半导体物理-02
- 格式:pdf
- 大小:502.08 KB
- 文档页数:6
第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E c =0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。
试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2) 导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)eV m k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC===sN k k k p k p m dk E d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-== 所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:tkhqE f ∆∆== 得qE k t -∆=∆sat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππ补充题1分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图)Si 在(100),(110)和(111)面上的原子分布如图1所示:(a )(100)晶面 (b )(110)晶面(c )(111)晶面补充题2一维晶体的电子能带可写为)2cos 81cos 87()22ka ka ma k E +-= (, 式中a 为 晶格常数,试求(1)布里渊区边界; (2)能带宽度;(3)电子在波矢k 状态时的速度;(4)能带底部电子的有效质量*n m ;(5)能带顶部空穴的有效质量*p m解:(1)由0)(=dk k dE 得 an k π= (n=0,±1,±2…) 进一步分析an k π)12(+= ,E (k )有极大值,214221422142822/1083.7342232212414111/1059.92422124142110/1078.6)1043.5(224141100cm atom a a a cm atom a a a cm atom a a ⨯==⨯+⨯+⨯⨯==⨯⨯+⨯+⨯=⨯==⨯+-):():():(222)mak E MAX=( ank π2=时,E (k )有极小值所以布里渊区边界为an k π)12(+=(2)能带宽度为222)()ma k E k E MIN MAX =-( (3)电子在波矢k 状态的速度)2sin 41(sin 1ka ka ma dk dE v -== (4)电子的有效质量)2cos 21(cos 222*ka ka mdkEd m n-==能带底部 an k π2=所以m m n 2*= (5)能带顶部 an k π)12(+=, 且**n p m m -=,所以能带顶部空穴的有效质量32*mm p =半导体物理第2章习题1. 实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。
半导体物理学基本概念有效质量--——-载流子在晶体中的表观质量,它体现了周期场对电子运动的影响.其物理意义:1)有效质量的大小仍然是惯性大小的量度;2)有效质量反映了电子在晶格与外场之间能量和动量的传递,因此可正可负。
空穴--—-—是一种准粒子,代表半导体近满带(价带)中的少量空态,相当于具有正的电子电荷和正的有效质量的粒子,描述了近满带中大量电子的运动行为。
回旋共振--——半导体中的电子在恒定磁场中受洛仑兹力作用将作回旋运动,此时在半导体上再加垂直于磁场的交变磁场,当交变磁场的频率等于电子的回旋频率时,发生强烈的共振吸收现象,称为回旋共振. 施主-——-—在半导体中起施予电子作用的杂质. 受主-————在半导体中起接受电子作用的杂质.杂质电离能——---使中性施主杂质束缚的电子电离或使中性受主杂质束缚的空穴电离所需要的能量。
n—型半导体———-——以电子为主要载流子的半导体。
p—型半导体----——以空穴为主要载流子的半导体。
浅能级杂质-—-——-杂质能级位于半导体禁带中靠近导带底或价带顶,即杂质电离能很低的杂质。
浅能级杂质对半导体的导电性质有较大的影响。
深能级杂质———--——杂质能级位于半导体禁带中远离导带底(施主)或价带顶(受主),即杂质电离能很大的杂质。
深能级杂质对半导体导电性质影响较小,但对半导体中非平衡载流子的复合过程有重要作用.位于半导体禁带中央能级附近的深能级杂质是有效的复合中心。
杂质补偿--—-—在半导体中同时存在施主和受主杂质时,存在杂质补偿现象,即施主杂质束缚的电子优先填充受主能级,实际的有效杂质浓度为补偿后的杂质浓度,即两者之差。
直接带隙--———半导体的导带底和价带顶位于k 空间同一位置时称为直接带隙。
直接带隙材料中载流子跃迁几率较大.间接带隙-———-半导体的导带底和价带顶位于k 空间不同位置时称为间接带隙。
间接带隙材料中载流子跃迁时需有声子参与,跃迁几率较小。
平衡状态与非平衡状态—-—--半导体处于热平衡态时,载流子遵从平衡态分布,电子和空穴具有统一的费米能级.半导体处于外场中时为非平衡态,载流子分布函数偏离平衡态分布,电子和空穴不具有统一的费米能级,载流子浓度也比平衡时多出一部分,但可认为它们各自达到平衡,可引入准费米能级表示. 电中性条件—-———半导体在任何情况下都维持体内电中性,即单位体积内正电荷数与负1电荷数相等。
半导体物理复习要点答案⼀、填充题1. 两种不同半导体接触后, 费⽶能级较⾼的半导体界⾯⼀侧带正电达到热平衡后两者的费⽶能级相等。
2. 半导体硅的价带极⼤值位于k空间第⼀布⾥渊区的中央,其导带极⼩值位于【100】⽅向上距布⾥渊区边界约0.85倍处,因此属于间接带隙半导体。
3. 晶体中缺陷⼀般可分为三类:点缺陷,如空位间隙原⼦;线缺陷,如位错;⾯缺陷,如层错和晶粒间界。
4. 间隙原⼦和空位成对出现的点缺陷称为弗仓克⽿缺陷;形成原⼦空位⽽⽆间隙原⼦的点缺陷称为肖特基缺陷。
5.浅能级杂质可显著改变载流⼦浓度;深能级杂质可显著改变⾮平衡载流⼦的寿命,是有效的复合中⼼。
6. 硅在砷化镓中既能取代镓⽽表现为施主能级,⼜能取代砷⽽表现为受主能级,这种性质称为杂质的双性⾏为。
7.对于ZnO半导体,在真空中进⾏脱氧处理,可产⽣氧空位,从⽽可获得 n型 ZnO半导体材料。
8.在⼀定温度下,与费⽶能级持平的量⼦态上的电⼦占据概率为1/2 ,⾼于费⽶能级2kT能级处的占据概率为1/1+exp(2) 。
9.本征半导体的电阻率随温度增加⽽单调下降,杂质半导体的电阻率随温度增加,先下降然后上升⾄最⾼点,再单调下降。
10.n型半导体的费⽶能级在极低温(0K)时位于导带底和施主能级之间中央处,随温度升⾼,费⽶能级先上升⾄⼀极值,然后下降⾄本征费⽶能级。
11. 硅的导带极⼩值位于k空间布⾥渊区的【100】⽅向。
12. 受主杂质的能级⼀般位于价带顶附近。
13. 有效质量的意义在于它概括了半导体内部势场的作⽤。
14. 间隙原⼦和空位成对出现的点缺陷称为弗仓克⽿缺陷。
15. 除了掺杂,引⼊缺陷也可改变半导体的导电类型。
16. 回旋共振是测量半导体内载流⼦有效质量的重要技术⼿段。
17. PN结电容可分为势垒电容和扩散电容两种。
18. PN结击穿的主要机制有雪崩击穿、隧道击穿和热击穿。
19. PN结的空间电荷区变窄,是由于PN结加的是正向电压电压。