优秀教案2018-2019学年最新华东师大版八年级上学期数学《实数3》教学设计
- 格式:docx
- 大小:30.96 KB
- 文档页数:4
2018-2019学年华东师大版八年级数学上册《实数》教学设计-评奖教案《实数》教案教学目标知识与技能目标1.了解实数的意义,能对实数按要求进行分类;2.了解实数和数轴上的点一一对应,能根据实数在数轴上的位置比较大小.3.能进行无理数的大小比较和运算.过程与方法目标1.通过对实数分类的探究,增强学生的分类意识;2.在利用数轴上的点来表示实数的过程中,将数和图形结合在一起,让学生进一步体会数形结合的思想.情感与态度目标1.通过对实数进行分类的练习、进一步领会分类的思想方法;2.在探究利用数轴上的点表示实数的过程中,训练学生多角度思维,培养和发展学生的合作意识.教学重点1.了解实数意义,能对实数进行分类;2.明确数轴上的点与实数一一对应并能用数轴上的点来表示无理数;3.能进行无理数的大小比较和运算.教学难点建立实数概念及分类.教法学法1.教学方法:自主探究—交流—发现.2.课前准备:多媒体课件、投影仪、电脑.教学过程一、复习导入内容:问题:(1)什么是有理数?有理数怎样分类?(2)用计算器求得2是多少?用计算机求呢?意图:回顾以前学习过的内容,学生自己动手体验,为进一步学习引入无理数后数的范围的扩充作准备.计算器显示结果为:1.414213562.计算机显示结果为:1.41421356237309504880168872420969 8078569671875376948073176679737990732478462107038850 3875 34327641572735013846230912297……得出结论:2不是一个有理数.二、实数概念2不是一个有理数,那是什么呢?是一个无线不循环小数!是无理数!2 ……等都是无理数.有理数和无理数统称为实数.即实数可以分为有理数和无理数.把下列各数分别填入相应的集合内:32,41,7,π,25-,2,320,5-,38-,94,0,0.3737737773……(相邻两个3之间7的个数逐次增加1)意图:通过将以上各数填入有理数集合和无理数集合,加强实数概念.效果:学生动手填写,并进行小组交流讨论,对带根号的数是否是无理数有了进一步认识.三、实数分类0属于正数吗?0属于负数吗?从符号考虑,实数可以分为正实数、0、负实数,即:负实数正实数实数0 另外从实数的概念也可以进行如下分类:无理数有理数实数意图:在实数概念形成的基础上对实数进行不同的分类.上面的数中有0,0不能放入上面的任何一个集合中,学生容易遗漏,强调0也是实数,但它既不是正数也不是负数,应单独作一类.提醒学生分类可以有不同的方法,但要按同一标准不重不漏.效果:让学生讨论回答,形成共识:实数也可以分为正实数、0、负实数,并体会到了分类中不能出现遗漏和重复的要求.四、探究——实数与数轴上点之间的对应关系.试一试:认真观察,探讨问题,体验实数与数轴上的点之间的关系.(1)每一个实数都可以用数轴上的一个点来表示;反过来,。
11.2实数第1课时教学目标知识目标:了解无理数、实数的概念和实数的分类;知道实数与数轴上的点一一对应. 能力目标:让学生感知无理数的存在,经历数系从有理数扩展到实数的过程.通过无理数的引入,培养从特殊到一般、具体到抽象的逻辑思维能力.情感目标:渗透数形结合及分类的思想,体验数系的扩展源于实际,又服务于实际的辩证关系.教学重点、难点重点:了解无理数、实数的概念和实数的分类.难点:正确理解无理数的意义.教学程序一、【情境导入 营造氛围】在小学的时候,我们就认识一个非常特殊的数:圆周率π.它约等于3.14,你还能说出它后面的数字吗?比一比,看谁记住的最多.教师简介目前π值已准确算到上千亿位.二、【检索旧知 揭示矛盾】π是一个怎样的数呢?引导学生回忆有理数的分类:有理数π肯定不是整数,那么它是一个分数吗?让学生用计算器将下列有理数化成小数形式: 41= , -32= , 71= 引导学生发现:任何一个有理数写成小数的形式,必定是有限小数或者无限循环小数. 整数 如:-3,0,5… 分数 如:713241,, …形成共识:π不是一个有理数.三、【实践体验 感受新知】还有哪些数和π一样是无限不循环小数呢? 动手操作:让学生用课前准备的计算器动手求2的值,再利用平方关系验算所得的结果.关注:“你发现了什么?” 学生分析议论并发表个人见解,教师给出评议后再用计算机演示计算2的情形,以增强学生对“2是一个无限不循环小数”的信服度.学生认识了个别无理数之后建立一般概念:无限不循环小数叫做无理数.引入无理数的概念后再回到具体的个别情形去,让学生再举例一些无理数.无理数的出现,使数系在有理数的基础上进一步扩展到实数:有理数与无理数统称为实数.问:你能说出实数的分类吗?四、【练习反馈 调整巩固】1、把下列各数分别填入相应的数集里. -31π,-1322,7,327 ,0.324371, 0.5, -36.0, 39, 492, -4.0,16,0.8080080008…实数集﹛ …﹜无理数集﹛ …﹜有理数集﹛ …﹜分数集﹛ …﹜负无理数集﹛ …﹜2、下列各说法正确吗?请说明理由.⑴3.14是无理数; ⑵无限小数都是无理数;⑶无理数都是无限小数; ⑷带根号的数都是无理数;⑸无理数都是开方开不尽的数; ⑹不循环小数都是无理数.五、【质疑讨论 数形结合】 质疑:你能在数轴上找到表示2的点吗?让学生先按照计算器显示的结果来想象出表示2的点在数轴上的位置.小组讨论:1、如图(教材P9图11.2.1),你能将两个边长为1的小正方形拼割成一个大的正方形吗?它的面积是多少?2、你能由面积求出大正方形的边长吗?3、大正方形的边长正好是小正方形的.教师听取学生的讨论结果,并对学生的结论给出评价.教师运用课件动态展示在数轴上确定表示2的点的过程.以2为突破口,让学生了解数轴上的任一点必定表示一个实数;反过来,每一个实数也都可以用数轴上的点来表示.换句话说:实数与数轴上的点一一对应.六、【归纳小结】以由学生回答,教师适时补充的方式,引导学生从以下方面进行小结:1、无理数、实数的意义;2、有理数与无理数的区别;3、实数与数轴上的点一一对应.七、板书设计:11.2.1实数与数轴有理数的分类实数的分类拼图讨论化成小数形式练习实数与数轴上点的对应π表示2说明:本课是在学生学习了有理数及平方根、立方根以后,接触过“2”、“π”等具体的无理数的基础上,引入了无理数的概念,从而将数从有理数扩展到实数.数学教学是数学活动的教学,学生是数学学习的主人.在数学活动中如何体现学生的主体地位、关注他们的情感体验,是本案教学措施设计的追求.针对本节课概念性强、例题不多的特点,结合八年级学生思维较活跃,但抽象思维能力还比较薄弱的心理特征,本节课主要采用了引导发现的体验教学法.在学生已有知识经验的基础上创设教学情境,重视学生的实践操作和现代信息工具的运用,教师在教学中引导学生去发现“有理数都是有限小数或无限循环小数”、“2是无限不循环小数”、“边长为1的正方形对角线长为2”的数学事实,体验无理数的存在与数系扩展的必要.无理数概念的引入,遵循了“特殊”→“一般”→“特殊”的认知规律,在经历数系扩展的过程中实现知识的建构,渗透“数形结合”的思想.在教学中向学生提供充分从事数学活动的机会,在观察、对比、发现、讨论、探索、归纳的过程中自始至终贯穿着思维的训练.通过小组互相讨论,在合作学习中学会交流.。
华东师大版数学八年级上册《11.2 实数》教学设计一. 教材分析华东师大版数学八年级上册《11.2 实数》这一节的内容是在学生已经掌握了有理数和无理数的基础上,进一步深化对实数的理解。
实数包括有理数和无理数,是数学中非常重要的概念。
本节课的内容包括实数的定义、实数与数轴的关系、实数的分类等。
通过本节课的学习,使学生能够理解实数的意义,掌握实数的分类,并能运用实数的概念解决一些实际问题。
二. 学情分析八年级的学生已经掌握了有理数和无理数的概念,对数轴也有了一定的了解。
但是,学生对实数的理解可能还停留在表面的层次,需要通过本节课的学习,使学生能够深入理解实数的内涵。
此外,学生可能对实数的分类感到困惑,需要通过具体的例子和练习,帮助学生理解和掌握。
三. 教学目标1.理解实数的定义,掌握实数的分类。
2.理解实数与数轴的关系,能够运用实数的概念解决一些实际问题。
3.培养学生的逻辑思维能力和数学思维习惯。
四. 教学重难点1.实数的定义和分类。
2.实数与数轴的关系。
五. 教学方法采用讲解法、提问法、讨论法、练习法等教学方法。
通过讲解法,使学生理解实数的定义和分类;通过提问法,激发学生的思考,帮助学生理解实数与数轴的关系;通过讨论法,使学生对实数的理解更加深入;通过练习法,巩固学生对实数的理解和掌握。
六. 教学准备1.PPT课件。
2.数轴图示。
3.练习题。
七. 教学过程1.导入(5分钟)通过复习有理数和无理数的概念,引出实数的概念。
提问:有理数和无理数能否包含所有的数?从而引出实数的概念。
2.呈现(10分钟)讲解实数的定义,通过PPT课件和数轴图示,使学生直观地理解实数的内涵。
讲解实数的分类,包括正实数、负实数和零。
3.操练(10分钟)让学生通过数轴,对给定的实数进行分类。
例如,给出实数-5,0,3/2,√9,让学生在数轴上表示出这些实数,并判断它们的分类。
4.巩固(10分钟)让学生回答以下问题:(1)实数与数轴的关系是什么?(2)实数如何分类?(3)如何判断一个实数是有理数还是无理数?5.拓展(10分钟)让学生通过讨论,思考以下问题:(1)实数是否可以进行比较?为什么?(2)实数是否可以进行运算?为什么?6.小结(5分钟)对本节课的内容进行小结,强调实数的定义、分类和实数与数轴的关系。
华东师大版八年级数学上册教案1122实数一、教学内容本节课选自华东师大版八年级数学上册第十一章第二节的实数内容。
具体包括实数的定义、性质及分类,着重讲解无理数的概念及其与有理数的区别。
通过实例让学生理解实数的数轴表示,掌握实数的运算规律。
二、教学目标1. 理解实数的定义,掌握实数的分类及性质。
2. 学会运用数轴表示实数,理解实数与数轴上的点一一对应关系。
3. 掌握实数的运算规律,能够正确进行实数加减乘除运算。
三、教学难点与重点教学难点:无理数的理解与运算。
教学重点:实数的定义、性质、分类及运算规律。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。
2. 学具:直尺、圆规、练习本。
五、教学过程1. 实践情景引入:通过生活实例,如测量教室的长宽高等,让学生感受实数的存在,引导他们思考如何表示这些长度。
2. 知识讲解:讲解实数的定义、性质、分类,强调无理数的概念,解释无理数与有理数的区别。
3. 例题讲解:通过讲解例题,让学生掌握实数的数轴表示及实数的运算规律。
4. 随堂练习:让学生运用所学知识进行实数运算,巩固所学内容。
(1)求下列实数的和、差、积、商:3、2、√2、π(2)判断下列各数是否为无理数:√3、√4、π、3.14六、板书设计1. 实数的定义、性质、分类2. 实数的数轴表示3. 实数的运算规律4. 例题及解答七、作业设计1. 作业题目:(1)求下列实数的和、差、积、商:4、5、√3、π(2)判断下列各数是否为无理数,并说明理由:√5、√9、π、2.222. 答案:八、课后反思及拓展延伸1. 反思:本节课学生对实数的定义、性质、分类掌握程度较好,但对无理数的理解仍有困难,需要在今后的教学中加强讲解与练习。
2. 拓展延伸:引导学生思考实数与数轴的关系,探索实数的无限性及其在生活中的应用,激发学生的学习兴趣。
重点和难点解析1. 教学难点:无理数的理解与运算。
2. 实数的数轴表示及实数的运算规律。
实数
1、相反数板书设
2、绝对值计
3、倒数
4、有关概念和运算
教学反思
本节课主要采用了引导发现的体验教学法•在学生已有知识经验的基础上创设教学情
境通过小组互相讨论,在合作学习中学会交流
第3课时
练习:
1 口、 ------- n
1.把下列各数填入相应的集合内:一7, 0.32 , - , 46, 0 , 8 , , 3 216,—一.
3 \ 2 2
①有理数集合:{ …};
②无理数集合:{ …};
③正实数集合:{ …};
④实数集合:{ …}.
2. --------------------------- 与数轴上的点成对应关系的数是
A •整数
B •有理数
C •无理数
D •实数
3. 在3.14 , 22, - 3 , 3 64 , n这五个数中,无理数有
7
A 1个
B 、2个C、3个D 、4个
4. 下列各组数中互为相反数的是
A. -3 与-(-3)2 B . - 3 与3-9
C . 、:2与-1
D . | -2 | 与、:2
2
5. 下列四种说法:
①负数有一个负的立方根;
②互为相反数的两个数的立方根仍为相反数;
③4?的平方根的立方根是土32 ;。
华师版数学上册实数教案设计教案标题:华师版数学上册实数教案设计教案目标:1. 理解实数的概念及其特性;2. 掌握实数的运算法则;3. 能够应用实数解决实际问题。
教学重点:1. 实数的定义和分类;2. 实数的加法、减法、乘法和除法运算法则;3. 实际问题中实数的应用。
教学难点:1. 实数的性质和运算法则的理解和应用;2. 实际问题中实数的转化和运算。
教学准备:1. 教材:华师版数学上册;2. 教具:黑板、粉笔、教学PPT等。
教学步骤:Step 1:导入(5分钟)引入实数的概念,通过提问和讨论,让学生了解实数的定义和特性。
Step 2:概念讲解(15分钟)1. 讲解实数的分类:有理数和无理数;2. 介绍有理数的分类:整数、分数和小数;3. 解释实数的运算法则:加法、减法、乘法和除法。
Step 3:运算规律讲解(15分钟)1. 通过示例演示实数的加法和减法运算规律;2. 通过示例演示实数的乘法和除法运算规律;3. 强调运算规律的应用和注意事项。
Step 4:练习(20分钟)1. 分发练习题,让学生独立完成实数的运算练习;2. 师生互动,解答学生在练习中遇到的问题。
Step 5:实际问题应用(15分钟)1. 提供一些实际问题,要求学生运用实数解决问题;2. 学生分组合作,共同解决实际问题;3. 学生展示解题过程和答案,进行讨论和总结。
Step 6:小结(5分钟)总结本节课学习的内容,强调实数的重要性和应用。
Step 7:作业布置(5分钟)布置相关作业,巩固学生对实数的理解和运用能力。
教学延伸:1. 针对学生不同的学习能力和兴趣,可设计一些拓展性的练习题,提升学生的思维能力;2. 利用多媒体教学手段,展示实数在现实生活中的应用场景,增加学生的学习兴趣和实际运用能力。
教学评估:1. 课堂练习的完成情况;2. 学生对实数概念和运算法则的理解程度;3. 学生在实际问题中应用实数解决问题的能力。
教学反思:根据学生在课堂上的表现和反馈情况,及时调整教学策略,提升教学效果。
课题实数的有关概念【学习目标】1.理解无理数和实数的概念,能对实数按要求进行分类;2.知道实数与数轴上的点具有一一对应的关系,能根据实数在数轴上的位置比较大小.【学习重点】理解无理数和实数的概念,正确判断有理数与无理数.【学习难点】探索实数与数轴上的点具有一一对应的关系,初步体会“数形结合”的数学思想.,行为提示:创景设疑,帮助学生知道本节课学什么., 行为提示:教会学生看书,独学时对于书中的问题一定要认真探究,书写答案.,教会学生落实重点.,知识链接:利用边长为1的正方形的对角线获得\r(2).,学法指导:严格按照有理数和无理数分类的形式填写数据.,学法指导:实数的分类:,\a\vs4\al\co1(\a\vs4\al(实数))\b\lc\{(\a\vs4\al\co1(有理数\b\lc\{\rc\}(\a\vs4\al\co1(整数,分数))\a\vs4\al(有限小数,或无限循,环小数),无理数\b\lc\{\rc\}(\a\vs4\al\co1(正无理数,负无理数))\a\vs4\al(无限不,循环,小数))),实数\b\lc\{(\a\vs4\al\co1(正实数\b\lc\{(\a\vs4\al\co1(正有理数,正无理数)),0,负实数\b\lc\{(\a\vs4\al\co1(负有理数,负无理数)))),方法指导:1.画图或剪纸做数学,2.,,)情景导入 生成问题1.回顾什么叫有理数?有理数如何分类?在平常学习的过程中,是否存在有理数以外的数?比如π是什么数呢?2.在前几节学习的过程中,我们遇到2、3、32、39等是什么数呢?知识模块一 无理数、实数的概念与实数的分类阅读教材P 8~P 10,完成下面的内容: 1.有理数包括整数和分数,如果将下列分数写成小数的形式,你有什么发现? 14,-35,23,-17,1190,-911归纳:任何一个有理数都可以写成有限小数或无限循环小数;反过来,任何一个有限小数或无限循环小数都是有理数.2.思考并回答下列问题:(1)你可以用什么方法求2?答:看书或查《数学用表》.(2)你能利用平方关系验算得到的结果吗?得到的结果平方后会等于2吗?为什么? 答:验证的结果不是2,而是接近2,说明结果只是2的近似值.(3)如果用计算器计算2,结果将是多少?答:1.41421356.(4)是否有一个有理数的平方等于2?如果2不是有理数,那么它是一个怎么样的数呢?答:没有,是无理数.归纳:无限不循环小数叫做无理数,有理数和无理数统称实数.范例:判断下列数哪些是有理数?哪些是无理数?5,π2,3.1415926,0.13··,227,-36,0.2020020002…(每两个2之间依次多一个0),34.解:有理数:3.1415926,0.13··,227,-36; 无理数:5,π2,0.2020020002…(每两个2之间依次多一个0),34.知识模块二 实数与数轴上的点我们知道,每个有理数都可以用数轴上的点来表示,那么无理数是否也可以用数轴上的点表示出来呢?你能在数轴上找到表示无理数的点吗?范例:你能在数轴上表示出2吗?请同学们准备两个边长为1的正方形纸片,分别沿它的对角线剪开,得到四个什么三角形?等腰直角三角形.如果把四个等腰直角三角形拼成一个大的正方形,其面积是多少?其边长是多少? 答:面积为2,边长为 2.行为提示:教会学生怎么交流.先对学,再群学.充分在小组内展示自己,分析答案,提出疑惑,共同解决(可按结对子学—帮扶学—组内群学来开展).在群学后期教师可有意安排每组展示问题,并给学生板书题目和组内演练的时间.这就是说,边长为1的正方形对角线长是2,在数轴上画法如右图.仿例:无理数π可以用数轴上的点来表示吗?如图,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上一点从原点到达O′点的坐标是多少?解:O′的坐标为π.归纳:每一个实数都可以用数轴上的一个点来表示,反过来,数轴上的每一个点都表示一个实数,即实数和数轴上的点是一一对应的.交流展示生成新知1.将阅读教材时“生成的问题”和通过“自学互研”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一无理数、实数的概念与实数的分类知识模块二实数与数轴上的点检测反馈达成目标【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.课后反思查漏补缺1.收获:________________________________________________________________________ 2.存在困惑:________________________________________________________________________。
11.2实数
第1课时
教学目标
知识目标:了解无理数、实数的概念和实数的分类;知道实数与数轴上的点一一对应. 能力目标:让学生感知无理数的存在,经历数系从有理数扩展到实数的过程.通过无理数的引入,培养从特殊到一般、具体到抽象的逻辑思维能力.
情感目标:渗透数形结合及分类的思想,体验数系的扩展源于实际,又服务于实际的辩证关系.
教学重点、难点
重点:了解无理数、实数的概念和实数的分类.
难点:正确理解无理数的意义.
教学程序
一、【情境导入 营造氛围】
在小学的时候,我们就认识一个非常特殊的数:圆周率π.它约等于3.14,你还能说出它后面的数字吗?比一比,看谁记住的最多.
教师简介目前π值已准确算到上千亿位.
二、【检索旧知 揭示矛盾】
π是一个怎样的数呢?
引导学生回忆有理数的分类:
有理数
π肯定不是整数,那么它是一个分数吗?让学生用计算器将下列有理数化成小数形式: 41= , -32= , 7
1= 引导学生发现:任何一个有理数写成小数的形式,必定是有限小数或者无限循环小数. 整数 如:-3,0,5… 分数 如:713241,, …
形成共识:π不是一个有理数.
三、【实践体验 感受新知】
还有哪些数和π一样是无限不循环小数呢? 动手操作:让学生用课前准备的计算器动手求2的值,再利用平方关系验算所得的结果.
关注:“你发现了什么?” 学生分析议论并发表个人见解,教师给出评议后再用计算机演示计算2的情形,以增强学生对“2是一个无限不循环小数”的信服度.
学生认识了个别无理数之后建立一般概念:无限不循环小数叫做无理数.引入无理数的概念后再回到具体的个别情形去,让学生再举例一些无理数.
无理数的出现,使数系在有理数的基础上进一步扩展到实数:有理数与无理数统称为实数.
问:你能说出实数的分类吗?
四、【练习反馈 调整巩固】
1、把下列各数分别填入相应的数集里. -31π,-1322,7,327 ,0.324371, 0.5, -36.0, 39, 492, -4.0,16,0.8080080008…
实数集﹛ …﹜
无理数集﹛ …﹜
有理数集﹛ …﹜
分数集﹛ …﹜
负无理数集﹛ …﹜
2、下列各说法正确吗?请说明理由.
⑴3.14是无理数; ⑵无限小数都是无理数;
⑶无理数都是无限小数; ⑷带根号的数都是无理数;
⑸无理数都是开方开不尽的数; ⑹不循环小数都是无理数.
五、【质疑讨论 数形结合】 质疑:你能在数轴上找到表示2的点吗?
让学生先按照计算器显示的结果来想象出表示2的点在数轴上的位置.
小组讨论:
1、如图(教材P9图11.2.1),你能将两个边长为1的小正方形拼割成一个大的正方形吗?它的面积是多少?
2、你能由面积求出大正方形的边长吗?
3、大正方形的边长正好是小正方形的.
教师听取学生的讨论结果,并对学生的结论给出评价.
教师运用课件动态展示在数轴上确定表示2的点的过程.以2为突破口,让学生了解数轴上的任一点必定表示一个实数;反过来,每一个实数也都可以用数轴上的点来表示.换句话说:实数与数轴上的点一一对应.
六、【归纳小结】
以由学生回答,教师适时补充的方式,引导学生从以下方面进行小结:
1、无理数、实数的意义;
2、有理数与无理数的区别;
3、实数与数轴上的点一一对应.
七、板书设计:
11.2.1实数与数轴
有理数的分类实数的分类拼图讨论
化成小数形式练习实数与数轴上点的
对应
π表示2
说明:本课是在学生学习了有理数及平方根、立方根以后,接触过“2”、“π”等具体的无理数的基础上,引入了无理数的概念,从而将数从有理数扩展到实数.
数学教学是数学活动的教学,学生是数学学习的主人.在数学活动中如何体现学生的主体
地位、关注他们的情感体验,是本案教学措施设计的追求.针对本节课概念性强、例题不多的特点,结合八年级学生思维较活跃,但抽象思维能力还比较薄弱的心理特征,本节课主要采用了引导发现的体验教学法.在学生已有知识经验的基础上创设教学情境,重视学生的实践操作和现代信息工具的运用,教师在教学中引导学生去发现“有理数都是有限小数或无限循环小数”、“2是无限不循环小数”、“边长为1的正方形对角线长为2”的数学事实,体验无理数的存在与数系扩展的必要.无理数概念的引入,遵循了“特殊”→“一般”→“特殊”的认知规律,在经历数系扩展的过程中实现知识的建构,渗透“数形结合”的思想.在教学中向学生提供充分从事数学活动的机会,在观察、对比、发现、讨论、探索、归纳的过程中自始至终贯穿着思维的训练.通过小组互相讨论,在合作学习中学会交流.。