第二章 第三节 第四节 第五节 德布罗意波
- 格式:ppt
- 大小:103.50 KB
- 文档页数:6
第五节 德布罗意波课前预习情景导入光的波粒二象性理论告诉我们:光既是电磁波,又是光子,这表明场和实物并非泾渭分明。
那么,电子、质子、中子,甚至原子、分子、物体是否也具有波动性?图2—5—1德布罗意简答:1924年,德布罗意推想:自然在许多方面是对称的,“波粒共存的观念可以推广到所有粒子”。
既然光具有波粒二象性,则实物粒子或许也有这种二象性,在这样的推想下,德布罗意提出假设:实物粒子和光一样,也具有波粒二象性.知识预览⎪⎪⎪⎩⎪⎪⎪⎨⎧≥∆∆=πλ4::::h P x p h 不确定关系电子的衍射和电子云证实物质波的波长一种波相对应任何一个实物粒子都和物质波波意罗布德尊敬的读者:本文由我和我的同事在百忙中收集整编出来,本文档在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。
文中部分文字受到网友的关怀和支持,在此表示感谢!在往后的日子希望与大家共同进步,成长。
This article is collected and compiled by my colleagues and I in our busy schedule. We proofread the content carefully before the release of this article, but it is inevitable that there will be some unsatisfactory points. If there are omissions, please correct them. I hope this article can solve your doubts and arouse your thinking. Part of the text by the user's care and support, thank you here! I hope to make progress and grow with you in the future.。
第二章波粒二象性 第五节 德布罗意波 学案〖学习目标〗1、知道什么是德布罗意波,了解德布罗意波长与实物粒子的动量的关系;2、知道实物粒子和光子一样具有波粒二象性;3、了解不确定性关系.〖学习难点〗对德布罗意波的理解〖自主学习〗一、德布罗意波假说及实验验证1、德布罗意波任何一个实物粒子都和一个 相对应,这种与实物粒子相联系的波称为德布罗意波,也叫做 。
2、物质波的波长、频率关系式:λ= 和v=3、实验验证:1927年带戴维孙和汤姆生分别利用晶体做了 的实验,得到了电子的 ,证实了电子的波动性。
二、不确定性关系以△x 表示微观粒子位置的 ,以△p 表示微观粒子 的不确定性,那么△x △p ≥h/4π,式中h 式普朗克常量。
【重难点阐释】一、说明:光的波粒二象性的联系(1)、E=h ν 光子说不否定波动性光具有能量动量,表明光具有粒子性。
光又具有波长、频率,表明光具有波动性。
且由E=h ν,光子说中E=h ν,ν是表示波的物理量,可见光子说不否定波动说。
(2)、光子的动量和光子能量的比较:p=λh与ε=h νP与ε是描述粒子性的,λ、ν是描述波动性的,h 则是连接粒子和波动的桥梁波粒二象性对光子来讲是统一的。
二、德布罗意波(物质波)德布罗意(due de Broglie, 1892-1960)提出:一切实物粒子都有具有波粒二象性。
即每一个运动的粒子都与一个对应的波相联系。
能量为E 、动量为p 的粒子与频率为v 、波长为λ的波相联系,并遵从以下关系:E=mc 2=hv p=mv=λh其中p :运动物体的动量 h :普朗克常量1、德布罗意波这种和实物粒子相联系的波称为德布罗意波(物质波或概率波),其波长λ称为德布罗意波长。
2、一切实物粒子都有波动性。
后来,大量实验都证实了:质子、中子和原子、分子等实物微观粒子都具有波动性,并都满足德布罗意关系。
一颗子弹、一个足球有没有波动性呢?【例1】试估算一个中学生在跑百米时的德布罗意波的波长。