统计热力学
- 格式:pdf
- 大小:130.91 KB
- 文档页数:7
统计热力学统计热力学是宏观热力学与量子化学相关联的桥梁。
通过系统粒子的微观性质(分子质量、分子几何构型、分子内及分子间作用力等),利用分子的配分函数计算系统的宏观性质。
由于热力学是对大量粒子组成的宏观系统而言,这决定统计热力学也是研究大量粒子组成的宏观系统,对这种大样本系统,最合适的研究方法就是统计平均方法。
微观运动状态有多种描述方法:经典力学方法是用粒子的空间位置(三维坐标)和表示能量的动量(三维动量)描述;量子力学用代表能量的能级和波函数描述。
由于统计热力学研究的是热力学平衡系统,不考虑粒子在空间的速率分布,只考虑粒子的能量分布。
这样,宏观状态和微观状态的关联就转化为一种能级分布(宏观状态)与多少微观状态相对应的问题,即几率问题。
Boltzmann 给出了宏观性质—熵(S )与微观性质—热力学几率(Ω)之间的定量关系:ln S k =Ω。
热力学平衡系统熵值最大,但是通过概率理论计算一个平衡系统的Ω无法做到,也没有必要。
因为在一个热力学平衡系统中,存在一个微观状态数最大的分布(最概然分布),摘取最大项法及其原理可以证明,最概然分布即是平衡分布,可以用最概然分布代替一切分布。
因此,有了数学上完全容许的ln Ω≈ln W D,max ,所以,S =k ln W D,max 。
这样,求所有分布的微观状态数—热力学几率的问题转化为求一种分布—最概然分布的微观状态数的问题。
波尔兹曼分布就是一种最概然分布,该分布公式中包含重要概念—配分函数。
用波尔兹曼分布求任何宏观状态函数时,最后都转化为宏观状态函数与配分函数之间的定量关系。
配分函数与分子的能量有关,而分子的能量又与分子运动形式有关。
因此,必须讨论分子运动形式及能量公式,各种运动形式的配分函数及分子的全配分函数的计算。
确定配分函数的计算方法后,最终建立各个宏观性质与配分函数之间的定量关系。
热力学:基础:三大定律研究对象:(大量粒子构成的)宏观平衡体系研究方法:状态函数法手段:利用可测量量p-T-V+C p,m和状态方程结果:求状态函数(U,H,S,G,等)的改变值,以确定变化过程所涉及的能量和方向。
第六章统计热力学初步教学目的及要求掌握玻兹曼统计的基本原理,能从微观角度解释体系的一些热力学性质,一般掌握从分子配分函数和自由能函数表计算简单气相反应的平衡常数、理想气体及晶体热力学函数的方法。
6-1 引言经典热力学(宏观热力学)热力学以三个定律为基础,利用热力学数据,研究平衡系统各宏观性质之间的相互关系,揭示变化过程的方向和限度。
它不涉及粒子的微观性质。
研究对象:大量粒子构成的集合体。
研究方法:热力学方法。
优点:结论具有普遍性,不受对物质微观结构认识的影响。
缺点:不能阐明体系性质的内在原因,不能给出微观性质与宏观性质之间的联系,不能对热力学性质进行直接的计算。
要克服这些缺点必须从分子的微观结构和内部运动去认识体系及其变化。
统计热力学统计热力学从粒子的微观性质及结构数据出发,以粒子遵循的力学定律为理论基础;用统计的方法推求大量粒运动的统计平均结果,以得出平衡系统各种宏观性质的值。
•研究对象:大量粒子构成的集合体。
•研究方法:统计力学的方法,应用几率规律和力学定律求出大量粒子运动的统计规律。
•优点:揭示了体系宏观现象的微观本质,可以从分子或原子的光谱数据直接计算体系平衡态的热力学性质。
•缺点:受对物质微观结构和运动规律认识程度的限制。
•统计热力学是统计物理学的一个分支,也是化学热力学的补充和提高。
经典统计力学以经典力学为基础处理粒子运动,建立了经典统计力学,即Maxwell-Boltzmann 统计。
•量子统计力学以量子力学为基础处理粒子运动,建立了两种量子统计力学,分别适用于不同的量子体系,即Bose-Einstein统计和Fermi-Dirac统计。
本章主要介绍Maxwell-Boltzmann统计,简称麦-玻统计1. 麦-玻统计比较简单。
2. 现在的麦-玻统计已渗入不少量子力学的成果。
3. 在一定条件下,通过适当的近似,三种统计方法得出几乎相同的统计结果。
4. 麦-玻统计基本上可以说明化学中所遇到的一般问题。
统计热力学的发展及应用一、前言统计热力学是热力学的一个重要分支,它是通过微观粒子的运动状态和相互作用来研究宏观物理现象的一种方法。
自从19世纪末以来,随着人们对物质结构和性质认识的不断深入,统计热力学得到了迅速发展,并在许多领域得到了广泛应用。
二、统计热力学的发展历程1. 统计力学的起源统计力学最早可以追溯到卡诺在1824年提出的“热机理论”,他认为热量是由于气体分子不规则运动所引起。
后来,在19世纪60年代,克劳修斯进一步发展了卡诺的理论,并提出了“能量平均定理”,即气体分子内能量平均值等于其温度乘以玻尔兹曼常数。
这为后来统计力学的建立奠定了基础。
2. 统计热力学的建立在19世纪末和20世纪初期,众多科学家对气体分子运动规律进行了深入探究。
玻尔兹曼提出了著名的“玻尔兹曼方程”,描述了气体分子的运动规律,并通过对气体分子运动状态进行统计,得到了一系列重要的热力学量。
同时,吉布斯也提出了“统计平衡原理”,即系统最终会达到能量最大、熵最大的状态。
这些理论奠定了统计热力学的基础。
3. 统计热力学的发展随着人们对物质结构和性质认识的不断深入,统计热力学得到了迅速发展。
在20世纪初期,德拜和胡克等科学家提出了“配分函数”的概念,并用它来描述系统的状态。
此后,人们陆续提出了各种各样的配分函数,并将其应用于不同领域中,如固体物理、化学反应、生物物理等。
三、统计热力学的应用1. 固体物理在固体物理中,统计热力学被广泛应用于描述晶格振动和电子结构等现象。
通过配分函数和自由能等热力学量的计算,可以得到材料的各种性质,如比热、导电性、光学性质等。
2. 化学反应在化学反应中,统计热力学可以用来描述化学平衡和反应速率等现象。
通过计算配分函数和化学势等热力学量,可以得到反应的热力学数据,并预测反应的方向和速率。
3. 生物物理在生物物理中,统计热力学可以用来描述蛋白质、核酸等生物大分子的结构和性质。
通过计算配分函数和自由能等热力学量,可以得到生物大分子的稳定状态和折叠状态,并预测其功能。
统计热力学课件1. 引言统计热力学是热力学的一个分支领域,它通过统计方法来研究物质的宏观性质。
统计热力学在物理学、化学等领域都有着广泛的应用。
本课件将介绍统计热力学的基本概念和主要内容。
2. 统计热力学基本概念2.1 系综统计热力学的基本概念之一是系综(Ensemble)。
系综是指一个包含一组相同物理性质的系统的集合。
常见的系综有微正则系综、正则系综、巨正则系综等。
2.2 平衡态在统计热力学中,平衡态是指系统的宏观性质不随时间改变或在长时间内保持不变的状态。
平衡态的性质可以通过统计平均值来描述。
2.3 统计力学统计力学是统计热力学的基本方法,它通过建立系统与外界的相互作用关系,研究宏观性质与微观粒子运动规律之间的关系。
统计力学的核心是概率论和统计学的应用。
3. 统计热力学的主要内容3.1 玻尔兹曼分布玻尔兹曼分布是统计热力学中最基本的分布函数之一,它描述了自由粒子在一定温度下的分布状态。
3.2 能量与熵能量和熵是统计热力学中两个重要的物理量。
能量是系统状态的核心属性,熵则是系统的无序程度。
统计热力学通过研究能量和熵的关系来揭示物质的宏观行为。
3.3 统计平均值统计平均值是描述系统平衡态性质的基本指标,例如内能、熵等。
通过对系统微观状态进行统计,可以得到系统宏观性质的平均值,从而揭示系统的宏观行为。
3.4 相变与临界现象相变和临界现象是统计热力学的一个重要研究内容。
相变是指物质在一定条件下从一个相向另一个相的转变。
临界现象则是相变过程中出现的特殊现象,例如临界点和临界指数等。
4. 应用领域4.1 物理学在物理学领域,统计热力学被广泛应用于凝聚态物理、磁学、高能物理等研究中。
例如,统计热力学可以用来解释物质的相变行为、电磁波的统计行为等。
4.2 化学在化学领域,统计热力学可以用来研究化学平衡、化学反应速率等问题。
例如,通过统计方法可以计算出化学反应的平衡常数和反应速率常数。
4.3 生物学统计热力学在生物学领域的应用越来越广泛。