多元统计分析简介讲解学习共66页文档
- 格式:ppt
- 大小:7.65 MB
- 文档页数:66
一、什么是多元统计分析❖多元统计分析是运用数理统计的方法来研究多变量(多指标)问题的理论和方法,是一元统计学的推广。
❖多元统计分析是研究多个随机变量之间相互依赖关系以及内在统计规律的一门统计学科。
二、多元统计分析的内容和方法❖1、简化数据结构(降维问题)将具有错综复杂关系的多个变量综合成数量较少且互不相关的变量,使研究问题得到简化但损失的信息又不太多。
(1)主成分分析(2)因子分析(3)对应分析等❖2、分类与判别(归类问题)对所考察的变量按相似程度进行分类。
(1)聚类分析:根据分析样本的各研究变量,将性质相似的样本归为一类的方法。
(2)判别分析:判别样本应属何种类型的统计方法。
例5:根据信息基础设施的发展状况,对世界20个国家和地区进行分类。
考察指标有6个:1、X1:每千居民拥有固定电话数目2、X2:每千人拥有移动电话数目3、X3:高峰时期每三分钟国际电话的成本4、X4:每千人拥有电脑的数目5、X5:每千人中电脑使用率6、X6:每千人中开通互联网的人数❖3、变量间的相互联系一是:分析一个或几个变量的变化是否依赖另一些变量的变化。
(回归分析)二是:两组变量间的相互关系(典型相关分析)❖4、多元数据的统计推断点估计参数估计区间估计统 u检验计参数 t检验推 F检验断假设相关与回归检验卡方检验非参秩和检验秩相关检验❖1、假设检验的基本原理小概率事件原理❖ 小概率思想是指小概率事件(P<0.01或P<0.05等)在一次试验中基本上不会发生。
反证法思想是先提出假设(检验假设H0),再用适当的统计方法确定假设成立的可能性大小,如可能性小,则认为假设不成立;反之,则认为假设成立。
❖ 2、假设检验的步骤 (1)提出一个原假设和备择假设❖ 例如:要对妇女的平均身高进行检验,可以先假设妇女身高的均值等于 160 cm (u=160cm )。
这种原假设也称为零假设( null hypothesis ),记为 H 0 。
Equation Chapter 1 Section 1 Array《多元统计分析》Multivariate Statistical Analysis主讲:统计学院许启发(******************)统计学院应用统计学教研室School of Statistics2004年9月第一章绪论【教学目的】1.让学生了解什么是多元统计分析?它的发展与现状;2.让学生了解多元统计分析的主要范畴、功能;3.回顾相关的矩阵理论和多元正态分布理论;4.阐述多元数据的表示方法。
【教学重点】1.从一元到多元的过度;2.多元正态理论及其相关命题。
§1 引言一、什么是多元统计分析在实践中,常会碰到需要同时观测若干指标的问题。
例如衡量一个地区的经济发展水平:总产值、利润、效益、劳动生产率等;在医学诊断中,有病还是无病,需做多项检测:血压、体温、心跳、白血球等①。
提出问题:如何同时对多个随机变量的观测数据进行有效的分析和处理?有两种做法:分开研究;同时研究。
但前者会损失一定的信息量。
多元统计分析就是研究多个随机变量之间相互依赖关系以及内在统计规律的一门学科,利用其中的不同方法可对研究对象进行分类和简化。
二、多元统计分析的产生和发展1.1928年Wishert发表论文《多元正态总体样本协方差阵的精确分布》,是多元统计分析的开端;2.20世纪30年代,Fisher, Hotelling, 许宝碌等奠定了多元统计分析的理论基础;3.20世纪40年代,在心理学、教育学、生物学等方面有不少应用,但由于计算量大,发展受到限制;4.20世纪50年代中期,随着计算机的出现和发展,使多元分析方法在地质、气象、医学和社会学方面得到广泛应用;5.20世纪60年代,通过应用和实践又完善和发展了理论,使得它的应用范围更广;6.20世纪70年代初期,才在我国受到各个领域的极大关注,近30多年在理论上和应用上都取得了若干新进展。
三、多元统计分析的主要范畴(研究内容)在对社会、经济、技术系统的认识过程中,都需要收集和分析大量表现系统特征和运行状态的数据信息。
多元统计分析(1)题目:多兀统计分析知识点研究生___________________________ 专业____________________________ 指导教师________________________完成日期2013年12月目录第一章绪论 (1)§.1什么是多元统计分析 (1)§.2多元统计分析能解决哪些实际问题 (2)§.3主要内容安排 (2)第二章多元正态分布 (2)弦.1基本概念 (2)弦.2多元正态分布的定义及基本性质 (8)1. (多元正态分布)定义 (9)2•多元正态变量的基本性质 (10)§2.3多元正态分布的参数估计X =(X1,X2^|,X p) (11)1•多元样本的概念及表示法 (12)2. 多元样本的数值特征 (12)3」和a 的最大似然估计及基本性质 (15)4.Wishart 分布 (17)第五章聚类分析 (18)§5.1什么是聚类分析 (18)§5.2距离和相似系数 (19)1 • Q—型聚类分析常用的距离和相似系数 (20)2. .......................................................................................................................................... R型聚类分析常用的距离和相似系数 (25)§5.3八种系统聚类方法 (26)1. 最短距离法 (27)2. 最长距离法 (30)3. 中间距离法 (32)4. 重心法 (35)5. 类平均法 (37)6. 可变类平均法 (38)7. 可变法 (38)8. 离差平方和法(Word方法) (38)第六章判别分析 (39)§5.1什么是判别分析 (39)§5.2距离判别法 (40)1、两个总体的距离判别法 (40)2•多总体的距离判别法 (45)§6.3费歇(Fisher)判别法 (46)1•不等协方差矩阵两总体Fisher判别法 (46)2•多总体费歇(Fisher)判别法 (51)§6.4贝叶斯(Bayes)判别法 (58)1•基本思想 (58)2•多元正态总体的Bayes判别法 (59)§6.5逐步判别法 (61)1. 基本思想 (61)2•引入和剔除变量所用的检验统计量 (62)3. .......................................................................................................................................... Bartlett 近似公式 (63)第一章绪论§ 1.1什么是多元统计分析在自然科学、社会科学以及经济领域中,常常需要同时观察多个指标。