九年级数学(下)第三章圆垂径定理解析
- 格式:ppt
- 大小:2.30 MB
- 文档页数:21
九年级圆垂径定理知识点圆垂径定理是数学中的一个重要定理,它是研究圆的性质和应用的基础。
本文将详细介绍九年级圆垂径定理的相关知识点,帮助你更好地理解和应用这一定理。
一、圆垂径定理的概述圆垂径定理是指:在一个圆中,如果一条直径垂直于另一条弦,那么它一定是这条弦的垂直平分线。
二、圆垂径定理的证明为了证明圆垂径定理,我们可以采用几何证明和代数证明两种方法。
1. 几何证明假设圆的中心为O,半径为r,直径AB垂直于弦CD。
我们需要证明AO = BO。
首先,连接AC和BC,并设AC = x,BC = y。
根据圆的性质,我们知道AO = r,BO = r,AC = BC = r。
又因为AO垂直于CD,所以∠ACO = ∠BCO = 90°。
由三角形的性质可知,AO² = AC² - CO²,BO² = BC² - CO²。
代入已知条件,我们可以得到r² = x² - CO²,r² = y² - CO²。
通过这两个等式,我们可以得到x² - CO² = y² - CO²,即x² = y²。
进而,我们可以得知x = y,即AC = BC。
所以,根据直角三角形的特性,AO = BO,也就是说AO = BO = r。
因此,根据圆的定义,我们可以得出圆垂径定理的结论。
2. 代数证明我们也可以采用代数方法证明圆垂径定理。
设圆的方程为x² + y² = r²(其中,O为坐标原点)。
直径AB垂直于弦CD,且AB的斜率k存在。
根据直线的斜率公式,可以得到直线AB的方程为y = kx。
将直线AB的方程代入圆的方程中,我们可以得到x² + (kx)² =r²。
简化这个方程,可以得到x² + k²x² = r²。
3.3垂径定理分层练习考查题型一利用垂径定理求线段长1.(2023•宜昌)如图,OA ,OB ,OC 都是O 的半径,AC ,OB 交于点D .若8AD CD ,6OD ,则BD 的长为()A .5B .4C .3D .2【分析】根据垂径定理的推论得OB AC ,再根据勾股定理得22228610OA AD OD ,即可求出答案.【解答】解:8AD CD ∵,OB AC ,在Rt AOD 中,22228610OA AD OD ,10OB ,1064BD .故选:B .2.(2023•和县二模)如图,点C 是O 的弦AB 上一点.若6AC ,2BC ,AB 的弦心距为3,则OC 的长为()A.3B.4C.11D.13【分析】根据垂径定理可以得到CD的长,根据题意可知3OD ,然后根据勾股定理可以求得OC的长.【解答】解:作OD AB于点D,如图所示,由题意可知:6OD ,BC ,3AC ,2AB,8,AD BD4,2CD2222,3213OC OD CD故选:D.3.(2022秋•齐河县期末)如图,OCD ,3OE ,则BD的直径AB 弦CD于点E,连接BD.若8的长为()A10B.23C.17D.25【分析】连接OD,根据垂径定理求出DE,根据勾股定理求出OD,求出BE,再根据勾股定理求出BD即可.【解答】解:连接OD ,AB CD ∵,AB 过圆心O ,8CD ,4CE DE ,90OED DEB ,3OE ∵,2222345OD OE DE ,5OB OD ,532BE OB OE ,由勾股定理,得2222242025BD BE DE ,故选:D .4.(2022秋•泗洪县期末)如图,O 的半径为5,弦8AB ,OC AB ,垂足为点P ,则CP 的长等于()A .2B .2.5C .3D .4【分析】如图,连接AO ,由垂径定理得,142AP AB ,由题意知5OA OC ,由勾股定理得,223OP OA AP ,根据CP OC OP ,计算求解即可.【解答】解:如图,连接AO ,由垂径定理得,142AP AB ,由题意知5OA OC ,由勾股定理得,223OP OA AP ,2CP OC OP ,故选:A .考查题型二利用垂径定理求半径、直径长5.(2022秋•金城江区期末)如图,线段CD 是O 的直径,CD AB 于点E ,若AB 长为16,DE 长为4,则O 半径是()A .5B .6C .8D .10【分析】连接OB ,由垂径定理可得8BE AE ,设O 半径为r ,结合题意可得4OE r ,在Rt OBE 中,由勾股定理可得222OE BE OB ,然后代入求值即可获得答案.【解答】解:如下图,连接OB ,∵线段CD 是O 的直径,CD AB 于点E ,16AB , 1116822BE AE AB ,设O 半径为r ,即OB OD r ,又4DE ∵,4OE OD DE r ,在Rt OBE 中,可有222OE BE OB ,即222(4)8r r ,解得10r ,O 半径是10.故选:D .6.(2023秋•聊城期中)如图,AB ,CD 是O 的两条平行弦,且4AB ,6CD ,AB ,CD 之间的距离为5,则O 的直径是()A 13B .213C .8D .10【分析】作OM AB 于M ,延长MO 交CD 于N ,连接OB ,OD ,由垂径定理,勾股定理即可求解.【解答】解:作OM AB 于M ,延长MO 交CD 于N ,连接OB ,OD ,设OM x ,122MB AB ,132DN CD ,222OB OM MB ∵,2222OB x ,222OD ON DN ∵,222(5)3OD x ,OB OD ∵,224(5)9x x ,3x ,223413OB ,13OB ,O 直径长是213故选:B .7.(2023秋•福州期中)如图,已知O 的弦8AB ,半径OC AB 于D ,2DC ,则O 的半径为.【分析】设O 的半径为R ,则2OD R ,先根据垂径定理得到4AD BD ,再利用勾股定理得到222(2)4R R ,然后解方程即可.【解答】解:设O 的半径为R ,则2OD R ,OC AB ∵,142AD BD AB ,90ODA ,在Rt AOD 中,222(2)4R R ,解得5R ,即O 的半径为5.故答案为:5.考查题型三弦心距8.(2022秋•台山市期末)如图,O 的半径为2,弦23AB ,则圆心O 到弦AB 的距离为()A .1B 2C 3D .2【分析】过O 作OC AB 于C ,连接OA ,根据垂径定理求出AC ,再根据勾股定理求出OC 即可.【解答】解:过O 作OC AB 于C ,连接OA ,OC AB ∵,OC 过圆心O ,23AB 3AC BC 90OCA ,由勾股定理得:22222(3)1OC OA AC ,即圆心O 到弦AB 的距离为1,故选:A .9.(2022秋•凤阳县期末)如图,在O 中,OC AB 于点C .若O 的半径为10,16AB ,则OC 的长为()A .4B .5C .6D .8【分析】如图,连接OA .利用垂径定理,勾股定理求解即可.【解答】解:如图,连接OA .OC AB ∵,182AC CB AB ,10OA ∵,90ACO ,22221086OC OA AC ,故选:C .考查题型四最值10.(2022秋•济源期末)如图,O 的半径为102,弦AB 的长为162,P 是弦AB 上一动点,则线段OP长的最小值为()A .10B .82C .5D .62【分析】过O 点作OH AB 于H ,连接OB ,如图,根据垂径定理得到8AH BH ,再利用勾股定理计算出OH ,然后根据垂线段最短求解.【解答】解:过O 点作OH AB 于H ,连接OB ,如图,111628222AH BH AB ,在Rt BOH 中,2222(102)(82)62OH OB BH ,线段OP 长的最小值为62.故选:D .11.(2023秋•淮滨县期中)如图,O 的直径为10,弦AB 的长为8,点P 在AP 上运动,则OP 的最小值是()A .2B .3C .4D .5【分析】根据“点到直线的最短距离是垂线段的长度”知当OP AB 时,OP 的值最小.连接OA ,在直角三角形OAP 中由勾股定理即可求得OP 的长度.【解答】解:当OP AB 时,OP 的值最小,则142AP BP AB ,如图所示,连接OA ,在Rt OAP 中,4AP ,5OA ,则根据勾股定理知3OP ,即OP 的最小值为3,故选:B .12.(2023秋•鼓楼区校级期中)如图,M 的半径为4,圆心M 的坐标为(6,8),点P 是M 上的任意一点,PA PB ,且PA 、PB 与x 轴分别交于A 、B 两点,若点A 、点B 关于原点O 对称,则AB 的最大值为()A .13B .14C .12D .28【分析】由Rt APB 中2AB OP 知要使AB 取得最大值,则PO 需取得最大值,连接OM ,并延长交M 于点P ,当点P 位于P 位置时,OP 取得最大值,据此求解可得.【解答】解:连接PO ,PA PB ∵,90APB ,∵点A 、点B 关于原点O 对称,AO BO ,2AB PO ,若要使AB 取得最大值,则PO 需取得最大值,连接OM ,并延长交M 于点P ,当点P 位于P 位置时,OP 取得最大值,过点M 作MQ x 轴于点Q ,则6OQ 、8MQ ,10OM ,又4MP r ∵,10414OP MO MP ,221428AB OP ;故选:D .考查题型五利用垂径定理求面积13.(2023•铜梁区校级一模)如图,AB 是O 的弦,半径OC AB 于点D ,连接AO 并延长,交O 于点E ,连接BE ,DE .若3DE DO ,65AB ,则ODE 的面积为()A .9B .15C 952D .95【分析】根据垂径定理,三角形中位线定理以及勾股定理求出OD ,再根据三角形面积公式进行计算即可.【解答】解:AE ∵是O 的直径,90ABE ,AB OC ∵,OC 是O 的半径,12AD BD ABOA OE ∵,OD 是ABE 的中位线,12OD BE ,由于3DE DO ,可设OD x ,则3DE x ,2BE x ,在Rt BDE 中,由勾股定理得,222BD BE DE ,即222(2)(3)x x ,解得3x 或3x (舍去),即3OD ,S △12DOE OD BD 132故选:C .14.(2023•肇源县一模)如图,O 的半径是2,直线l 与O 相交于A 、B 两点,M 、N 是O 上的两个动点,且在直线l 的异侧,若45AMB ,则四边形MANB 面积的最大值是()A .22B .4C .2D .82【分析】过点O 作OC AB 于C ,交O 于D 、E 两点,连接OA 、OB 、DA 、DB 、EA 、EB ,根据圆周角定理推出OAB 为等腰直角三角形,求得222AB OA 【解答】解:过点O 作OC AB 于C ,交O 于D 、E 两点,连接OA 、OB 、DA 、DB 、EA 、EB ,如图,45AMB ∵,290AOB AMB ,OAB 为等腰直角三角形,222AB OA ,MAB NAB MANB S S S ∵四边形,当M 点到AB 的距离最大,MAB 的面积最大;当N 点到AB 的距离最大时,NAB 的面积最大,即M 点运动到D 点,N 点运动到E 点,此时四边形MANB 面积的最大值 11111224222222DAB EAB DAEB S S S AB CD AB CE AB CD CE AB DE 四边形.故选:C .15.(2023春•沙坪坝区校级月考)如图,AB 是O 的弦,半径OC AB 于点D ,连接AO 并延长,交O于点E ,连接BE ,DE .若3DE DO ,5AB ,则ODE 的面积为()A .58B .554C .5D .52【分析】根据垂径定理,得出52AD BD ,再根据直径所对的圆周角为直角,得出90ABE ,再根据平行线的判定,得出//OD BE ,再根据中位线的判定,得出OD 为ABE 的中位线,再根据中位线的性质,得出2BE OD ,再根据勾股定理,得出222BD BE DE ,解出得到52OD ,根据12ODE S OD BD 即可求解.【解答】解:OC AB ∵,5AB , 52AD BD ,AE ∵是O 的直径,90ABE ,OC AB ∵,//OD BE ,O ∵为AE 的中点,OD 为ABE 的中位线,2BE OD ,3DE DO ∵,在Rt ABE 中,222BD BE DE ∵, 2225494OD OD ,解得:52OD, 25BE OD ,11555522228ODE S OD BD .故选:A .考查题型六垂径定理的应用16.(2023秋•长葛市期中)如图,圆弧形桥拱的跨度24AB 米,拱高8CD 米,则拱桥的半径为()A .6.5米B .9米C .13米D .15米【分析】根据垂径定理的推论,知此圆的圆心在CD 所在的直线上,设圆心是O .连接OA .根据垂径定理和勾股定理求解.【解答】解:根据垂径定理的推论,知此圆的圆心在CD 所在的直线上,设圆心是O连接OA .根据垂径定理,得12AD m ,设圆的半径是r m ,根据勾股定理,得22212(8)r r ,解得13r .故选:C .17.(2022秋•郾城区期末)如图,一座石桥的主桥拱是圆弧形,某时刻测得水面AB 宽度为6米,拱高CD(弧的中点到水面的距离)为1米,若水面下降1米,则此时水面的宽度为()A .5米B .6米C .7米D .8米【分析】以O 为圆心,连接OC 、OA 、OB ,根据三线合一定理可得OD AB ,AC BC ,设OD r ,则1OC OD CD r ,再根据勾股定理即可求出半径;水面下降为EF ,连接OE ,根据水面下降1米,可得3OG m ,再根据勾股定理即可求得答案.【解答】解:如图,以O 为圆心,连接OC 、OA 、OB ,由题意可得,D 为弧AB 的中点,AOD BOD ,OA OB ∵,OD AB ,AC BC ,设OD r ,则1OC OD CD r ,在Rt AOC 中,222OA OC AC ,132AC AB ,22(1)9r r ,解得:5r ,主桥拱所在圆的半径5m ;由题意得,水面下降为EF ,连接OE ,∵水面下降1米,1413()OG OC m ,则2222534()EG OE OG m ,28EF EG m ,即水面的宽度为8m .故选:D .18.(2023•滕州市二模)筒车是我国古代发明的一种水利灌溉工具,如图1,筒车盛水桶的运行轨道是以轴心O 为圆心的圆,如图2,已知圆心O 在水面上方,且O 被水面截得弦AB 长为4米,O 半径长为3米.若点C 为运行轨道的最低点,则点C 到弦AB 所在直线的距离是()A .1米B .2米C .(35) 米D .(35) 米【分析】连接OC ,OC 交AB 于D ,由垂径定理得122AD BD AB(米),再由勾股定理得5OD (米),然后求出CD 的长即可.【解答】解:连接OC ,OC 交AB 于D ,由题意得:3OA OC 米,OC AB ,122AD BD AB (米),90ADO ,2222325OD OA AD (米),(35)CD OC OD 米,即点C 到弦AB 所在直线的距离是(35) 米,故选:C .1.(2022秋•沈河区校级期末)如图所示,在O 中,AB 为弦,OC AB 交AB 于点D ,且OD DC .P为O 上任意一点,连接PA ,PB ,若O 的半径为3,则PAB S 的最大值为()A .34B .33C .332D .334【分析】连接OA ,如图,利用垂径定理得到AD BD , AC BC ,再根据OD DC 可得到132OD OA ,所以32AD ,由勾股定理,则3AB .PAB 底AB 不变,当高越大时面积越大,即P 点到AB 距离最大时,APB 的面积最大.则当点P 为AB 所在优弧的中点时,此时13122PD PO OD,APB 的面积最大,然后根据三角形的面积公式计算即可.【解答】解:连接OA ,如图,OC AB ∵,AD BD ,OD DC ∵,1322OD OA ,2232AD OA OD ,23AB AD .当点P 为AB 所对的优弧的中点时,APB 的面积最大,此时333322PD PO OD.APB 的面积的最大值为:11339332224AB PD .故选:A .2.(2023•碑林区校级模拟)如图,已知CD 为O 的直径,CD AB 于点F ,AE BC 于点E .若AE 过圆心O ,1OA .则四边形BEOF 的面积为()A 3B 3C .3D 3【分析】根据垂径定理求出AF BF ,CE BE , AD BD,求出2AOD C ,求出2AOD A ,求出30A ,解直角三角形求出OF 和BF ,求出OE 、BE 、BF ,根据三角形的面积公式求出即可.【解答】解:如图,连接OB ,CD ∵为直径,CD AB ,AD BD ,2AOD C ,CD AB ∵,AE BC ,90AFO CEO ,AOF COE ∵,OA OC ,()AFO CEO AAS ,C A ,2AOD A ,90AFO ∵,30A ,1AO ∵,1122OF AO ,332AF OF ,同理32CE ,12OE ,CD AB ∵,AE BC ,CD 、AE 过O ,由垂径定理得:32BF AF ,32BE CE , 四边形BEOF 的面积11311332222224BFO BEO S S S.故选:B .第21页共21页3.(2023•广西)赵州桥是当今世界上建造最早,保存最完整的中国古代单孔敞肩石拱桥.如图,主桥拱呈圆弧形,跨度约为37m ,拱高约为7m ,则赵州桥主桥拱半径R 约为()A .20mB .28mC .35mD .40m【分析】设主桥拱半径R ,根据垂径定理得到372AD,再利用勾股定理列方程求解,即可得到答案.【解答】解:由题意可知,37AB m ,7CD m ,设主桥拱半径为R m ,(7)OD OC CD R m ,OC ∵是半径,OC AB ,137()22AD BD AB m ,在RtADO 中,222AD OD OA ,22237((7)2R R ,解得15652856R.故选:B .。
第三节垂径定理知识点梳理【知识点一】垂径定理1.圆的轴对称:圆是轴对称图形,每一条过圆心的直线都是它的对称轴。
2.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。
3.弧的中点:分一条弦成相等的两条弧的点,叫做这条弧的中点。
4.弦心距:圆心到圆的一条弦的距离叫做弦心距。
【知识点二】垂径定理的逆定理1.定理1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。
2.定理2:平分弧的直径垂直平分弧所对的弦。
典例分析【题型一】利用垂径定理进行计算【例1】如图,在⊙O中,AB,AC为互相垂直且相等的两条弦,OD丄AB ,0E丄AC,垂足分别为D,E.若 AC=AB=2 cm,求⊙O的半径.【变式1】如图⊙O的直径AB =16 cm,P是0B的中点,∠APD=30°,求CD的长.【题型二】在直角坐标系中利用垂径定理求点的坐标【例1】如图,以点P为圆心的圆弧与x轴交于A,B两点,点P的坐标为(4,2) ,点A的坐标为(2,0) ,则点B的坐标为_______【变式1】如图在平面直角坐标系中,点O为坐标原点,点P在第一象限,⊙P与x轴交于O,A 两点,点A的坐标为(6,0),⊙P的半径为13,则点P的坐标为_________【题型三】应用垂径定理等分弧【例1】如图为一自行车内胎的一部分,如何利用所学知识将它平均分给四个小朋友做玩具?【变式1】小云出黑板报时遇到了一个难题,在版面设计过程中需要将一个半圆面三等分.如图,请帮她设计一个合理的等分方案,要求尺规作图,保留作图痕迹。
【题型四】垂径定理的实际应用【例1】某居民区一处圆形下水管道破裂,修理人员准备更换一段新管道.如图,污水水面宽度为60 cm,水面至管道顶部距离为10 cm,问:修理人员应准备内径多大的管道?【变式1】如图是一条水平铺设的直径为2 m的通水管道横截面,其水面宽1.6 m,则这条管道中此时最深为__________m【题型五】利用垂径定理求最值【例1】如图 , ⊙O的半径为5 ,弦AB 的长为8,M是弦AB上的一个动点,则线段0M长的最小值为( ).A.2B.3C.4D.5【变式1】如图,在⊙O 中,AB 是⊙O 的直径,AB = 8 cm,AC =CD =BD ,M 是AB 上一动点,CM十DM 的最小值为______cm【题型六】与垂径定理有关的分类讨论问题【例1】已知点 A,B,C 都在⊙O 上,且 AB=AC,圆心O 到BC 的距离为6 cm,圆的半径为l4 cm,求AB 的长.【变式1】已知⊙O 的直径CD=10 cm ,AB 是⊙O 的弦,AB= 8 cm,且AB 丄CD,垂足为点 M,则 AC 的长为( ). A.52cm B.54cm C.52cm 或54cm D.32cm 或34cm【变式2】已知,⊙O 的半径是5,AB, CD 为⊙O 的两条弦,且 AB ∥CD, AB=6, CD = 8,求 AB, CD 间的距离。
垂径定理九年级知识点垂径定理,也称为垂径长定理,是几何中一个重要的定理,用来描述圆内任意两条互相垂直的直径和其所对应的弦的关系。
下面将详细介绍有关垂径定理的九年级知识点。
1. 垂径定理的表述垂径定理指出,一个圆的直径与其所对应的弦垂直相交,具体表述为:"在一个圆内,如果一条弦垂直于直径,那么这条弦将被切成两段,而且这两段的乘积等于每个一段的长度与直径的乘积,即 d1×d2=2×r×a"。
其中,d1和d2分别代表切割弦的两段,r代表圆的半径,a代表这两段与直径的距离。
2. 垂径定理的证明垂径定理的证明可以通过数学推理和几何推导来完成。
首先,假设圆的直径AB与弦CD互相垂直相交于点O,以及切割弦CD的两段为CE和ED。
根据垂径定理的表述,我们可以得出以下几个等式:AE×EB = CE×ED (1)AO×OB = CO×OD (2)由于AO = CO, OB = OD,将式(2)代入式(1),我们可以得到:AE×EB = AO×OB = r×r = r²因此,垂径定理得证。
3. 垂径定理的应用垂径定理在几何证明和问题求解中经常被应用。
下面介绍几个常见的应用场景:a. 证明两条直线垂直相交当需要证明两条直线垂直相交时,可以利用垂径定理。
首先,通过画圆和连接弦的方式将直线和圆相交,然后利用垂径定理得出圆内两条互相垂直的直径和它们对应的弦的关系,进而推断出直线的垂直关系。
b. 求解弦长已知圆的半径和一个垂直切线与弦的交点坐标,可以利用垂径定理求解弦的长度。
根据垂径定理的表述,我们可以通过已知的半径和切线坐标计算出弦的长度,从而得到所需的结果。
c. 求解直径长已知圆的半径和两条互相垂直的弦的长度,可以利用垂径定理求解直径的长度。
根据垂径定理的表述,我们可以通过已知的弦长和半径计算出直径的长度,进而得到所需的结果。
九年级圆的垂径定理知识点在九年级的数学学习中,圆的垂径定理是一个非常重要的概念,也是学习圆形的几何性质的关键之一。
在这篇文章中,我们将深入探讨圆的垂径定理的知识点,了解其背后的原理和应用。
一、圆的定义和性质首先,我们需要回顾一下圆的定义和基本性质。
在数学中,圆是由平面上所有到一个固定点的距离相等的点的集合组成。
而这个固定点被称为圆心,半径则是圆心到圆上任意一点的距离。
圆具有很多重要性质,例如任意两点到圆心的距离相等,直径是圆的特殊弦,且它的长度是半径的两倍,而弧则是圆上的一段曲线,它与圆心对应的角叫做圆心角。
二、垂径定理的表述圆的垂径定理是指,如果一个直径和一个弦垂直相交,那么它就是弦的垂径,且它把弦分为两个相等的部分。
或者反过来说,如果一个弦被圆心角所分为两个相等的部分,那么它就与直径垂直相交。
这个定理的表述可能有点晦涩难懂,但是我们可以通过几何图形来直观地理解。
三、垂径定理的证明圆的垂径定理是可以通过简单的几何推导证明的。
假设有一个圆,圆心为O,直径为AB,弦为CD垂直于直径AB于点E。
我们需要证明CE = DE。
首先,连接AC和BD,并假设它们交于点F。
由于CD垂直于AB,所以CDE是一个直角三角形。
而由于圆心角的性质,角COD的度数是弦CD对应的角,即∠COE。
由于COE和COD是同位角,所以它们的度数相等,即∠COE = ∠COD。
而∠COD是一个直角,所以∠COE也是一个直角。
因此,我们可以得出结论,CE与DE相等,即CE = DE,证明了定理。
四、垂径定理的应用垂径定理在实际学习和应用中非常有用。
例如,在解决证明问题时,我们可以利用垂径定理来简化问题和推导证明过程。
此外,垂径定理还与圆的切线有着密切的关系。
当一个直径与一个切线相交时,由于切线与半径垂直,我们可以通过垂径定理得出切线与直径相交的两点的性质。
最后,垂径定理也与三角形的性质相关。
当我们在一个三角形内有一个圆时,利用垂径定理可以推导得出一些重要的三角形性质,如内切圆和外接圆的性质等。
沪教版初三数学下册知识点梳理重点题型(常考知识点)巩固练习垂径定理—知识讲解(提高)【学习目标】1.理解圆的对称性;2.掌握垂径定理及其推论;3.学会运用垂径定理及其推论解决有关的计算、证明和作图问题.【要点梳理】知识点一、垂径定理1.垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2.推论平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.要点诠释:(1)垂径定理是由两个条件推出两个结论,即(2)这里的直径也可以是半径,也可以是过圆心的直线或线段.知识点二、垂径定理的拓展根据圆的对称性及垂径定理还有如下结论:(1)平分弦(该弦不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.(4)圆的两条平行弦所夹的弧相等.要点诠释:在垂径定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径)【典型例题】类型一、应用垂径定理进行计算与证明1. 如图,⊙O的两条弦AB、CD互相垂直,垂足为E,且AB=CD,已知CE=1,ED=3,则⊙O的半径是.【答案】5.【解析】作OM⊥AB于M、ON⊥CD于N,连结OA,∵AB=CD,CE=1,ED=3,∴OM=EN=1,AM=2,∴OA=.【点评】对于垂径定理的使用,一般多用于解决有关半径、弦长、弦心距之间的运算(配合勾股定理)问题.举一反三:【变式1】如图所示,⊙O两弦AB、CD垂直相交于H,AH=4,BH=6,CH=3,DH=8,求⊙O半径.【答案】如图所示,过点O分别作OM⊥AB于M,ON⊥CD于N,则四边形MONH为矩形,连结OB,∴,,∴在Rt△BOM中,.【高清ID号:356965 关联的位置名称(播放点名称):例2-例3】【变式2】(2015春•安岳县月考)如图,⊙O直径AB和弦CD相交于点E,AE=2,EB=6,∠DEB=30°,求弦CD长.【答案与解析】解:过O作OF⊥CD,交CD于点F,连接OD,∴F为CD的中点,即CF=DF,∵AE=2,EB=6,∴AB=AE+EB=2+6=8,∴OA=4,∴OE=OA﹣AE=4﹣2=2,在Rt△OEF中,∠DEB=30°,∴OF=OE=1,在Rt△ODF中,OF=1,OD=4,根据勾股定理得:DF==,则CD=2DF=2.【高清ID号:356965 关联的位置名称(播放点名称):例2-例3】2.已知:⊙O的半径为10cm,弦AB∥CD,AB=12cm,CD=16cm,求AB、CD间的距离.【思路点拨】在⊙O中,两平行弦AB、CD间的距离就是它们的公垂线段的长度,若分别作弦AB、CD的弦心距,则可用弦心距的长表示这两条平行弦AB、CD间的距离.【答案与解析】(1)如图1,当⊙O的圆心O位于AB、CD之间时,作OM⊥AB于点M,并延长MO,交CD于N点.分别连结AO、CO.∵AB∥CD∴ON⊥CD,即ON为弦CD的弦心距.∵AB=12cm,CD=16cm,AO=OC=10cm,=8+6=14(cm)图1 图2(2)如图2所示,当⊙O的圆心O不在两平行弦AB、CD之间(即弦AB、CD在圆心O的同侧)时,同理可得:MN=OM-ON=8-6=2(cm)∴⊙O中,平行弦AB、CD间的距离是14cm或2cm.【点评】解这类问题时,要按平行线与圆心间的位置关系,分类讨论,千万别丢解.举一反三:【变式】在⊙O中,直径MN⊥AB,垂足为C,MN=10,AB=8,则MC=_________.【答案】2或8.类型二、垂径定理的综合应用3.(2016•乐山模拟)李明到某影剧城游玩,看见一圆弧形门如图所示,李明想知道这扇门的相关数据.于是她从景点管理人员处打听到:这个圆弧形门所在的圆与水平地面是相切的,AB=CD=40cm,BD=320cm,且AB,CD与水平地面都是垂直的.根据以上数据,请你帮助李明计算出这个圆弧形门的最高点离地面的高度是多少?【思路点拨】如图,连接AC,作AC的中垂线交AC于G,交BD于N,交圆的另一点为M.则MN为直径.取MN的中点O,则O为圆心,连接OA、OC.运用垂径定理和勾股定理即可求解.【答案与解析】解:如图,连接AC,作AC的中垂线交AC于G,交BD于N,交圆的另一点为M.则MN为直径.取MN的中点O,则O为圆心,连接OA、OC.∵AB⊥BD,CD⊥BD,∴AB∥CD∵AB=CD∴ABCD为矩形∴AC=BD=320cm,GN=AB=CD=40cm∴AG=GC=160cm,设⊙O的半径为R,得R2=(R﹣40)2+1602,解得R=340cm,340×2=680(cm).答:这个圆弧形门的最高点离地面的高度为680cm.【点评】本题考查了垂径定理的应用,解答本题的关键是熟练勾股定理的表达式及垂径定理的内容,注意构造直角三角形.4. 不过圆心的直线l交⊙O于C、D两点,AB是⊙O的直径,AE⊥l于E,BF⊥l于F.(1)在下面三个圆中分别画出满足上述条件的具有不同位置关系的图形;(2)请你观察(1)中所画图形,写出一个各图都具有的两条线段相等的结论(OA=OB除外)(不再标注其他字母,找结论的过程中所连辅助线不能出现在结论中,不写推理过程);(3)请你选择(1)中的一个图形,证明(2)所得出的结论.【答案与解析】(1)如图所示,在图①中AB、CD延长线交于⊙O外一点;在图②中AB、CD交于⊙O内一点;在图③中AB∥CD.(2)在三个图形中均有结论:线段EC=DF.(3)证明:过O作OG⊥l于G.由垂径定理知CG=GD.∵ AE⊥l于E,BF⊥l于F,∴ AE∥OG∥BF.∵ AB为直径,∴ AO=OB,∴ EG=GF,∴ EC=EG-CG=GF-GD=DF.【点评】在运用垂径定理解题时,常用的辅助线是过圆心作弦的垂线,构造出垂径定理的基本图形.。