数学思想方法及其应用
- 格式:pdf
- 大小:1.69 MB
- 文档页数:2
小学教学中有哪些常见的数学思想与方法?如何应用?小学数学学习方法七点总结小学一年级数学是基础,养成良好的学习习惯运用良好的学习方法,让小朋友们拥有扎实的语文知识是关键!这是一篇语文学习方法归纳的文章,欢迎大家阅读!小结一下小学数学学习方法:1.求教与自学相结合在学习过程中,既要争取教师的指导和帮助,但是又不能处处依靠教师,必须自己主动地去学习、去探索、去获取,应该在自己认真学习和研究的基础上去寻求教师和同学的帮助。
2.学习与思考相结合在学习过程中,对课本的内容要认真研究,提出疑问,追本穷源。
对每一个概念、公式、定理都要弄清其来龙去脉、前因后果,内在联系,以及蕴含于推导过程中的数学思想和方法。
在解决问题时,要尽量采用不同的途径和方法,要克服那种死守书本、机械呆板、不知变通的学习方法。
3.学用结合,勤于实践在学习过程中,要准确地掌握抽象概念的本质含义,了解从实际模型中抽象为理论的演变过程;对所学理论知识,要在更大范围内寻求它的具体实例,使之具体化,尽量将所学的理论知识和思维方法应用于实践。
4。
博观约取,由博返约课本是学生获得知识的主要来源,但不是唯一的来源。
在学习过程中,除了认真研究课本外,还要阅读有关的课外资料,来扩大知识领域。
同时在广泛阅读的基础上,进行认真研究。
掌握其知识结构。
5.既有模仿,又有创新模仿是数学学习中不可缺少的学习方法,但是决不能机械地模仿,应该在消化理解的基础上,开动脑筋,提出自己的见解和看法,而不拘泥于已有的框框,不囿于现成的模式。
6.及时复习,增强记忆课堂上学习的内容,必须当天消化,要先复习,后做练习。
复习工作必须经常进行,每一单元结束后,应将所学知识进行概括整理,使之系统化、深刻化。
7.总结学习经验,评价学习效果学习中的总结和评价,是学习的继续和提高,它有利于知识体系的建立、解题规律的掌握、学习方法和态度的调整和评判能力的提高。
在学习过程中,应注意总结听课、阅读和解题中的收获和体会。
常见数学思想方法应用举例1.归纳法:归纳法是一种从特殊到一般的推理方法,通常应用于证明一些性质在所有情况下成立。
例如,我们可以使用归纳法来证明1+2+3+...+n的总和公式为n(n+1)/2、首先,当n=1时,左侧为1,右侧为1(1+1)/2,成立。
接下来,假设对于一些k成立,即1+2+3+...+k=k(k+1)/2、那么当n=k+1时,左侧为1+2+3+...+k+(k+1),右侧为(k+1)((k+1)+1)/2、我们可以将左侧拆分为k(k+1)/2+(k+1),然后代入归纳假设得到右侧,因此可以推断1+2+3+...+n=n(n+1)/2对于所有自然数n成立。
2.递推法:递推法是一种逐步推进的思想方法,在每一步中根据前一步的结果得到下一步的结论。
递推法常常应用于数列和数列的性质推导。
例如,斐波那契数列就是一个典型的应用递推法得到的数列。
斐波那契数列的定义是:第一个和第二个数都是1,从第三项开始,每一项都等于前两项的和。
即,F(1)=1,F(2)=1,F(n)=F(n-1)+F(n-2)(n≥3)。
通过递推法,我们可以计算任意给定项的斐波那契数列。
3.反证法:反证法是一种通过假设命题的否定形式为真,再通过推导推出与已知事实矛盾的结论,从而推断原命题为真的思想方法。
例如,我们想要证明根号2是无理数。
假设根号2是有理数,可以表示为p/q,其中p和q是互质的。
如果我们将这个假设代入p^2/q^2=2,可以得到p^2=2q^2、这意味着p的平方是一个偶数,因此p也是一个偶数(偶数的平方是偶数)。
我们可以将p表示为2k,其中k是一个整数,那么我们得到(2k)^2=2q^2,即4k^2=2q^2,化简为2k^2=q^2、这表明q的平方也是偶数,进一步可以推断q也是偶数。
但这与p和q是互质的假设相矛盾,因此根号2不可能是有理数,即它是无理数。
4.数学归纳法:数学归纳法是一种证明自然数性质的方法,适用于证明具有递推性质的命题。
谈数学思想方法在高中数学教学中的应用数学思想方法在高中数学教学中具有重要的应用,可以帮助学生更好地理解和掌握数学概念、方法和定理,提高学生的数学思维能力和解决问题的能力。
数学思想方法能够帮助学生建立数学模型。
数学模型是把实际问题转化为数学问题的过程,是数学思想方法的重要应用之一。
在高中数学教学中,教师可以通过引导学生观察实际问题、抽象问题的数学特征,将问题转化为数学模型,并通过对模型的求解,进一步理解和掌握数学概念和方法。
在解决实际问题时,可以通过建立线性方程组、函数模型、几何模型等不同的数学模型来求解问题,培养学生的数学建模能力和解决实际问题的能力。
数学思想方法能够帮助学生形成数学证明的思维方式。
数学证明是数学思想方法的核心内容之一。
在高中数学教学中,教师可以引导学生通过分析问题、提出假设、推理论证来解决数学问题,并且教授一些常用的证明方法和技巧,如归纳法、逆否命题的证明、反证法等。
通过进行数学证明,学生能够深入理解数学定理和推理的过程,提高逻辑思维和推理能力,培养学生的创新和批判性思维。
数学思想方法能够帮助学生发现数学的美和趣味性。
数学思想方法能够引导学生从多个角度去观察和理解数学问题,发现问题背后的规律和奥秘,培养学生对数学的兴趣和热爱。
在高中数学教学中,教师可以通过举例、探究、启发式问题等方式,培养学生的探究精神和解决问题的能力。
教师也可以介绍一些有趣的数学问题和数学思想,如无穷级数、黄金分割、图论等,激发学生学习数学的兴趣,并且展示数学的美和魅力。
数学思想方法在高中数学教学中的应用具有重要的意义。
它能够帮助学生建立数学模型、形成数学证明的思维方式、发现数学的美和趣味性,促进学生的数学思维能力的发展。
教师在高中数学教学中应该注重运用数学思想方法进行教学,调动学生学习的兴趣和积极性,提高学生的数学素养和解决问题的能力。
► 探究点二 使用函数方法解决非函数问题例2 (1)已知{a n }是一个等差数列,且a 2=1,a 5=-5,则数列{a n }前n 项和S n 的最大值是________.(2)长度都为2的向量OA →,OB →的夹角为60°,点C 在以O 为圆心的圆弧AB (劣弧)上,OC →=mOA→+nOB →,则m +n 的最大值是________. 【分析】 (1)根据方程思想求出数列的首项和公差,建立S n 关于n 的函数;(2)将向量坐标化,建立m +n 关于动向量OC →的函数关系.(1)4 (2)233【解析】 (1)设{a n }的公差为d ,由已知条件,⎩⎨⎧a 1+d =1,a 1+4d =-5,解出a 1=3,d =-2.S n =na 1+n n -12d =-n 2+4n =4-(n -2)2.所以n =2时,S n 取到最大值4.(2)建立平面直角坐标系,设向量OA →=(2,0),向量OB →=(1,3).设向量OC →=(2cos α,2sin α),0≤α≤π3.由OC →=mOA→+nOB →,得(2cos α,2sin α)=(2m +n ,3n ),即2cos α=2m +n,2sin α=3n ,解得m =cos α-13sin α,n =23sin α.故m +n =cos α+13sin α=233sin ⎝ ⎛⎭⎪⎫α+π3≤233.变式题若a >1,则双曲线x 2a 2-y 2a +12=1的离心率e 的取值范围是( )A .(1,2)B .(2,5)C .[2,5]D .(3,5) B 【解析】 e 2=⎝ ⎛⎭⎪⎫c a 2=a 2+a +12a 2=1+⎝⎛⎭⎪⎫1+1a 2,因为1a 是减函数,所以当a >1时,0<1a<1,所以2<e 2<5,即2<e < 5.► 探究点三 联用函数与方程的思想例3 已知函数f (x )=x (x -a )2,g (x )=-x 2+(a -1)x +a (其中a 为常数).设a >0,问是否存在x 0∈⎝ ⎛⎭⎪⎫-1,a 3,使得f (x 0)>g (x 0)?若存在,请求出实数a 的取值范围,若不存在,请说明理由;【解答】 假设存在,即存在x 0∈⎝⎛⎭⎪⎫-1,a 3,使得, f (x 0)-g (x 0)=x 0(x 0-a )2-[-x 20+(a -1)x 0+a ]=x 0(x 0-a )2+(x 0-a )(x 0+1)=(x 0-a )[x 20+(1-a )x 0+1]>0,当x 0∈⎝ ⎛⎭⎪⎫-1,a 3时,又a >0,故x 0-a <0,则存在x 0∈⎝ ⎛⎭⎪⎫-1,a 3,使得x 20+(1-a )x 0+1<0, ①当a -12>a3即a >3时,⎝ ⎛⎭⎪⎫a 32+(1-a )⎝ ⎛⎭⎪⎫a 3+1<0得a >3或a <-32,∴a >3; ②当-1≤a -12≤a 3即0<a ≤3时,4-a -124<0得a <-1或a >3,∴a 无解.综上:a >3.► 探究点四 以形助数探索解题思路例4 (1)不等式|x +3|-|x -1|≤a 2-3a 对任意实数x 恒成立,则实数a 的取值范围为( )A .(-∞,-1]∪[4,+∞)B .(-∞,-2]∪[5,+∞)C .[1,2]D .(-∞,1]∪[2,+∞)(2)已知点P 在抛物线y 2=4x 上,那么点P 到点Q (2,-1)的距离与点P到抛物线焦点距离之和取得最小值时,点P 的坐标为( )A .⎝ ⎛⎭⎪⎫14,-1B .⎝ ⎛⎭⎪⎫14,1C .(1,2)D .(1,-2)【分析】 (1)把不等式的左端看作一个函数,问题等价于这个函数的最大值不大于不等式右端的代数式的值,通过画出函数图象找到这个函数的最大值即可;(2)画出抛物线,根据抛物线上的点到焦点的距离等于其到准线的距离,把问题归结为两点之间的距离.(1)A (2)A 【解析】 (1)f (x )=|x +3|-|x -1|=⎩⎨⎧-4x <-3,2x +2-3≤x <1,4x >1.画出函数f (x )的图象,如图,可以看出函数f (x )的最大值为4,故只要a 2-3a ≥4即可,解得a ≤-1或a ≥4.正确选项为A.(2)点P 到抛物线焦点距离等于点P 到抛物线准线距离,如图,PF +PQ =PS +PQ ,故最小值在S ,P ,Q 三点共线时取得,此时P ,Q 的纵坐标都是-1,代入y 2=4x 得x =14,故点P 坐标为⎝ ⎛⎭⎪⎫14,-1,正确选项为A.(1)⎣⎢⎡⎦⎥⎤-43,7 (2)⎝⎛⎦⎥⎤-∞,-32∪[-1,+∞) 【解析】 (1)g (x )=f ′(x )=3x 2+4x -a ,g (x )=f ′(x )在区间(-1,1)上存在零点,等价于3x 2+4x =a 在区间(-1,1)上有解,等价于a 的取值范围是函数y =3x 2+4x 在区间(-1,1)上的值域,不难求出这个函数的值域是⎣⎢⎡⎭⎪⎫-43,7.故所求的a 的取值范围是⎣⎢⎡⎭⎪⎫-43,7. (2)由⎩⎨⎧Δ1=4a2-43-4a <0,Δ2=a -12-4a 2<0,Δ3=2a2+8a <0,解得-32<a <-1,再求它的补集,则a 的取值范围是:a ≤-32或a ≥-1.例4 (1)若cos ⎝ ⎛⎭⎪⎫π2+α=2sin ⎝ ⎛⎭⎪⎫α-π2,则sin(α-2π)sin(α-π)-sin ⎝ ⎛⎭⎪⎫5π2+αsin ⎝ ⎛⎭⎪⎫3π2-α=________.(2)函数f (x )=sin x +cos x +sin2x 的最小值是________.【分析】 (1)化简已知和求解目标,然后采取适当的方法;(2)把sin x +cos x 看做一个整体,用这个整体表示已知函数.(1)-35 (2)-54 【解析】 (1)已知条件即sin α=2cos α,求解目标即cos 2α-sin 2α.已知条件转化为tan α=2,求解目标转化为cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α,把已知代入得求解结果是-35. (2)令t =sin x +cos x ,则t 2=1+sin2x ,且t ∈[]-2,2.此时函数化为y =t +t 2-1=⎝⎛⎭⎪⎫t +122-54,故所求函数的最小值为-54.。
数学思想方法与应用
数学思想方法
1. 抽象化:将一个问题抽象成数学符号和公式的形式,从而能够系统地研究。
2. 形式化:用严格的数学语言和符号来表示问题,将问题的解决转化为计算和推导。
3. 推理和证明:运用严密的推理和证明方法,从已知的定理和公理出发,推导出新的结论。
4. 递归和归纳:用重复的过程和规律推导出新的结论。
5. 分析和综合:将一个复杂的问题分解为小的结构单元,并分别进行分析和综合,最终得到整个问题的解决方案。
数学应用
1. 物理学:数学是物理学的基础,特别适用于物理学中的运动、波动、电磁等方面的问题的研究。
2. 工程学:数学方法在机械、建筑、电子等领域都有广泛应用,如结构力学、
电路理论、控制理论等。
3. 经济学:数学工具在经济学中应用非常广泛,如微观经济学的供求理论,宏观经济学的经济增长理论等。
4. 生物学:数学工具在生物学中的应用涵盖了许多方面,如计算生物学、生态学、流行病学等。
5. 计算机科学:数学是计算机科学的基础,算法和数据结构等都是数学方法在计算机领域中的应用。
初中数学中常见的数学思想方法见解作为一门基础学科,数学在我们的生活和学习中扮演着非常重要的角色。
在初中数学学习中,学生需要掌握许多基本概念、基本原理和方法。
除了常见的数学知识点之外,还有一些重要的数学思想方法,如数学归纳法、逆向思维、抽象思维等。
本文将针对初中数学中常见的数学思想方法进行探讨,重点分析其原理和实际应用,并给出具体的数学题例子。
一、数学归纳法数学归纳法是初中数学中常见的数学思想方法之一,它是证明自然数的某些性质时常用的一种方法。
数学归纳法的基本思想是:证明一个性质对于所有自然数都成立,只需证明当自然数 n = 1 时成立,且当自然数 n 成立时,自然数 n+1 也成立,即可推出该性质对于所有自然数都成立。
例如,我们要证明一个常见的命题:对于任意自然数 n,1+2+3+...+n = n(n+1)/2。
首先当 n=1 时,左侧等式为 1,右侧等式为 1×(1+1)/2=1,两边相等。
再假设对于自然数 n 成立,即1+2+3+...+n = n(n+1)/2,那么将 n+1 代入等式,得到:1+2+3+...+(n+1) = [1+2+3+...+n] + (n+1)由假设可得左侧等式为 n(n+1)/2 + (n+1),经过化简得到:(n+1)(n+2)/2 = (n+1)(n+2)/2,由此证明了该命题对于任意自然数 n 成立。
数学归纳法还可以用于证明一些更复杂的命题,例如利用数学归纳法证明斐波那契数列的性质。
斐波那契数列是一个非常经典的数学问题,其定义为:对于自然数 n,斐波那契数列的第 n 项 F(n) 等于前两项的和,即 F(n) = F(n-1) + F(n-2),其中 F(1)=1,F(2)=1。
利用数学归纳法可以证明:对于任意自然数 n,斐波那契数列的第 n 项 F(n) 满足 F(n) = (1/√5){[(1+√5)/2]^n - [(1-√5)/2]^n}。
数学思想方法在中学教学中的应用数学与统计学院张春月全日制普通高级中学数学教学大纲中规定:“高中数学的基础知识主要是高中数学中的概念、性质、法则、公式、公理、定理以及由其内容反映出来的数学思想和方法。
”义务教育数学新大纲指出:“初中数学的基础知识主要是代数、几何中的概念、法则、性质、公式、公理、定理以及由其内容所反映出来的数学思想和方法。
”把数学知识中的数学思想和方法纳入基础知识范畴,这充分体现了我国数学教育工作者对于数学课程发展的一个共识。
这不仅是加强数学素养培养的一项举措,也是数学基础教育现代化进程的必然要求。
一、中学数学思想方法的主要内容中学数学中的基本数学思想如下。
两大“基石”思想:符号化与变元表示思想(换元思想、方程思想、参数思想) 与集合思想(分类思想、交集思想、补集思想) 。
两大“支柱”思想:对应思想(函数思想、变换思想、递归思想、数形结合思想) 与公理化与结构思想(公理化思想、结构思想、极限思想) 。
两大“主梁”思想:系统与统计思想(整体思想、分解组合思想、运动变化思想、最优化思想;随机思想、统计调查思想、假设检验思想、量化思想) 与化归与辩证思想(纵向化归、横向化归、同向化归、逆向化归思想, 对立统一、互变、一分为二思想) 。
中学数学中的基本数学方法如下。
五种科学认识方法:观察与实验,比较与分类,归纳与类比,想象、直觉与顿悟。
四种推理方法:综合法与分析法,完全归纳法与数学归纳法,演绎法,反证法与同一法。
三种求解方法:数学模型法,关系映射反演方法,构造法。
二、提高数学思想方法教学的意识性对数学思想方法教学缺乏意识性是一个较普遍的问题。
主要表现在:制定教学目的时,对具体知识、技能训练的教学要求比较明确,而忽视数学思想方法的教学要求;教学时,往往注重知识的结论,而削弱知识形成过程中思想方法的训练;知识应用时,又偏重于就题论题,忽视数学思想方法的揭示与提炼;小结复习时,只注意知识的系统整理,忽视思想方法的归纳提高等等,致使数学教学停留在较低的层次上。
数学中的思想方法及应用数学在人类的发展进程中扮演着重要的角色,它不仅是一门学科,更是一种思想方法和一种工具。
数学思想方法包括抽象思维、逻辑思维、系统思维和创造思维等多个方面,它们在解决实际问题、推动科学技术进步、培养人的思维能力等方面起着重要作用。
首先,抽象思维是数学思想方法中的重要部分。
数学通过抽象的方式将实际问题或对象转化为符号或模型,以便进行研究和分析。
抽象使得数学问题的本质更加清晰和简明,使得数学可以研究和解决更加一般化、复杂化的问题。
例如,在几何学中,我们可以将具体的线段、三角形等几何对象抽象为点、线、面等基本几何元素进行研究。
通过抽象,我们可以更好地理解并解决几何学中的各种问题。
逻辑思维是数学思想方法的另一个重要方面。
数学思想符合严密的逻辑规律,通过推理和证明来达到对问题的深入理解。
逻辑思维让我们在分析和解决问题时能够清晰地进行论证和推断。
数学逻辑思维的一个典型例子是证明。
在证明过程中,我们使用逻辑推理的方法建立命题之间的联系和结论的正确性。
逻辑思维在数学中的应用使得数学成为一门严密的学科,并为其他科学领域提供了重要的理论基础。
系统思维也是数学思想方法的重要组成部分。
数学思维可以理解为一种系统性的思考和分析问题的方式。
数学问题很少是孤立存在的,通常存在于一个系统中。
系统思维帮助我们把握问题的全貌,并通过分析系统中的各个部分和相互关系,找到问题的规律和解决办法。
例如在微积分中,我们通过对函数的整体分析,从整个变化过程中找到了导数和积分的概念,从而建立了微积分的理论体系。
创造思维则是数学思想方法中最富有创造性和想象力的一部分。
数学创造思维是指通过运用已有的数学知识和方法,创造性地解决新问题或发现新规律。
数学创造思维需要充分发挥想象力和灵感,同时结合逻辑推理进行验证和证明。
创造思维广泛应用于数学研究和解决实际问题的过程中。
例如,在代数学中,通过创造性地引入新的概念和符号,人们扩展了数的概念并发展了复数和矩阵等数学工具,为解决实际问题提供了丰富的数学方法。
17种数学思想数学作为一门古老而又重要的学科,凝聚了人类智慧的结晶。
它的发展历程中产生了许多重要的数学思想,这些思想被广泛运用于各个领域,为人们解决问题提供了宝贵的工具和方法。
本文将介绍17种数学思想,并探讨其在现实生活中的应用。
一、集合论集合论是数学的基础,它研究元素的集合及其之间的关系与操作。
集合论的应用广泛,例如数据库的设计与管理、统计学中的样本集合选择等。
二、数论数论研究整数的性质和规律,是数学中最古老、最基础的分支之一。
数论的应用能够帮助我们解决许多与整数相关的问题,例如密码学、编码与解码等。
三、代数学代数学是数学中的一大支柱,研究符号运算、方程与代数结构等内容。
代数学的应用包括密码学、数据编码、工程控制等领域。
四、几何学几何学研究空间的形状、大小和性质,它是数学中最直观的分支之一。
几何学的应用广泛,例如建筑设计、计算机图形学、地理测量等。
五、拓扑学拓扑学研究空间的变形与连续性质,它关注的是空间的整体性质而非具体的度量和尺寸。
拓扑学的应用包括网络通信、形状识别等。
六、微积分微积分是数学中最重要的分支之一,研究函数的变化规律和极限运算。
微积分的应用广泛,例如物理学中的运动学、经济学中的边际分析等。
七、概率论与数理统计概率论与数理统计研究随机现象及其规律,用于描述和分析随机事件的发生概率。
这一数学思想在金融风险评估、医疗统计等领域有广泛应用。
八、线性代数线性代数研究向量空间和线性变换,是现代代数学的重要分支之一。
线性代数的应用广泛,例如图像处理、机器学习中的矩阵运算等。
九、群论群论是代数学的一个重要分支,研究代数结构中的对称性质和变换规则。
群论的应用包括密码学、量子力学等领域。
十、数值计算数值计算研究用计算机来近似求解各种数学问题的方法,它在科学计算、工程设计等领域发挥着重要作用。
十一、离散数学离散数学研究离散对象和离散结构,它在计算机科学、信息科学等领域有着广泛应用。
十二、动力系统与混沌理论动力系统与混沌理论研究非线性系统的演化和稳定性,它在天气预报、生态学模型等领域发挥着重要作用。
数学思想方法在生活中的应用
1、运用数学概率统计原理加快购物速度
现在的购物大多是在网上完成,买家要提出购买的条件,比如“要什么
产品,多少价格”,这时运用概率统计,令购物者根据一定的概率抽取
最适合他们的产品或者最优惠的价格,使购物者可以根据自己的需要
以更快速度和更方便的方式购买到他们想要的东西。
2、数学规律用于家居美化
许多家里装修师傅都运用数学美学原则和规律进行装修,比如运用金
砖铺面以及长宽比例等来进行美化装修。
一般而言,数学美学会探究
一种物品的运动情况,通过把一定的数学方程式分析运用于空间装饰,使家居美化变得更加合理、整齐、恰当。
3、数学思维改变餐饮消费
近年来,越来越多的餐饮企业依靠数学思维的改变为消费者提供更多
的服务和更多的选择,比如听说在一些餐饮厅里,顾客可以根据自己
的需求自由组合食物。
客户根据自己的口味,随着自己的喜好,按照
自己的实时把组合菜单拼成一份,实现快捷又有设计感的点餐方式。