗原:仅具有与相应抗原或致敏淋巴细胞结合的免疫反应性,而无免疫原性的物质。
如大多数的多糖、类脂及一些简单的化学物质,它们本身不具免疫原性,但当与蛋白质大分子结合后形成复合物,便获得了免疫原性,1。
3抗原的性质决定簇是指抗原分子表面的基团,它直接决定免疫学反映的特异性.抗原通过抗原决定簇与相应淋巴细胞表面抗原受体结合,从而激活淋巴细胞,引起免疫应答,抗原也藉此与相应抗体或致敏淋巴细胞发生特异性结合。
因此,抗原决定簇是被免疫细胞识别的靶结构,也是免疫反应具有特异性的物质基础。
2、抗体2.1抗体的定义抗体:是机体受抗原刺激后,由淋巴细胞合成的一类能与相应抗原发生特异性结合的球蛋白。
2.2抗体的结构抗体是机体受抗原刺激后,由淋巴细胞特别是浆细胞合成的一类能与相应抗原发生特异性结合的球蛋白,因其具有免疫活性故又称作免疫球蛋白。
化学发光是在常温下由化学反应产生的光的发射。
其发光机理是:反应体系中的某些物质分子,如反应物、中间体或者荧光物质吸收了反应释放的能量而由基态跃迁到激发态,当中间体由激发态回到基态时会释放等能级的光子,对光子进行测定而实现定量分析。
化学发光免疫分析方法是将化学发光与免疫反应相结合的产物,因化学发光具有荧光的特异性,但与荧光产生需要激发光不同,化学发光由化学反应产生光强度,并不需要激发光,从而避免了荧光分析中激发光杂散光的影响。
化学发光免疫分析包含了免疫化学反应和化学发光反应两个部分。
免疫分析系统是将化学发光物质或酶标记在抗原或抗体上,经过抗原与抗体特异性反应形成抗原-抗体免疫复合物。
化学发光分析系统是在免疫反应结束后,加入氧化剂或酶的发光底物,化学发光物质经氧化剂的氧化后,形成一个处于激发态的中间体,会发射光子释放能量以回到稳定的基态,发光强度可以利用发光信号测量仪器进行检测。
待测物质浓度因为与发光强度成一定的关系而实现检测目的。
一、化学发光免疫分析方法的类别化学发光免疫分析法根据标记物的不同可分为 3 大类,即化学发光免疫分析、化学发光酶免疫分析和电化学发光免疫分析法。
(一)化学发光免疫分析化学发光免疫分析是用化学发光剂直接标记抗体或抗原的一类免疫测定方法。
目前常见的标记物主要为鲁米诺类和吖啶酯类化学发光剂。
1. 鲁米诺类标记的化学发光免疫分析。
鲁米诺类物质的发光为氧化反应发光。
在碱性溶液中,鲁米诺可被许多氧化剂氧化发光,其中H2O2最为常用。
因发光反应速度较慢,需添加某些酶类或无机催化剂。
酶类主要是辣根过氧化物酶(HRP),无机类包括O3、卤素及Fe3+、Cu2+、Co2+和它们的配合物。
鲁米诺在碱性溶液下可在催化剂作用下,被H2O2等氧化剂氧化成3-氨基邻苯二酸的激发态中间体,当其回到基态时发出光子。
鲁米诺的发光光子产率约为0.01,最大发射波长为425 nm。
2. 吖啶酯类标记的化学发光免疫分析吖啶酯用于化学发光免疫分析方法(ChemiluminescentImmunoassay,CLIA)由于热稳定性不是很好,Klee 等研究合成了更稳定的吖啶酯衍生物。
荧光和化学发光免疫分析方法免疫分析是利用抗原抗体反应进行的检测方法,即利用抗原与抗体的特异性反应,应用制备好的抗原或抗体作为试剂,以检测标本中的相应抗体或抗原。
由于免疫的特异性结合,免疫分析方法具有很好的选择性,荧光免疫分析和化学发光免疫分析是其中典型的两种。
本文将对这两种免疫分析方法进行详细的介绍。
一、免疫免疫是指机体免疫系统识别自身与异己物质,并通过免疫应答排除抗原性异物,以维持机体生理平衡的功能。
免疫是人体的一种生理功能,人体依靠这种功能识别“自己”和“非己”成分,从而破坏和排斥进入人体的抗原物质,或人体本身所产生的损伤细胞和肿瘤细胞等,以维持人体的健康。
特异性免疫系统,是一个专一性的免疫机制,针对一种抗原所生成的免疫淋巴细胞(浆细胞)分泌的抗体,只能对同一种抗原发挥免疫功能。
而对变异或其他抗原毫无作用。
1、抗原1.1抗原的定义抗原:是一类能刺激机体免疫系统使之产生特异性免疫应答(免疫原性) ,并能与相应抗体在体内或体外发生特异性结合的物质(免疫反应性)。
抗原一般为大分子物质,其分子量在10kD以上。
1.2抗原的分类完全抗原:同时具有免疫原性和免疫反应性的抗原,如细菌、病毒、异种动物血清等。
半抗原:仅具有与相应抗原或致敏淋巴细胞结合的免疫反应性,而无免疫原性的物质。
如大多数的多糖、类脂及一些简单的化学物质,它们本身不具免疫原性,但当与蛋白质大分子结合后形成复合物,便获得了免疫原性,1.3抗原的性质决定簇是指抗原分子表面的基团,它直接决定免疫学反映的特异性。
抗原通过抗原决定簇与相应淋巴细胞表面抗原受体结合,从而激活淋巴细胞,引起免疫应答,抗原也藉此与相应抗体或致敏淋巴细胞发生特异性结合。
因此,抗原决定簇是被免疫细胞识别的靶结构,也是免疫反应具有特异性的物质基础。
2、抗体2.1抗体的定义抗体:是机体受抗原刺激后,由淋巴细胞合成的一类能与相应抗原发生特异性结合的球蛋白。
2.2抗体的结构抗体是机体受抗原刺激后,由淋巴细胞特别是浆细胞合成的一类能与相应抗原发生特异性结合的球蛋白,因其具有免疫活性故又称作免疫球蛋白。
人免疫球蛋白有五类,分别为IgG、IgA、IgM、IgD和IgE。
3、抗原抗体的结合体外抗原抗体反应又称血清学反应第一阶段为抗原和抗体的特异性结合,需时短,几秒至几分钟,无可见现象出现。
第二阶段,可见反应阶段,表现为凝集、沉淀、细胞溶解等,时间较长,历时数分钟、数小时以致数天4、抗原抗体结合的特点(1)抗原抗体结合具有高度特异性,即一种抗原分子只能与由它刺激所产生的抗体结合而发生反应。
抗原与抗体两者为非共价键结合,为可逆反应(2)抗原与抗体的结合,在一定浓度范围内,只有当两者分子比例合适时,才出现可见反应;以沉淀反应为例,分子比例合适,沉淀物产生既快又多,体积大。
分子比例不合适,沉淀物产生少,体积小,或不产生沉淀物。
(3)特异性抗原和抗体有相对应的极性基,抗原和抗体的特异性结合,也就是这些极性基的相互吸附。
抗原和抗体结合后就由亲水性变为疏水性,此时易受电解质影响。
如有适当浓度的电解质存在,就会使它们失去一部分负电荷而相互凝聚,于是出现明显的凝聚或沉淀现象。
若无电解质存在,则不发生可见反应。
(4)合适的pH是抗原抗体反应必要的条件之一。
pH过高或过低可直接影响抗原和抗体的理化性质。
二、免疫分析1、定义免疫分析法利用抗原抗体特异性结合反应检测各种物质(药物、激素、蛋白质、微生物等)的分析方法。
2、分类非标记免疫分析技术:免疫扩散、免疫电泳标记的免疫分析技术:酶免疫分析、放射免疫分析、其它免疫分析法(荧光免疫技术、胶体金免疫技术、发光免疫技术和铁蛋白免疫技术等)3、免疫标记技术3.1基本原理:采用荧光素、同位素或酶等示踪物质标记抗体(或抗原)进行抗原 -抗体反应,通过对免疫复合物中的标记物的测定,达到对免疫反应进行监测的目的。
3.2主要类型:放射免疫技术、酶免疫技术、荧光免疫技术、化学发光免疫技术三、荧光免疫分析(Fluorescence immunoassay, FIA)1、定义免疫荧光技术(FIA)是将抗原抗体反应的特异性和敏感性与显微示踪的精确性相结合。
FIA以荧光素作为标记物,与已知的抗体(或抗原)结合,但不影响其免疫学特性。
然后将荧光素标记的抗体作为标准试剂,用于检测和鉴定未知的抗原。
在荧光显微镜下,可以直接观察呈现特异荧光的抗原抗体复合物及其存在部位。
2、分类传统的荧光免疫分析受到散射光、样品的背景荧光和荧光淬灭等因素的干扰,分析灵敏度较低。
在这个背景下,两种现代荧光免疫分析方法迅速发展。
荧光偏振免疫分析法就是其中之一。
它以其快速、精确和特异的优势很快便为人们广泛接受。
时间分辨荧光免疫分析是另一种现代荧光免疫分析技术。
2.1荧光偏振免疫分析方法(Fluorescence polarization immunoassay, FPIA)(1)基本原理FPIA是一种利用反应分子在反应体系中的旋转速度与分子大小呈反比的特点而对荧光标记抗原进行检测的技术,在免疫反应体系中抗原(相对为小分子物质)的旋转要比抗原-抗体复合物快,以荧光物质标记的抗原与待测样品中的抗原竞争结合特异性抗体,形成荧光抗原-抗体复合物,该复合物的旋转比单纯的荧光物标记抗原慢,当此时反应体系接受偏振光的照射,如荧光抗原分子的长轴与投入的偏振光面平行,那么荧光物质吸收的偏振光最多,分子呈激发态,回到基态时会发射出偏振荧光,而如果反应体系中的分子发生旋转,发射的偏振光就会减弱,减弱的程度与分子旋转的速度呈正比,与分子大小呈反比。
通常反应体系受垂直偏振光激发后,在与激发光呈适当角度处用第二个偏振器测量发射荧光强度,其偏振面既可垂直定位也可水平定位,在测定时样品中抗原浓度越低产生的荧光抗原-抗体复合物就越多,游离的荧光标记抗原越少,反之亦然,荧光抗原-抗体复合物越多,偏振光就越强。
根据荧光偏振的改变测定标本中抗原的浓度,偏振光的强度与样品中抗原的浓度呈反比,用已知浓度的样品制备标准曲线,未知浓度的样品则可通过与标准曲线比较得出分析结果与传统荧光分析相比,具有一些优点,如均相测量方案,易于快速进行,荧光标记物质半衰期长,结果准确等。
但是由于FPIA是针对相对分子质量的大小进行测量的,因此,对本身分子很大的物质不适合采用此方法。
(2)应用FPIA技术在很早时便有应用于抗生素(庆大霉素)和抗癫痫药(苯妥英钠)浓度测定的报道,人们也将之用于类固醇、儿茶酚胺、高半胱氨酸等物质的体内分.析。
尤其适用于血清中或尿中微量半抗原的测定。
FPIA也可用于中药和天然药物的检测领域等。
2.2时间分辨免疫分析方法(Time-resolved fluorescenceimmunoassay, TRFIA)(1)基本原理TRFIA是用三价稀土离子及其鳌合剂代替荧光物质或者同位素作为示踪物,标记蛋白质、多肽、激素、抗体、核酸探针或生物活性细胞,待反应发生,如抗原抗体结合、生物素亲和素相互反应、核酸探针杂交反应等后,用具有时间分辨功能的时间分辨荧光仪测定最后产物中的荧光强度,根据荧光强度和相对荧光强度比值,判断反应体系中分析物的浓度,从而达到定量分析的目的。
目前用于TRFIA的三价稀土离子主要为镧系离子,其中铕离子最为常用。
免疫反应后形成的抗原-抗体-铕标记物复合物在弱碱性缓冲液中经激发光激发所发生的荧光信号甚弱,主要因为水是稀土离子产生荧光的淬灭剂,这时须加入一种含有β-二酮体(β-NTA)、三辛基氧化膦(TOPO)、Triton X-100、醋酸和邻苯二甲酸氢钾的酸性溶液(pH值2~3),使稀土离子从鳌合物中解离下来。
游离的三价铕离子在TOPO协同下,与β-二酮体形成一种新的鳌合物,非离子型的表面活性剂可以有效地将复合物形成大分子的微囊,微囊的内侧为疏水性基团能有效地溶解脂溶性的β-NTA;而其外层为亲水性基团,可以和水分子结合,这种微囊可最大限度地将能量传递给Eu3+,从而阻断了β-NTA吸收能量传递给水所产生的淬灭效应,使原来的荧光信号增强近100万倍,大大有利于荧光测量,因此我们也称之为“解离-增强的镧系荧光免疫分析”。
(2)特点荧光光谱独特:激发光光谱带宽,激发最大波长在300~500nm,有利于增高激发能,提高标记物的比活性;发射光光谱带很窄,甚至不到10nm,有利于降低本底,提高分辨率;Stokes位移大:可以达到250~350nm,最大程度地排除了非特异性荧光背景的干扰;荧光寿命长:一般镧系元素鳌合物的荧光衰变时间为60~900μs;因此,延迟测量时间,待背景荧光完全衰减后测定,所测得的便是标记物的特异性荧光,从而消除了蛋白质背景荧光的干扰;稀土元素标记物体积小:为原子标记,标记后不会影响被标记物的空间立体结构,既保证了被检测物质的稳定性,又可实现多位点标记,标记物稳定,可以保存1~2年,克服了同位素以及酶标等不稳定的缺点。
(3)应用TRFIA多应用于临床以及免疫、生物分析领域。
但是,随着近些年来生物药物的广泛开发,一些细胞因子、激素、功能性蛋白质均成为药物研制的热点,而TRFIA 凭借其独有的特点,在药物分析中的应用也逐渐增多起来。
四、化学发光免疫分析1、定义化学发光免疫分析(Chemi-luminescence immunoassay, CLIA)是将发光分析和免疫反应相结合而建立起来的一种新的检测微量抗原或抗体的新型标记免疫分析技术。
化学发光(Chemi-luminescence)是指伴随化学反应过程所产生的光的发射在化学反应时,吸收了反应过程中所产生的化学能,使反)发光剂(现象。
某些物质.应的产物分子或反应的中间态分子中的电子跃迁到激发态,当电子从激发态回复到基态时,以发射光子的形式释放出能量,这一现象称为化学发光。
2、分类2.1直接化学发光免疫分析 (Direct chemical luminescence immunoassay, DCLIA)基本原理:用吖啶酯直接标记抗体(抗原),与待测标本中相应的抗原(抗体)发生免疫反应后,形成固相包被抗体-待测抗原-吖啶酯标记抗体复合物,这时只需加入氧化剂(H2O2)和NaOH使成碱性环境,吖啶酯在不需要催化剂的情况下分解、发光。
2.2化学发光酶免疫分析 (Chemi-luminescence enzyme immunoassay, CLEIA)。