统计热力学
- 格式:doc
- 大小:106.64 KB
- 文档页数:6
化学物理学中的热力学和统计力学热力学和统计力学是化学物理学的两个重要分支,它们研究的是物质热力学性质和分子运动规律,是探究物质本质的的一门基础学科。
本文将从热力学和统计力学的基本概念、研究对象、热力学第一、二、三定律、热力学函数、状态方程、熵等方面进行阐述,希望可以为读者进一步了解化学物理学中的热力学和统计力学提供一些帮助。
一、热力学和统计力学的基本概念热力学和统计力学是两个不同的分支,热力学研究的是宏观尺度下的物理过程,而统计力学则是在微观尺度下对物质粒子的运动与相互作用进行研究。
热力学是以能量转换为研究对象的学科,主要研究物质的热力学性质,包括温度、压强、物态变化等;而统计力学则是以物质分子的热运动为研究对象的学科。
通过统计学的方法来推导宏观物理现象的微观动力学规律。
二、热力学和统计力学的研究对象热力学和统计力学研究的对象是相同的,都是物质。
热力学研究的是物质的宏观性质,表现为带有大量质点的物体的性质;而统计力学研究的是物质的微观性质,表现为分子或原子的性质。
热力学研究的物质状态为平衡态,而统计力学则研究物质在平衡态和非平衡态下的性质。
三、热力学第一、二、三定律热力学第一定律,也叫能量守恒定律,表明在一定条件下物体能量的总量不变。
具体来说,即使在一个系统中发生了内部的能量转化,这个系统所包含的总能量仍然保持不变。
根据热力学第一定律,热力学系统能量的变化等于系统的热量和功的合,表达式为ΔU=Q-W,其中ΔU表示系统内能的变化,Q表示系统吸收或放出的热量,W表示系统所做的功。
热力学第二定律是热力学中的熵增定律,表明在一定条件下,物体内部的热力学熵是单调不减的。
具体来说,随着热量传递,系统失去了一部分可以进行有效工作的能量,但是系统的热力学熵却不断增加。
热力学第二定律反映了物理过程的不可逆性。
热力学第三定律表明,在绝对零度时,物质的最低状态熵为零。
也就是说,热力学第三定律是热力学第二定律的推论,表明热力学第二定律中的熵增原则在绝对零度时还是成立的。
统计热力学统计热力学是宏观热力学与量子化学相关联的桥梁。
通过系统粒子的微观性质(分子质量、分子几何构型、分子内及分子间作用力等),利用分子的配分函数计算系统的宏观性质。
由于热力学是对大量粒子组成的宏观系统而言,这决定统计热力学也是研究大量粒子组成的宏观系统,对这种大样本系统,最合适的研究方法就是统计平均方法。
微观运动状态有多种描述方法:经典力学方法是用粒子的空间位置(三维坐标)和表示能量的动量(三维动量)描述;量子力学用代表能量的能级和波函数描述。
由于统计热力学研究的是热力学平衡系统,不考虑粒子在空间的速率分布,只考虑粒子的能量分布。
这样,宏观状态和微观状态的关联就转化为一种能级分布(宏观状态)与多少微观状态相对应的问题,即几率问题。
Boltzmann 给出了宏观性质—熵(S )与微观性质—热力学几率(Ω)之间的定量关系:ln S k =Ω。
热力学平衡系统熵值最大,但是通过概率理论计算一个平衡系统的Ω无法做到,也没有必要。
因为在一个热力学平衡系统中,存在一个微观状态数最大的分布(最概然分布),摘取最大项法及其原理可以证明,最概然分布即是平衡分布,可以用最概然分布代替一切分布。
因此,有了数学上完全容许的ln Ω≈ln W D,max ,所以,S =k ln W D,max 。
这样,求所有分布的微观状态数—热力学几率的问题转化为求一种分布—最概然分布的微观状态数的问题。
波尔兹曼分布就是一种最概然分布,该分布公式中包含重要概念—配分函数。
用波尔兹曼分布求任何宏观状态函数时,最后都转化为宏观状态函数与配分函数之间的定量关系。
配分函数与分子的能量有关,而分子的能量又与分子运动形式有关。
因此,必须讨论分子运动形式及能量公式,各种运动形式的配分函数及分子的全配分函数的计算。
确定配分函数的计算方法后,最终建立各个宏观性质与配分函数之间的定量关系。
热力学:基础:三大定律研究对象:(大量粒子构成的)宏观平衡体系研究方法:状态函数法手段:利用可测量量p-T-V+C p,m和状态方程结果:求状态函数(U,H,S,G,等)的改变值,以确定变化过程所涉及的能量和方向。
统计热力学
统计热力学,从粒子的微观性质及结构数据出发,以粒子遵循的力学定律为理论基础;用统计的方法推求大量粒子运动的统计平均结果,以得出平衡系统各种宏观性质的值。
相关资料:
统计热力学从粒子的微观性质及结构数据出发,以粒子遵循的力学定律为理论基础;用统计的方法推求大量粒子运动的统计平均结果,以得出平衡系统各种宏观性质的值。
研究方法:统计力学的方法,应用几率规律和力学定律求出大量粒子运动的统计规律。
优点:揭示了体系宏观现象的微观本质,可以从分子或原子的光谱数据直接计算体系平衡态的热力学性质。
缺点:受对物质微观结构和运动规律认识程度的限制。
统计系统的分类与术语:
①粒子(子):组成系统的分子,原子,离子等的统称。
①独立子系统:粒子间相互作用可忽略的系统。
如理想气体,完美晶体。
①相依子系统:粒子间相互作用不能忽略的系统。
如真实气体,液体。
①定域子系统(可辨粒子系统):粒子有固定的平衡位置,运动是定域的;如固体。
①离域子系统(全同粒子系统):粒子处于混乱的运动中,无法分别,粒子彼此是等同的。
如:气体,液体。
统计热力学的发展及应用一、前言统计热力学是热力学的一个重要分支,它是通过微观粒子的运动状态和相互作用来研究宏观物理现象的一种方法。
自从19世纪末以来,随着人们对物质结构和性质认识的不断深入,统计热力学得到了迅速发展,并在许多领域得到了广泛应用。
二、统计热力学的发展历程1. 统计力学的起源统计力学最早可以追溯到卡诺在1824年提出的“热机理论”,他认为热量是由于气体分子不规则运动所引起。
后来,在19世纪60年代,克劳修斯进一步发展了卡诺的理论,并提出了“能量平均定理”,即气体分子内能量平均值等于其温度乘以玻尔兹曼常数。
这为后来统计力学的建立奠定了基础。
2. 统计热力学的建立在19世纪末和20世纪初期,众多科学家对气体分子运动规律进行了深入探究。
玻尔兹曼提出了著名的“玻尔兹曼方程”,描述了气体分子的运动规律,并通过对气体分子运动状态进行统计,得到了一系列重要的热力学量。
同时,吉布斯也提出了“统计平衡原理”,即系统最终会达到能量最大、熵最大的状态。
这些理论奠定了统计热力学的基础。
3. 统计热力学的发展随着人们对物质结构和性质认识的不断深入,统计热力学得到了迅速发展。
在20世纪初期,德拜和胡克等科学家提出了“配分函数”的概念,并用它来描述系统的状态。
此后,人们陆续提出了各种各样的配分函数,并将其应用于不同领域中,如固体物理、化学反应、生物物理等。
三、统计热力学的应用1. 固体物理在固体物理中,统计热力学被广泛应用于描述晶格振动和电子结构等现象。
通过配分函数和自由能等热力学量的计算,可以得到材料的各种性质,如比热、导电性、光学性质等。
2. 化学反应在化学反应中,统计热力学可以用来描述化学平衡和反应速率等现象。
通过计算配分函数和化学势等热力学量,可以得到反应的热力学数据,并预测反应的方向和速率。
3. 生物物理在生物物理中,统计热力学可以用来描述蛋白质、核酸等生物大分子的结构和性质。
通过计算配分函数和自由能等热力学量,可以得到生物大分子的稳定状态和折叠状态,并预测其功能。