2011学年北京市海淀区中考数学模拟试卷
- 格式:doc
- 大小:574.00 KB
- 文档页数:23
北京市海淀区2023-2024学年九年级上学期期中模拟数学试题一、单选题1.“鸡”不仅代表着吉祥,还代表着守时、准信,深受人们喜爱.以下四个图形中能够通过图旋转得到的是( )A .B .C .D .2.关于x 的一元二次方程22310x x +-=的二次项系数,一次项系数,常数项分别是( ) A .2,3,1-B .2,3-,1C .2,3-,1-D .2-,3,13.将抛物线()228y x =--向下平移3个单位,再向右平移3个单位后的解析式为( ) A .()255y x =-- B .()2511y x +-=C .()2511y x --=D .()2511y x =-+4.如图,定点B ,C ,D 在O e 上,连接BO DO CD BC ,,,, 若134C ∠=︒,则BOD ∠的度数为( )A .46︒B .67°C .92︒D .96︒5.二次函数2y ax bx c =++自变量和函数量的部分对应值如下表所示,则关于x 的不等式250ax bx c ++-≤的解集为( )A .2x ≤-B . 0x ≥C .2x ≤-或0x ≥D .20x -≤≤6.如图,在ABC V 中,6AB AC ==,120A ∠=︒,过点A 作AD BC ⊥,延长AD 至点N ,使得AD DN =,在平面上有一动点M ,使90AMN ∠=︒,连接BM ,则BM 的最小值为( )A .3 BC .3D .37.如图,二次函数2y ax bx c =++的图象与y 轴交于()0,c ,对称轴为1x =-,对于此二次函数,有以下四个结论:①2240ab a c ->; ②2a 2b 2c 0-+>;③若此抛物线经过点(),C t n ,则2t -+一定是方程20ax bx c n ++-=的一个根 ;④320b c +<,中所有正确结论的序号是( )A .①④B .①③C .②④D .②③8.风寒效应是一种因刮风所引起的使体感温度较实际气温低的现象,科学家提出用风寒温度描述刮风时的体感温度,并通过大量实验找出了风寒温度和风速的关系.下表中列出了当气温为5℃时,风寒温度T (℃)和风速v (km /h )的几组对应值,那么当气温为5℃时,风寒温度T 与风速v 的函数关系最可能是( )A .正比例函数关系B .一次函数关系C .二次函数关系D .无法确定二、填空题9.在平面直角坐标系中,点()1,6A 关于原点对称的点的坐标是 10.若关于x 的方程2221x mx +-=有一个根为1,则m 的值为11.若点()12,B y -,()20.5,C y ,()31.3,D y 在抛物线()22y x x =+的图象上,则1y ,2y ,3y 的大小关系为(用“>”或“=”进行连接)12.紫砂壶是我国特有的手工制造陶土工艺品,图2是正确使用该工具时的示意图.如图3,O e 为某紫砂壶的壶口,已知A ,B 两点在O e 上,直线l 过点O ,且l AB ⊥于点D ,交Oe 于点C .若12AB =,2CD =,则这个紫砂壶的壶口半径r 的长为13.抛物线226y x x =--,当14x -<<时,函数y 的取值范围是 14.在ABC V 中,90BAC ∠=︒,AB AC =,将ABP V 绕点A 逆时针旋转后能与ACP '△重合,当B ,P ,P '在同一条直线上,连接PC ,若3AP =,5BP =,则PC =.15.已知某抛物线上部分点的横坐标x ,纵坐标的对应值如下表:那么该抛物线的顶点坐标是;当1x k -<≤时,总有40y -≤<,则k 的取值范围是三、解答题16.数学课上,褚老师进行了一个数学游戏,具体规则如下:已知抛物线2y ax bx c =++,给定了I 和II 两个条件框,甲同学要从条件框I 中任选一个条件,乙同学从条件框II 中任选两个条件,若选定的三个条件能使这个抛物线唯一确定,则游戏胜利;若无法唯一确定或此抛物线不存在,则游戏失败. 【条件框I 】【条件框II 】(1)甲同学在条件I 中选择条件③,若游戏失败,写出一个乙同学选择的方案; (2)无论甲同学选择了条件框I 中的哪个条件,游戏都胜利,写出乙同学可能选择的方案.(填写序号即可)17.方程:2115550x xx -+=-.18.如图,在等边ABC V 中,点D 是AB 边上一点,连接CD ,将线段CD 绕点C 按顺时针方向旋转60°后得到CE ,连接AE .求证:AE BD =.19.已知:a 是方程2310x x ++=的一个根,求代数式()()()2()21122a a a a +++-++的值. 20.ABC V 中,90ABC ∠=︒,30A ∠=︒,将ABC V 绕点C 顺时针旋转90︒得到EDC △,其中,点B 对应点D ,点A 对应点E ,连接BD(1)依题意补全图形;直接写出BD 与EC 的数量关系(2)过点D 作DP AB ⊥,交AC 于点T ,若2TC =,求AT 的长21.已知:关于x 的一元二次方程()2102x k k x -+-+=(1)求证:该方程总有两个实数根(2)若方程的有一个根大于3,求k 的取值范围22.在平面直角坐标系xOy 中,抛物线()2y a x h k =-+的对称轴为直线3x = (1)若此抛物线过点()2,3,()0,11,求抛物线的解析式(2)当1a =时,对任意x 值,都有()22a x h k x -+>+,结合图象,直接写出k 的取值范围. 23.列一元二次方程解决实际问题:如图,某校计划在宽为20m ,长为32m 的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪.若要使草坪的面积为2540m ,求道路宽的长度.24.在平面直角坐标系xOy 中,抛物线223y mx mx m =--+(0m >)顶点为Q .(1)求抛物线顶点Q 的坐标.(2)在平面内有三点()()3356A B ,,,,点C 是由点B 向下平移4个单位得到的; ①直接写出点C 的坐标;②若抛物线223y mx mx m =--+(0m >)与三角形ABC 有2个交点,结合图象,直接写出m 的取值范围.25.排球是一项风靡全球的运动,也是北京体育中考选考球类的一项.如图,排球运动场的场地长18m ,球网高度2.24m ,球网在场地中央,距离球场左、右边界均为9m .小刚在场地左侧边界练习发球,排球的飞行路线可以看作是对称轴垂直于水平面的抛物线的一部分.在球飞行时,将球与场地左边界的水平距离记为x (米),与地面的高度记为y (米) 以下是小刚的某一次练习的部分数据:(1)求此抛物线的解析式()()20y a x h k a =-+< (2)在此基础上,小刚继续练习:第一次练习:只将出手高度增加1m ,排球飞行轨迹的大致形状与(1)中完全一样 第二次练习:改变排球的飞行轨迹,使其飞行轨迹近似满足此抛物线:()20.047 2.5y x =--+ ①直接写出第一次练习的抛物线解析式;②我们将满足以下两个条件的发球叫做“有效发球”: 条件I :发球后,排球能过球网;条件II :发球后,排球的第一落点在右半区,且在右边界以里. 任意选择一次练习,判断此次练习是否为一次“有效发球”,并说明理由.26.在平面直角坐标系xOy 中,抛物线()20y ax bx c a =++>的对称轴是x t =,不重合的两点()11,y ,()252,t y -在此抛物线上 (1)若12y y =,求t 的值(2)若12y c y <<, 求t 的取值范围27.在ABC V 中,AC BC =,90ACB ∠=︒,点D 在BC 边上(不与点B ,C 重合),将线段AD 绕点A 顺时针旋转90︒,得到线段AE ,连接DE .(1)根据题意补全图形,并证明:EAC ADC ∠=∠;(2)过点C 作AB 的平行线,交DE 于点F ,用等式表示线段EF 与DF 之间的数量关系,并证明.28.在平面直角坐标系xOy 中,对于线段MN ,点Q 和图形T 进行以下定义:若线段MN 绕点Q 旋转180度后,新线段AB (A 对应M ,B 对应N )在图形T 里(包括图形T 边界),我们就称点Q 是图形T 和线段MN 的凸显点,若点Q 在图形T 里(包括边界),且满足凸显点定义 则称点Q 是图形T 和线段MN 的凸显差距点(1)已知()42,,()62,是线段p 的两个端点,()3,0C -,()3,3D -,()1,3E ,()10F ,,我们将四边形CDEF 称为图形1T .则下列点是图形1T 和线段p 的凸显点的是(填写序号)①()111Q ,; ②()222Q , ; ③()320Q ,; ④()41.51.5Q , (2)若()0M t ,,()1,1N t -,图形2T 以点()2,2P 为中心作边长为6的正方形,且各边均与坐标轴平行,①若 (),2Q Q x ,当12t <≤时,存在点Q 使得Q 为图形2T 和线段MN 的凸显差距点,求此时点Q 横坐标Q x 的取值范围.②以点P 为中心作边长为3的正方形,且各边均与坐标轴平行,我们将其与图形2T 的非重叠部分记为图形3T .直线l 过点()0,2-,线段MN 关于直线l 对称后的线段记作线段m ,无论直线l 如何旋转,总会有点Q 是图形3T 和线段m 的凸显差距点,直接写出t 的取值范围.。
北京市海淀区2024-2025学年九年级数学第一学期开学统考模拟试题题号一二三四五总分得分批阅人A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)的结果是()A .2B .﹣2C .±2D .±42、(4分)如图,已知数轴上点P 表示的数为1-,点A 表示的数为1,过点A 作直线l 垂直于PA ,在l 上取点B ,使1AB =,以点P 为圆心,以PB 为半径作弧,弧与数轴的交点C 所表示的数为()A .B 1-C 1D .13、(4分)数据42.610-⨯用小数表示为()A .0.0026B .0.00026C .0.00026-D .0.0000264、(4分)已知关于x 的一元二次方程......()222340m x x m -++-=的一个根是0,则m 的值为()A .2m =±B .2m =C .2m =-D .1m =5、(4分)下列代数式属于分式的是()A .2xB .3yC .1xx -D .2x+y6、(4分)下列各式中,不是二次根式的是()A B C .D .7、(4分)方程20x x -=的根是()A .1x =B .120x x ==C .121x x ==D .10x =,21x =8、(4分)服装店为了解某品牌外套销售情况,对各种码数销量进行统计店主最应关注的统计量是()A .平均数B .中位数C .方差D .众数二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)若式子有意义,则x 的取值范围为___________.10、(4分)如图,在菱形ABCD 中,∠ABC =∠EAF =60,∠BAE =20,则∠CEF =________.11、(4分)如图,在Rt △ABC 中,D 是斜边AB 的中点,AB=2,则CD 的长为_____.12、(4分)如图,双曲线3(0)y x x =>经过四边形OABC 的顶点A 、C ,∠ABC =90°,OC平分OA 与x 轴正半轴的夹角,AB ∥x 轴,将△ABC 沿AC 翻折后得到△AB 'C ,B '点落在OA 上,则四边形OABC 的面积是_____.13、(4分)若分式2x x x 的值为零,则x=___________。
2023-2024学年北京市丰台区中考数学专项提升仿真模拟卷(4月)一、选一选(本大题有16个小题,共42分.1~10小题各3分;11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若()1()12⨯-=,则()内的数为()A.2B.2- C.12D.12-2.将数字21600用科学记数法表示应为()A.0.216×105B.21.6×103C.2.16×103D.2.16×1043.下列图形中,是轴对称图形,但没有是对称图形的是()A.B. C.D.4.下列计算正确的是()A.8= B.22(3)9x x +=+ C.326()ab ab = D.0( 3.14)1π-=5.如图,将甲、乙、丙、丁四个小正方形中的一个剪掉,使余下的部分没有能围成一个正方体,剪掉的这个小正方形是A.甲B.乙C .丙D.丁6.如图,在数轴上表示数的点可能是()A.点EB.点FC.点PD.点Q7.一组数据:1,3,3,5,若添加一个数据3,则下列统计量中发生变化的是()A.平均数B.中位数C.众数D.方差8.计算:1252-50×125+252=()A.100B.150C.10000D.225009.我国是最先认识负数,并进行相关运算的国家,在古代数学名著《九章算术》里,就记载了利用算筹实施“正负术”的方法,图(1)表示的是计算()34+-的过程.按照这种方法,图(2)表示的过程应是()A.()()52-+- B.()52-+ C.()52+- D.52+10.将量角器按如图所示的方式放置在三角形纸板上,使点C 在半圆上.点A 、B 的读数分别为86°、30°,则∠ACB 的大小为()A.15B.28C.29D.3411.已知二元方程组54200458m n m n +=⎧⎨-=⎩①②,如果用加减法消去n ,则下列方法可行的是()A.①×4+②×5B.①×5+②×4C.①×5﹣②×4D.①×4﹣②×512.如图,长为8cm 的橡皮筋放置在x 轴上,固定两端A 和B ,然后把中点C 向上拉升3cm 至D 点,则橡皮筋被拉长了()A.2cmB.3cmC.4cmD.5cm13.九年级学生去距学校10km的博物馆参观,一部分学生骑自行车先走,过了20min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为x km/h,则所列方程正确的是()A.1010123x x=- B.1010202x x=-C.1010123x x=+ D.1010202x x=+14.反比例函数y=mx的图象如图所示,则下列结论正确的是()A.常数m<1B.y随x的增大而增大C.若A(﹣1,h),B(2,k)在图象上,则h<kD.若P(﹣x,y)在图象上,则P′(x,﹣y)也在图象上15.已知,如图,△ABC是等边三角形,四边形BDEF是菱形,其中∠E=60°,将菱形BDEF绕点B按顺时针方向旋转,甲、乙两位同学发现在此旋转过程中,有如下结论:甲:线段AF与线段CD的长度总相等;乙:直线AF和直线CD所夹的锐角的度数没有变;那么,你认为()A.甲、乙都对B.乙对甲没有对C.甲对乙没有对D.甲、乙都没有对16.如图,在Rt △ABC 中,∠ACB =90°,D 为斜边AB 的中点,动点P 从B 点出发,沿B →C →A 运动.如图(1)所示,设S △DPB =y ,点P 运动的路程为x ,若y 与x 之间的函数图象如图(2)所示,则图(2)中Q 点的坐标是()A.(4,4)B.(4,3)C.(4,6)D.(4,12)二、填空题(本大题有3个小题,共10分.17-18小题各3分,19小题4分,每空2分.把答案写在题中横线上)17.已知|a-1|=2,则a=_______________________.18.如图,已知△ABC ,按以下步骤作图:①分别以B ,C 为圆心,以大于12BC 的长为半径作弧,两弧相交于两点M ,N ;②作直线MN 交AB 于点D ,连接CD .若CD =AC ,∠A =50°,则∠ACB 的度数为()A.90°B.95°C.105°D.110°19.如图,在数轴上,点A 表示数1,现将点A 沿数轴做如下移动:次将点A 向左移动3个单位长度到达点1A ,第2次将点1A 向右平移6个单位长度到达点2A ,第3次将点2A 向左移动9个单位长度到达点3A …,按照这种规律移动下去,则第2017次移动到点2017A 时,2017A 在数轴上对应的实数是_______.三、解答题(本大题共7个小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.请你阅读小明和小红两名同学的解题过程,并回答所提出的问题.计算:23311x x x -+--问:小明在第步开始出错,小红在第步开始出错(写出序号即可);请你给出正确解答过程.21.如图,已知∠MON=25°,矩形ABCD 的边BC 在OM 上,对角线AC ⊥ON .(1)求∠ACD 度数;(2)当AC=5时,求AD 的长.(参考数据:sin25°=0.42;cos25°=0.91;tan25°=0.47,结果到0.1)22.垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分.(1)写出运动员甲测试成绩的众数为_________;运动员乙测试成绩的中位数为_________;运动员丙测试成绩的平均数为_________;2=0.8、S乙2=0.4、S丙2=0.8,请综合分析,在他们三人中(2)经计算三人成绩的方差分别为S甲选择一位垫球成绩且较为稳定的接球能手作为人,你认为选谁更合适?为什么?(3)甲、乙、丙三人相互之间进行垫球练习,每个人的球都等可能的传给其他两人,球从甲手中传出,第三轮结束时球回到甲手中的概率是多少?(用树状图或列表法解答)23.某校准备组织师生共60人,从甲地乘动车前往乙地参加夏令营,动车票价格如表所示:(教师按成人票价购买,学生按学生票价购买).若师生均购买二等座票,则共需1020元.(1)参加的教师和学生各有多少人?(2)由于部分教师需提早前往做准备工作,这部分教师均购买一等座票,后续前往的教师和学生均购买二等座票.设提早前往的教师有x人,购买一、二等座票全部费用为y元.①求y关于x的函数关系式;②若购买一、二等座票全部费用没有多于1030元,则提早前往的教师至多只能多少人?24.如图①,△ABC中,AC=BC,∠A=30°,点D在AB边上且∠ADC=45°.(1)求∠BCD的度数;(2)将图①中的△BCD绕点B顺时针旋转,得到△BC′D′.当点D′恰好落在BC边上时,如图②所示,连接C′C并延长交AB于点E.①求∠C′CB的度数;②求证:△C′BD′≌△CAE.25.如图,抛物线l:y=﹣x2+bx+c(b,c为常数),其顶点E在正方形ABCD内或边上,已知点A(1,2),B(1,1),C(2,1).(1)直接写出点D的坐标;(2)若l点B,C,求l的解析式;(3)设l与x轴交于点M,N,当l的顶点E与点D重合时,求线段MN的值;当顶点E在正方形ABCD内或边上时,直接写出线段MN的取值范围;(4)若l正方形ABCD的两个顶点,直接写出所有符合条件的c的值.26.平面上,Rt△ABC与直径为CE的半圆O如图1摆放,∠B=90°,AC=2CE=m,BC=n,半圆O交BC边于点D,将半圆O绕点C按逆时针方向旋转,点D随半圆O旋转且∠ECD始终等于∠ACB,旋转角记为α(0°≤α≤180°)(1)当α=0°时,连接DE,则∠CDE=°,CD=;(2)试判断:旋转过程中BDAE的大小有无变化,请仅就图2的情形给出证明;(3)若m=10,n=8,当α=∠ACB时,求线段BD的长;(4)若m=6,n=,当半圆O旋转至与△ABC的边相切时,直接写出线段BD的长.2023-2024学年北京市丰台区中考数学专项提升仿真模拟卷(4月)一、选一选(本大题有16个小题,共42分.1~10小题各3分;11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若()1()12⨯-=,则()内的数为()A.2B.2-C.12D.1 2-【正确答案】B【详解】解:∵1(2)()12-⨯-=,∴()内的数为-2.故选B.2.将数字21600用科学记数法表示应为()A.0.216×105B.21.6×103C.2.16×103D.2.16×104【正确答案】D【详解】分析:由科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的值与小数点移动的位数相同.当原数值>1时,n是正数;当原数的值<1时,n是负数.详解:将数字21600用科学记数法表示应为2.16×104,故选D.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列图形中,是轴对称图形,但没有是对称图形的是()A. B. C. D.【正确答案】A【分析】根据对称图形与轴对称图形的概念进行判断即可.【详解】解:A.是轴对称图形,但没有是对称图形,故此选项符合题意;B .是对称图形,没有是轴对称图形,故此选项没有合题意;C .既是对称图形,又是轴对称图形,故此选项没有合题意;D .是对称图形,也是轴对称图形,故此选项没有合题意;故选:A .本题考查的是对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,对称图形是要寻找对称,旋转180度后与自身重合.4.下列计算正确的是()A.8= B.22(3)9x x +=+ C.326()ab ab = D.0( 3.14)1π-=【正确答案】D【详解】解:A 4=,故本选项错误;B .(22(3)69x x x +=++,故本选项错误;C .3226()ab a b =,故本选项错误;D .∵π﹣3.14≠0,∴0( 3.14)1π-=,故本选项正确;故选D .5.如图,将甲、乙、丙、丁四个小正方形中的一个剪掉,使余下的部分没有能围成一个正方体,剪掉的这个小正方形是A.甲B.乙C.丙D.丁【正确答案】D【详解】解:剪去乙或丙时,可构成“一四一”型的正方体展开图;剪去甲时,可构成“一三二”型正方体展开图;剪去丁时,围没有成正方体.故选D.6.如图,在数轴上表示数的点可能是()A.点EB.点FC.点PD.点Q【正确答案】B【详解】解:∵﹣32,∴由数轴可知点F所表示的数大于﹣3而小于﹣2.故选B.点睛:本题主要考查了实数与数轴之间的对应关系,主要根据数在数轴上的位置判断数的大小,以及通过求无理数近似值从而比较数的大小进行判断.7.一组数据:1,3,3,5,若添加一个数据3,则下列统计量中发生变化的是()A.平均数B.中位数C.众数D.方差【正确答案】D【分析】依据定义和公式分别计算新旧两组数据的平均数、中位数、众数、方差求解即可.【详解】原数据的1、3、3、5的平均数为13354+++=3,中位数为332+=3,众数为3,方差为14×[(1﹣3)2+(3﹣3)2×2+(5﹣3)2]=2;新数据1、3、3、3、5的平均数为133355++++=3,中位数为3,众数为3,方差为15×[(1﹣3)2+(3﹣3)2×3+(5﹣3)2]=1.6;∴添加一个数据3,方差发生变化,故选D.本题主要考查的是众数、中位数、方差、平均数,熟练掌握相关概念和公式是解题的关键8.计算:1252-50×125+252=()A.100B.150C.10000D.22500【正确答案】C【详解】试题分析:原式=1252﹣2×25×125+252=(125-25)2=1002=10000.故选C.点睛:本题考查了完全平方公式的应用,熟记完全平方公式的特点是解决此题的关键.9.我国是最先认识负数,并进行相关运算的国家,在古代数学名著《九章算术》里,就记载了利用算筹实施“正负术”的方法,图(1)表示的是计算()34+-的过程.按照这种方法,图(2)表示的过程应是()A.()()52-+- B.()52-+ C.()52+- D.52+【正确答案】C【分析】由图(1)可得白色表示正数,黑色表示负数,观察图(2)即可列式【详解】解:由图(1)可得白色表示正数,黑色表示负数,∴图(2)表示的过程应是在计算5+(-2)故选:C此题考查了有理数的加法,解题关键在于理解图(1)表示的计算10.将量角器按如图所示的方式放置在三角形纸板上,使点C 在半圆上.点A 、B 的读数分别为86°、30°,则∠ACB 的大小为()A.15B.28C.29D.34【正确答案】B【分析】先由题意求出圆心角∠AOB 的度数,再根据圆周角定理即可求得结果.【详解】由题意得∠AOB=86°-30°=56°则∠ACB∠AOB=28°故选B.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,一条弧所对的圆周角是它所对的圆心角的一半.11.已知二元方程组54200458m nm n+=⎧⎨-=⎩①②,如果用加减法消去n,则下列方法可行的是()A.①×4+②×5B.①×5+②×4C.①×5﹣②×4D.①×4﹣②×5【正确答案】B【分析】利用加减消元法消去n即可.【详解】解:已知二元方程组54200 458m nm n+=⎧⎨-=⎩①②,如果用加减法消去n,则下列方法可行的是①×5+②×4,故选:B.此题考查二元方程组的解法,解题的关键是掌握代入消元法或加减消元法,根据每个方程组的特点选择适合是解法.12.如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm至D点,则橡皮筋被拉长了()A.2cmB.3cmC.4cmD.5cm【正确答案】A【分析】根据勾股定理可以得到AD和BD的长度,然后用AD+BD-AB的长度即为所求.【详解】根据题意可得BC=4cm,CD=3cm,根据Rt△BCD的勾股定理可得BD=5cm,则AD=BD=5cm,所以橡皮筋被拉长了(5+5)-8=2cm.故选:A.主要考查了勾股定理解直角三角形.13.九年级学生去距学校10km的博物馆参观,一部分学生骑自行车先走,过了20min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为x km/h,则所列方程正确的是()A.1010123x x=- B.1010202x x=-C.1010123x x=+ D.1010202x x=+【正确答案】C【详解】试题分析:设骑车学生的速度为xkm/h,则汽车的速度为2xkm/h,由题意得,1010123x x=+.故选C.考点:由实际问题抽象出分式方程.14.反比例函数y=mx的图象如图所示,则下列结论正确的是()A.常数m<1B.y随x的增大而增大C.若A (﹣1,h ),B (2,k )在图象上,则h <k D.若P (﹣x ,y )在图象上,则P′(x ,﹣y )也在图象上【正确答案】D【详解】解:∵双曲线的两支分别位于第二、第四象限,∴m <0,∴选项A 没有正确;∵在每一象限内y 随x 的增大而增大,∴选项B 没有正确;∵h =1m =﹣m >0,k =02m<,∴h >k ,∴选项C 没有正确;∵反比例函数y =mx的图象成对称,∴若P (﹣x ,y )在图象上,则P ′(x ,﹣y )也在图象上,∴选项D 正确.故选D .15.已知,如图,△ABC 是等边三角形,四边形BDEF 是菱形,其中∠E =60°,将菱形BDEF 绕点B 按顺时针方向旋转,甲、乙两位同学发现在此旋转过程中,有如下结论:甲:线段AF 与线段CD 的长度总相等;乙:直线AF 和直线CD 所夹的锐角的度数没有变;那么,你认为()A.甲、乙都对B.乙对甲没有对C.甲对乙没有对D.甲、乙都没有对【正确答案】A【详解】解:连接DF 、AF 、CD ,如图,∵四边形BDEF 为菱形,∴BD =BF ,而DF =BD ,∴△BDF 为等边三角形,∴∠DBF =60°.∵△ABC 为等边三角形,∴BA =BC ,∠ABC =60°,∴∠ABF =∠CBD ,∴△ABF 绕点B 顺时针旋转60°可得到△CBD ,∴AF =CD ,∠FBA =∠DBC ,∴∠AFC =∠ABC =60°,即直线AF 和直线CD 所夹的锐角的度数为60°.故选A .点睛:本题考查了旋转的性质:对应点到旋转的距离相等;对应点与旋转所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了菱形和等边三角形的性质.16.如图,在Rt △ABC 中,∠ACB =90°,D 为斜边AB 的中点,动点P 从B 点出发,沿B →C →A 运动.如图(1)所示,设S △DPB =y ,点P 运动的路程为x ,若y 与x 之间的函数图象如图(2)所示,则图(2)中Q 点的坐标是()A.(4,4)B.(4,3)C.(4,6)D.(4,12)【正确答案】B【详解】解:根据题意和图象可得:BC =4,AC =7﹣4=3.∵∠ACB =90°,点D 为AB 的中点,∴当x =4时,2ACB DPB S S =,∴y =341322⨯⨯=,即点Q 的坐标是(4,3).故选B .点睛:本题考查了动点问题的函数图象,解题的关键是明确题意,利用数形的思想解答问题.二、填空题(本大题有3个小题,共10分.17-18小题各3分,19小题4分,每空2分.把答案写在题中横线上)17.已知|a-1|=2,则a=_______________________.【正确答案】-1或3【分析】先根据题意求出a-1的值,从而没有难求得a 的值,注意值等于正数的数有两个.【详解】解:∵|a-1|=2,∴a-1=±2,∴a=3或a=-1,故-1或3.此题主要考查学生对值等于一个正数的数有两个的理解及运用能力.18.如图,已知△ABC,按以下步骤作图:①分别以B,C为圆心,以大于1BC的长为半径2作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD.若CD=AC,∠A=50°,则∠ACB的度数为()A.90°B.95°C.105°D.110°【正确答案】C【分析】根据等腰三角形的性质得到∠CDA=∠A=50°,根据三角形内角和定理可得∠DCA=80°,根据题目中作图步骤可知,MN垂直平分线段BC,根据线段垂直平分线定理可知BD=CD,根据等边对等角得到∠B=∠BCD,根据三角形外角性质可知∠B+∠BCD=∠CDA,进而求得∠BCD=25°,根据图形可知∠ACB=∠ACD+∠BCD,即可解决问题.【详解】∵CD=AC,∠A=50°∴∠CDA=∠A=50°∵∠CDA+∠A+∠DCA=180°∴∠DCA=80°根据作图步骤可知,MN垂直平分线段BC∴BD=CD∴∠B=∠BCD∵∠B+∠BCD=∠CDA∴2∠BCD=50°∴∠BCD=25°∴∠ACB=∠ACD+∠BCD=80°+25°=105°故选C本题考查了等腰三角形的性质、三角形内角和定理、线段垂直平分线定理以及三角形外角性质,熟练掌握各个性质定理是解题关键.19.如图,在数轴上,点A 表示数1,现将点A 沿数轴做如下移动:次将点A 向左移动3个单位长度到达点1A ,第2次将点1A 向右平移6个单位长度到达点2A ,第3次将点2A 向左移动9个单位长度到达点3A …,按照这种规律移动下去,则第2017次移动到点2017A 时,2017A 在数轴上对应的实数是_______.【正确答案】-3026【分析】根据点A 在数轴上移动的方向及距离计算出前几项的结果,得出n 为奇数时结果为3(1)12n --+;n 为偶数时的结果为312n+,把n=2017代入计算即可得答案.【详解】∵将点A 向左移动3个单位长度到达点1A ,A 表示数1,∴A 1表示的数是1-3=-2,∵将点1A 向右平移6个单位长度到达点2A ,∴A 2表示的数是-2+4=6,同理可得:A 3表示的数为-5,A 4表示的数是7,A 5表示的数是-8,A 6表示的数是10,……∴当n 为奇数时,A n =3(1)12n +-+,当n 为偶数时,A n =312n+∴A 2017=3(20171)12+-+=-3026.故答案为-3026本题考查数轴及数字类变化规律,根据所求出的数,得出n 为奇数和偶数时的结果变化规律是解题关键.三、解答题(本大题共7个小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.请你阅读小明和小红两名同学的解题过程,并回答所提出的问题.计算:23311x x x -+--问:小明在第步开始出错,小红在第步开始出错(写出序号即可);请你给出正确解答过程.【正确答案】(1)②,②;正确的解答见解析【详解】试题分析:根据分式的加减,可得答案.试题解析:(1)②,②,原式=()()()22313261111x x x x x x x +-+-=+---21.如图,已知∠MON=25°,矩形ABCD 的边BC 在OM 上,对角线AC ⊥ON .(1)求∠ACD 度数;(2)当AC=5时,求AD 的长.(参考数据:sin25°=0.42;cos25°=0.91;tan25°=0.47,结果到0.1)【正确答案】(1)25°;(2)2.1.【详解】试题分析:(1)延长AC 交ON 于点E ,如图,利用互余计算出∠OCE=65°,再利用对顶角相等得到∠ACB=∠OCE=65°,再根据∠ACD=90°-∠ACB 即可解决问题;(2)接着在Rt △ABC 中利用∠ACB 的余弦可计算出BC ,然后根据矩形的性质即可得到AD的长.试题解析:(1)延长AC交ON于点E,如图,∵AC⊥ON,∴∠OEC=90°,在Rt△OEC中,∵∠O=25°,∴∠OCE=65°,∴∠ACB=∠OCE=65°,∴∠ACD=90°﹣∠ACB=25°(2)∵四边形ABCD是矩形,∴∠ABC=90°,AD=BC,在Rt△ABC中,∵cos∠ACB=BC AC,∴BC=AC•cos65°=5×0.42=2.1,∴AD=BC=2.1.22.垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分.(1)写出运动员甲测试成绩的众数为_________;运动员乙测试成绩的中位数为_________;运动员丙测试成绩的平均数为_________;(2)经计算三人成绩的方差分别为S 甲2=0.8、S 乙2=0.4、S 丙2=0.8,请综合分析,在他们三人中选择一位垫球成绩且较为稳定的接球能手作为人,你认为选谁更合适?为什么?(3)甲、乙、丙三人相互之间进行垫球练习,每个人的球都等可能的传给其他两人,球从甲手中传出,第三轮结束时球回到甲手中的概率是多少?(用树状图或列表法解答)【正确答案】(1)7分;7分;6.3分;(2)选乙运动员更合适;(3)14.【详解】试题分析:(1)观察表格可知甲运动员测试成绩的众数,观察折线统计图可知乙运动员测试成绩的中位数, 6.3x =丙(分);(2)易知7x =甲(分),7x =乙(分), 6.3x =丙(分),根据题意没有难判断;(3)画出树状图,即可解决问题;试题解析:解:(1)观察表格可知甲运动员测试成绩的众数是7分,观察折线统计图可知乙运动员测试成绩的中位数是7分,x 丙=254637182431⨯+⨯+⨯+⨯+++=6.3(分);(2)∵7x =甲(分),7x =乙(分), 6.3x =丙(分),∴x x =甲乙>2x S 甲丙,>2S 乙∴选乙运动员更合适.(3)树状图如图所示,第三轮结束时球回到甲手中的概率是2184P ==.23.某校准备组织师生共60人,从甲地乘动车前往乙地参加夏令营,动车票价格如表所示:(教师按成人票价购买,学生按学生票价购买).若师生均购买二等座票,则共需1020元.(1)参加的教师和学生各有多少人?(2)由于部分教师需提早前往做准备工作,这部分教师均购买一等座票,后续前往的教师和学生均购买二等座票.设提早前往的教师有x 人,购买一、二等座票全部费用为y 元.①求y 关于x 的函数关系式;②若购买一、二等座票全部费用没有多于1030元,则提早前往的教师至多只能多少人?【正确答案】(1)参加的教师有10人,学生有50人;(2)①y=4x+1020;②2.【详解】试题分析:(1)设参加的教师有a 人,学生有b 人,根据等量关系:师生共60人;若师生均购买二等座票,则共需1020元;列出方程组,求出方程组的解即可;(2)①根据购买一、二等座票全部费用=购买一等座票钱数+教师购买二等座票钱数+学生购买二等座票钱数,依此可得解析式;②根据没有等关系:购买一、二等座票全部费用没有多于1030元,列出方程求解即可.试题解析:解:(1)设参加的教师有a 人,学生有b 人,依题意有:6022161020a b a b +=⎧⎨+=⎩,解得:1050a b =⎧⎨=⎩.故参加的教师有10人,学生有50人;(2)①依题意有:y =26x +22(10﹣x )+16×50=4x +1020.故y 关于x 的函数关系式是y =4x +1020(0<x <10);②依题意有4x+1020≤1030,解得:x≤2.5.故提早前往的教师至多只能2人.点睛:本题主要考查对函数,二元方程组,一元没有等式等知识点的理解和掌握,此题是一个拔高的题目,有一定的难度.24.如图①,△ABC中,AC=BC,∠A=30°,点D在AB边上且∠ADC=45°.(1)求∠BCD的度数;(2)将图①中的△BCD绕点B顺时针旋转,得到△BC′D′.当点D′恰好落在BC边上时,如图②所示,连接C′C并延长交AB于点E.①求∠C′CB的度数;②求证:△C′BD′≌△CAE.【正确答案】(1)∠BCD=15°;(2)①∠CC'B=75°;②证明见解析.【详解】试题分析:(1)根据三角形外角性质,即可得到∠BCD=∠ADC﹣∠CBA=15°;(2)①由旋转可得CB=C'B=AC,∠C'BD'=∠CBD=∠A=30°,再根据等腰三角形的性质,即可得到∠CC'B=∠C'CB=75°;②先根据AC=C'B,∠C'BD'=∠A,得出∠CEB=∠C'CB﹣∠CBA=45°,进而得到∠ACE=∠CEB ﹣∠A=15°,据此可得∠BC'D'=∠BCD=∠ACE,运用ASA即可判定△C'BD'≌△CAE.试题解析:解:(1)∵AC=BC,∠A=30°,∴∠CBA=∠CAB=30°.∵∠ADC=45°,∴∠BCD=∠ADC ﹣∠CBA=15°=∠BC'D';(2)①由旋转可得CB=C'B=AC,∠C'BD'=∠CBD=∠A=30°,∴∠CC'B=∠C'CB=75°;②证明:∵AC=C'B,∠C'BD'=∠A,∴∠CEB=∠C'CB﹣∠CBA=45°,∴∠ACE=∠CEB﹣∠A=15°,∴∠BC'D'=∠BCD=∠ACE.在△C'BD'和△CAE中,'''''BC D ACEAC C BC BD A∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△C'BD'≌△CAE(ASA).点睛:本题主要考查了旋转的性质,全等三角形判定与性质以及等腰三角形的性质的综合应用,解题时注意:两角及其夹边分别对应相等的两个三角形全等.25.如图,抛物线l:y=﹣x2+bx+c(b,c为常数),其顶点E在正方形ABCD内或边上,已知点A(1,2),B(1,1),C(2,1).(1)直接写出点D的坐标;(2)若l点B,C,求l的解析式;(3)设l与x轴交于点M,N,当l的顶点E与点D重合时,求线段MN的值;当顶点E在正方形ABCD内或边上时,直接写出线段MN的取值范围;(4)若l正方形ABCD的两个顶点,直接写出所有符合条件的c的值.【正确答案】(1)(2,2)(2)y=﹣x2+3x﹣1(3)2≤MN2(4)﹣1或1或﹣2【分析】(1)根据正方形的性质得到D点的横坐标和C点的横坐标相同,其纵坐标和点A的纵坐标相同,由此得到点D的坐标;(2)利用待定系数法求解;(3)将顶点E的坐标为(2,2),代入抛物线解析式,求出点N,M的坐标,即可得到MN的长度,当点E与点B重合时求出M、N的坐标,即可得到MN取值范围;(4)若l正方形ABCD的两个顶点,则可能B、D;B、C;A、C,将每组点坐标代入解析式即【小问1详解】解:从图上看,D点的横坐标和C点的横坐标相同,其纵坐标和点A的纵坐标相同,故点D的坐标为(2,2)故(2,2);【小问2详解】解:把B(1,1)、C(2,1)代入解析式可得11142b cb c=-++⎧⎨=-++⎩,解得31bc=⎧⎨=-⎩,∴l的解析式为:y=﹣x2+3x﹣1;【小问3详解】解:∵顶点E的坐标为(2,2),∴抛物线解析式为y=﹣(x﹣2)2+2,把y=0代入得﹣(x﹣2)2+2=0,解得x1=2,x2=,即N(,0),M(2,0),所以MN=﹣(2)=;当顶点E的坐标为(1,1),∴抛物线解析式为y=﹣(x﹣1)2+1,把y=0代入得﹣(x﹣1)2+1=0,解得x1=0,x2=2,即M(0,0),N(2,0),所以MN=2﹣0=2,∴2≤MN,故2≤MN;【小问4详解】解:若l正方形ABCD的两个顶点,则可能B、D;B、C;A、C,由于顶点E在正方形ABCD内或边上,故没有可能A、D,当抛物线过点B、D时,将点B、D的坐标代入抛物线表达式得:11242b cb c=-++⎧⎨=-++⎩,解得32bc=⎧⎨=-⎩,当抛物线过点A 、C 时,同理可得c =1;当抛物线过点B 、C 时,同理可得c =﹣1,故﹣1或1或﹣2.此题考查了二次函数的综合知识及正方形的性质,待定系数法求函数解析式,函数图象与坐标轴的交点坐标,正确掌握二次函数的综合知识并应用是解题的关键.26.平面上,Rt △ABC 与直径为CE 的半圆O 如图1摆放,∠B =90°,AC =2CE =m ,BC =n ,半圆O 交BC 边于点D ,将半圆O 绕点C 按逆时针方向旋转,点D 随半圆O 旋转且∠ECD 始终等于∠ACB ,旋转角记为α(0°≤α≤180°)(1)当α=0°时,连接DE ,则∠CDE =°,CD =;(2)试判断:旋转过程中BDAE的大小有无变化,请仅就图2的情形给出证明;(3)若m =10,n =8,当α=∠ACB 时,求线段BD 的长;(4)若m =6,n =,当半圆O 旋转至与△ABC 的边相切时,直接写出线段BD 的长.【正确答案】(1)90°,2n ;(2)无变化,证明见解析;(3)1255;(4)BD=或3.【分析】(1)根据直径的性质,由DE ∥AB 得CD CECB CA=即可解决问题.(2)只要证明△ACE ∽△BCD 即可.(3)求出AB 、AE ,利用△ACE ∽△BCD 即可解决问题.(4)分类讨论:①如图5中,当α=90°时,半圆与AC 相切,②如图6中,当α=90°+∠ACB 时,半圆与BC 相切,分别求出BD 即可.【详解】解:(1)①如图1中,当α=0时,连接DE ,则∠CDE =90°.∵∠CDE =∠B =90°,∴DE ∥AB ,∴CE CD AC CB==12.∵BC =n ,∴CD =12n .故答案为90°,12n .(2)如图3中,∵∠ACB =∠DCE ,∴∠ACE =∠BCD .∵CD BC nCE AC m ==,∴△ACE ∽△BCD ,∴BD BC nAE AC m==.(3)如图4中,当α=∠ACB 时.在Rt △ABC 中,∵AC =10,BC =8,∴AB =6.在Rt △ABE 中,∵AB =6,BE =BC ﹣CE =3,∴AE =3,由(2)可知△ACE ∽△BCD ,∴BD BCAE AC ==810,∴BD =5.(4)∵m =6,n =CE =3,CD ,AB =2,①如图5中,当α=90°时,半圆与AC 相切.在Rt △DBC 中,BD .②如图6中,当α=90°+∠ACB 时,半圆与BC 相切,作EM ⊥AB 于M .∵∠M =∠CBM =∠BCE =90°,∴四边形BCEM 是矩形,∴3BM EC ME ===,∴AM =5,AE ,由(2)可知DB AE =3,∴BD =21143.∴BD 为或3.本题考查了圆的有关知识,相似三角形的判定和性质、勾股定理等知识,正确画出图形是解决问题的关键,学会分类讨论的思想,本题综合性比较强,属于中考压轴题.2023-2024学年北京市丰台区中考数学专项提升仿真模拟卷(5月)一、选一选(本大题共10小题,每小题3分,共30分)1.7-的值为()A.7B.17C.17-D.7-2.据统计,2013年河南省旅游业总收入达到约3875.5亿元.若将3875.5亿用科学记数法表示为3.875510n ⨯,则n 等于()A.10B.11C.12D.133.如图所示的几何体的俯视图是().A. B. C. D.4.方程()33111x x x =-++的根为() A.1-或3B.1- C.3D.1或3-5.在体育测试中,小芳所在小组8人的成绩分别是:46,47,48,48,49,49,49,50,则这8人体育成绩的中位数和众数分别是()A.47,46B.48,47C.48.5,49D.49,496.方程是关于x 的一元二次方程的是() A.211x x+= B.20ax bx c ++=C.()()121x x ++= D.23250x xy y --=7.如图所示,有一张一个角为60°的直角三角形纸片,沿其一条中位线剪开后,没有能拼成的四边形是()A.邻边没有等的矩形B.等腰梯形C.有一角是锐角的菱形D.正方形8.三张外观相同的卡片分别标有数字1,2,3,从中随机性抽出两张,则这两张卡片上的数字恰好都小于3的概率是()A.19 B.16 C.13 D.239.如图,在Rt ABC中, C=90°,AC=1cm,BC=2cm,点P从A出发,以1cm/s的速沿折线AC→CB→BA运动,最终回到A点.设点P的运动时间为x(s),线段AP的长度为y(cm),则能反映y与x之间函数关系的图像大致是()A. B. C. D.10.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,把△ABC绕AB边上的点D顺时针旋转90°得到△A′B′C′,A′C′交AB于点E,若AD=BE,则△A′DE的面积是()A.3B.5C.11D.6二、填空题(本大题共5小题,每小题3分,共15分)。
2011年北京市中考数学模拟试卷2011年北京市中考数学模拟试卷一、选择题(共8小题,每小题4分,满分32分)D±2.(4分)(2010•西藏)已知如图,△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()3.(4分)(2010•东城区一模)布袋中装有1个红球,2个白球,3个黑球,它们除颜色外完全相同,从袋中任意摸.C D.4.(4分)(2010•海淀区二模)某班的9名同学的体重分别是(单位:千克):61,59,70,59,65,67,59,63,5.(4分)(2010•朝阳区二模)全球可被人类利用的淡水总量仅占总水量的0.00003,因此珍惜水,保护水是我们每6.(4分)(2010•东城区二模)如图,模块①﹣⑤均由4个棱长为1的小正方体构成,模块⑥由15个棱长为1的小正方体构成.现从模块①﹣⑤中选出三个放到模块⑥上,使得模块⑥成为一个棱长为3的大正方体.则下列选择方案中,能够完成任务的为()7.(4分)(1999•南京)如图,两个同心圆,大圆的弦AB与小圆相切于点P,大圆的弦CD经过点P,且CD=13,PD=4,则两圆组成的圆环的面积是()8.(4分)(2009•临沂)矩形ABCD 中,AD=8cm ,AB=6cm .动点E 从点C 开始沿边CB 向点B 以2cm/s 的速度运动,动点F 从点C 同时出发沿边CD 向点D 以1cm/s 的速度运动至点D 停止.如图可得到矩形CFHE ,设运动时间为x (单位:s ),此时矩形ABCD 去掉矩形CFHE 后剩余部分的面积为y (单位:cm 2),则y 与x 之间的函数关系用图象表示大致是下图中的( ).CD .二、填空题(共4小题,每小题4分,满分16分) 9.(4分)(2013•昌平区二模)若分式的值为0,则x 的值为 _________ .10.(4分)(2012•开平区二模)如图,点A 、B 、C 是半径为6的⊙O 上的点,∠B=30°,则的长为 _________ .11.(4分)(2010•西城区一模)如图,在△ABC 中,D 、E 分别为AB 、AC 边上的点,DE ∥BC ,若AD=3,DB=5,DE=1.2,则BC= _________ .12.(4分)(2009•桂林)如图,在△ABC中,∠A=α,∠ABC的平分线与∠ACD的平分线交于点A1得∠A1,∠A1BC 的平分线与∠A1CD的平分线交于点A2,得∠A2,…,∠A2008BC的平分线与∠A2008CD的平分线交于点A2009,得∠A2009,则∠A2009=_________.三、解答题(共13小题,满分72分)13.(5分)(2008•石景山区一模)14.(5分)(2011•广东模拟)解不等式组,并把它的解集表示在数轴上.15.(5分)(2009•长沙)如图,E、F是平行四边形ABCD对角线AC上两点,BE∥DF,求证:AF=CE.16.(5分)(2010•海淀区二模)已知x2﹣6xy+9y2=0,求代数式的值.17.(5分)(2012•中山二模)列方程(组)解应用题:小明乘坐火车从某地到上海去参观世博园,已知此次行程为2160千米,城际直达动车组的平均时速是特快列车的1.6倍.小明购买火车票时发现,乘坐动车组比乘坐特快列车少用6小时,求小明乘坐动车组到上海需要的时间.18.(5分)(2012•潮阳区模拟)如图,点P的坐标为,过点P作x轴的平行线交y轴于点A,作PB⊥AP 交双曲线(x>0)于点B,连接AB.已知.求k的值和直线AB的解析式.19.(5分)(2010•东城区一模)如图,在梯形ABCD中,AD∥BC,∠B=90°,AD=2,BC=5,E为DC中点,tanC=.求AE的长度.20.(5分)(2009•德州)如图,⊙O的直径AB=4,C为圆周上一点,AC=2,过点C作⊙O的切线l,过点B作l的垂线BD,垂足为D,BD与⊙O交于点E.求证:四边形OBEC是菱形.21.(5分)(2011•兴国县模拟)根据北京市统计局的2006﹣2009年空气质量的相关数据,绘制统计图如下:(1)由统计图中的信息可知,北京全年市区空气质量达到二级和好于二级的天数与上一年相比,增加最多的是_________年,增加了_________天;(2)表上是根据《中国环境发展报告(2010)》公布的数据会置的2009年十个城市供气质量达到二级和好于二级的天数占全年天数百分比的统计表,请将表1中的空缺部分补充完整(精确到1%)A组,不低于85%且低于95%的为B组,低于85%的为C组.按此标准,C组城市数量在这十个城市中所占的百分比为_________%;请你补全右边的扇形统计图.22.(5分)(2010•朝阳区二模)阅读下列材料并解答后面的问题:利用完全平方公式(a±b)2=a2±2ab+b2,通过配方可对a2+b2进行适当的变形,如a2+b2=(a+b)2﹣2ab或a2+b2=(a﹣b)2+2ab.从而使某些问题得到解决.例:已知a+b=5,ab=3,求a2+b2的值.解:a2+b2=(a+b)2﹣2ab=52﹣2×3=19.问题:(1)已知a+=6,则a2+=_________;(2)已知a﹣b=2,ab=3,求a4+b4的值.23.(7分)(2011•广东模拟)一开口向上的抛物线与x轴交于A,B两点,C(m,﹣2)为抛物线顶点,且AC⊥BC.(1)若m是常数,求抛物线的解析式;(2)设抛物线交y轴正半轴于D点,抛物线的对称轴交x轴于E点.问是否存在实数m,使得△EOD为等腰三角形?若存在,求出m的值;若不存在,请说明理由.24.(8分)(2006•常德)把两块全等的直角三角形ABC和DEF叠放在一起,使三角板DEF的锐角顶点D与三角板ABC的斜边中点O重合,其中∠ABC=∠DEF=90°,∠C=∠F=45°,AB=DE=4,把三角板ABC固定不动,让三角板DEF绕点O旋转,设射线DE与射线AB相交于点P,射线DF与线段BC相交于点Q.(1)如图1,当射线DF经过点B,即点Q与点B重合时,易证△APD∽△CDQ.此时,AP•CQ=_________;(2)将三角板DEF由图1所示的位置绕点O沿逆时针方向旋转,设旋转角为α.其中0°<α<90°,问AP•CQ的值是否改变?说明你的理由;(3)在(2)的条件下,设CQ=x,两块三角板重叠面积为y,求y与x的函数关系式.(图2,图3供解题用)25.(7分)(2006•长沙)如图1,已知直线y=﹣x与抛物线y=﹣x2+6交于A,B两点.(1)求A,B两点的坐标;(2)求线段AB的垂直平分线的解析式;(3)如图2,取与线段AB等长的一根橡皮筋,端点分别固定在A,B两处.用铅笔拉着这根橡皮筋使笔尖P在直线AB上方的抛物线上移动,动点P将与A,B构成无数个三角形,这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时P点的坐标;如果不存在,请简要说明理由.2011年北京市中考数学模拟试卷参考答案与试题解析一、选择题(共8小题,每小题4分,满分32分)D±2.(4分)(2010•西藏)已知如图,△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()3.(4分)(2010•东城区一模)布袋中装有1个红球,2个白球,3个黑球,它们除颜色外完全相同,从袋中任意摸.C D.=;4.(4分)(2010•海淀区二模)某班的9名同学的体重分别是(单位:千克):61,59,70,59,65,67,59,63,5.(4分)(2010•朝阳区二模)全球可被人类利用的淡水总量仅占总水量的0.00003,因此珍惜水,保护水是我们每6.(4分)(2010•东城区二模)如图,模块①﹣⑤均由4个棱长为1的小正方体构成,模块⑥由15个棱长为1的小正方体构成.现从模块①﹣⑤中选出三个放到模块⑥上,使得模块⑥成为一个棱长为3的大正方体.则下列选择方案中,能够完成任务的为()7.(4分)(1999•南京)如图,两个同心圆,大圆的弦AB与小圆相切于点P,大圆的弦CD经过点P,且CD=13,PD=4,则两圆组成的圆环的面积是()=AB8.(4分)(2009•临沂)矩形ABCD中,AD=8cm,AB=6cm.动点E从点C开始沿边CB向点B以2cm/s的速度运动,动点F从点C同时出发沿边CD向点D以1cm/s的速度运动至点D停止.如图可得到矩形CFHE,设运动时间为x(单位:s),此时矩形ABCD去掉矩形CFHE后剩余部分的面积为y(单位:cm2),则y与x之间的函数关系用图象表示大致是下图中的().C D.二、填空题(共4小题,每小题4分,满分16分)9.(4分)(2013•昌平区二模)若分式的值为0,则x的值为﹣2.解:若分式10.(4分)(2012•开平区二模)如图,点A、B、C是半径为6的⊙O上的点,∠B=30°,则的长为2π.∴l=.11.(4分)(2010•西城区一模)如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,若AD=3,DB=5,DE=1.2,则BC= 3.2.∴12.(4分)(2009•桂林)如图,在△ABC中,∠A=α,∠ABC的平分线与∠ACD的平分线交于点A1得∠A1,∠A1BC 的平分线与∠A1CD的平分线交于点A2,得∠A2,…,∠A2008BC的平分线与∠A2008CD的平分线交于点A2009,得∠A2009,则∠A2009=.(∠BD=∠A=α∠.=三、解答题(共13小题,满分72分)13.(5分)(2008•石景山区一模)×﹣,﹣,.14.(5分)(2011•广东模拟)解不等式组,并把它的解集表示在数轴上.,对不等式;不等式的解集为:15.(5分)(2009•长沙)如图,E、F是平行四边形ABCD对角线AC上两点,BE∥DF,求证:AF=CE.16.(5分)(2010•海淀区二模)已知x2﹣6xy+9y2=0,求代数式的值.(故答案为17.(5分)(2012•中山二模)列方程(组)解应用题:小明乘坐火车从某地到上海去参观世博园,已知此次行程为2160千米,城际直达动车组的平均时速是特快列车的1.6倍.小明购买火车票时发现,乘坐动车组比乘坐特快列车少用6小时,求小明乘坐动车组到上海需要的时间.依题意,得18.(5分)(2012•潮阳区模拟)如图,点P的坐标为,过点P作x轴的平行线交y轴于点A,作PB⊥AP 交双曲线(x>0)于点B,连接AB.已知.求k的值和直线AB的解析式.的坐标为)中,由)在双曲线上,可得的图象上,可得的解析式为的坐标为)中,,∴∴的解析式为19.(5分)(2010•东城区一模)如图,在梯形ABCD中,AD∥BC,∠B=90°,AD=2,BC=5,E为DC中点,tanC=.求AE的长度.DM=CF=tanC==20.(5分)(2009•德州)如图,⊙O的直径AB=4,C为圆周上一点,AC=2,过点C作⊙O的切线l,过点B作l的垂线BD,垂足为D,BD与⊙O交于点E.求证:四边形OBEC是菱形.21.(5分)(2011•兴国县模拟)根据北京市统计局的2006﹣2009年空气质量的相关数据,绘制统计图如下:(1)由统计图中的信息可知,北京全年市区空气质量达到二级和好于二级的天数与上一年相比,增加最多的是2008年,增加了28天;(2)表上是根据《中国环境发展报告(2010)》公布的数据会置的2009年十个城市供气质量达到二级和好于二级的天数占全年天数百分比的统计表,请将表1中的空缺部分补充完整(精确到1%)A组,不低于85%且低于95%的为B组,低于85%的为C组.按此标准,C组城市数量在这十个城市中所占的百分比为30%;请你补全右边的扇形统计图.×个城市,所占的百分比为:22.(5分)(2010•朝阳区二模)阅读下列材料并解答后面的问题:利用完全平方公式(a±b)2=a2±2ab+b2,通过配方可对a2+b2进行适当的变形,如a2+b2=(a+b)2﹣2ab或a2+b2=(a﹣b)2+2ab.从而使某些问题得到解决.例:已知a+b=5,ab=3,求a2+b2的值.解:a2+b2=(a+b)2﹣2ab=52﹣2×3=19.问题:(1)已知a+=6,则a2+=34;(2)已知a﹣b=2,ab=3,求a4+b4的值.)∵23.(7分)(2011•广东模拟)一开口向上的抛物线与x轴交于A,B两点,C(m,﹣2)为抛物线顶点,且AC⊥BC.(1)若m是常数,求抛物线的解析式;(2)设抛物线交y轴正半轴于D点,抛物线的对称轴交x轴于E点.问是否存在实数m,使得△EOD为等腰三角形?若存在,求出m的值;若不存在,请说明理由..解析式为:,时,∴m时,∴m24.(8分)(2006•常德)把两块全等的直角三角形ABC和DEF叠放在一起,使三角板DEF的锐角顶点D与三角板ABC的斜边中点O重合,其中∠ABC=∠DEF=90°,∠C=∠F=45°,AB=DE=4,把三角板ABC固定不动,让三角板DEF绕点O旋转,设射线DE与射线AB相交于点P,射线DF与线段BC相交于点Q.(1)如图1,当射线DF经过点B,即点Q与点B重合时,易证△APD∽△CDQ.此时,AP•CQ=8;(2)将三角板DEF由图1所示的位置绕点O沿逆时针方向旋转,设旋转角为α.其中0°<α<90°,问AP•CQ的值是否改变?说明你的理由;(3)在(2)的条件下,设CQ=x,两块三角板重叠面积为y,求y与x的函数关系式.(图2,图3供解题用)∴ACAP=AB﹣(AP=,PB=﹣∴解得.MQ(﹣(或y=25.(7分)(2006•长沙)如图1,已知直线y=﹣x与抛物线y=﹣x2+6交于A,B两点.(1)求A,B两点的坐标;(2)求线段AB的垂直平分线的解析式;(3)如图2,取与线段AB等长的一根橡皮筋,端点分别固定在A,B两处.用铅笔拉着这根橡皮筋使笔尖P在直线AB上方的抛物线上移动,动点P将与A,B构成无数个三角形,这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时P点的坐标;如果不存在,请简要说明理由.)依题意得OA=3OB=2AB=5,得:∴OD=,)∴∴﹣x+m∴∴﹣)×,x++得:y=)x+中,()GH=∵OG∵×d=××d=AB×参与本试卷答题和审题的老师有:自由人;HJJ;星期八;hbxglhl;lf2-9;Linaliu;wenming;733599;MMCH;110397;CJX;开心;ln_86;nhx600;zhjh;疯跑的蜗牛;xiu;117173;心若在;lanchong;王岑;zcx;gsls;lbz;jingjing;Liuzhx(排名不分先后)菁优网2014年3月16日。
【中考数学】2022-2023学年北京市海淀区九年级下册复习综合模拟试题一.选择题(满分36分)1.下列计算正确的是( )A.6﹣(﹣6)=0B.17﹣(﹣3)=14C.(﹣8)﹣(﹣4)=4D.0﹣5=﹣52.如图,AB∥DC,∠B=65°,则∠D+∠E的度数为( )A.135°B.115°C.65°D.35°3.在四边形ABCD中,∠A,∠B,∠C,∠D的度数之比为2:3:4:3,则∠C的外角等于( )A.60°B.75°C.90°D.120°4.已知Rt△ABC中,∠C=90°,AC=2,BC=3,那么下列各式中正确的是( )A.sin A=B.tan A=C.tan B=D.cos B=5.一元二次方程x2﹣2x=1的根的情况是( )A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.无法确定6.按一定规律排列的单项式:a2,4a3,9a4,16a5,25a6,…,第n个单项式是( )A.n2a n+1B.n2a n﹣1C.n n a n+1D.(n+1)2a n7.如图,等边△ABC的三个顶点都在⊙O上,AD是⊙O的直径.若OA=3,则劣弧BD的长是( )A.B.πC.D.2π8.某学校为了加强学生的安全意识,组织学生观看了纪实片《孩子,请不要私自下水》,并对部分学生进行调查.根据下面两幅不完整的统计图可以求出,在这次调查中被调查的学生有( )A.400名B.380名C.350名D.300名9.如图,在Rt△ABC中,∠ABC=90°,AB=,BC=2,以AB为直径作半圆交AC于点D,则图中阴影部分的面积为( )A.B.C.D.10.下列说法中错误的是( )A.有一组邻边相等的矩形是正方形B.在反比例函数中,y随x的增大而减小C.顺次连接矩形各边中点得到的四边形是菱形D.如果用反证法证明“三角形中至少有一个内角小于或等于60°”,首先应假设这个三角形中每一个内角都大于60°11.已知一次函数y1=4x,二次函数y2=2x2+2,在实数范围内,对于x的同一个值,这两个函数所对应的函数值为y1与y2,则下列关系正确的是( )A.y1>y2B.y1≥y2C.y1<y2D.y1≤y212.若关于x的不等式x﹣<1的解集为x<1,则关于x的一元二次方程x2+ax+1=0根的情况是( )A.有两个相等的实数根B.有两个不相等的实数根C.无实数根D.无法确定二.填空题(满分24分)13.因式分解:9a3b﹣ab= .14.一个长方体主视图和俯视图如图所示,则这个长方体左视图的面积为 cm2.15.如图,四边形ABCD是正方形,点E是边BC上一点,且∠AEF=90°,且EF交正方形外角平分线CF于点F.若正方形边长是8,EC=2,则FC的长为 .16.化简:= .17.如图,在△ABC中,∠CAB=55°,∠ABC=25°,在同一平面内,将△ABC绕A点逆时针旋转70°得到△ADE,连接EC,则tan∠DEC的值是 .18.如图,在平面直角坐标系中,Rt△ABC的顶点A,C的坐标分别是(0,2),(2,0),∠ACB=90°,AC=2BC.若函数y=(k>0,x>0)的图象经过点B,则k的值为 .19.已知二次函数y=x2+bx+c的图象与x轴交于A(﹣1,0)与B(5,0)两点,与y轴交于点C,若点P在该抛物线的对称轴上,则PA+PC的最小值为 .20.如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB、CD交于点E、F,连接BF交AC于点M,连接DE、BO,若∠COB=60°,FO=FC,则下列结论:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④S△AOE:S△BCM=3:4;⑤S△DEF:S△BOM=8:3,其中正确的结论是 (填正确的序号).三.解答题(满分60分)21.黄石是国家历史文化名城,素有“青铜故里、矿冶之都”的盛名.区域内矿冶文化旅游点有:A.铜绿山古铜矿遗址,B.黄石国家矿山公园,C.湖北水泥遗址博物馆,D.黄石园博园、矿博园.我市八年级某班计划暑假期间到以上四个地方开展研学旅游,学生分成四个小组,根据报名情况绘制了两幅不完整的统计图.请根据图中信息,解答下列问题:(1)全班报名参加研学旅游活动的学生共有 人,扇形统计图中A部分所对应的扇形圆心角是 ;(2)补全条形统计图;(3)该班语文、数学两位学科老师也报名参加了本次研学旅游活动,他们随机加入A、B 两个小组中,求两位老师在同一个小组的概率.22.某天,北海舰队在中国南海例行训练,位于A处的济南舰突然发现北偏西30°方向上的C处有一可疑舰艇,济南舰马上通知位于正东方向200海里B处的西安舰,西安舰测得C 处位于其北偏西60°方向上,请问此时两舰距C处的距离分别是多少?23.某农场的一个家电商场为了响应国家家电下乡的号召,准备用不超过10.57万元购进40台电脑,其中A型电脑每台进价2500元,B型电脑每台进价2800元,A型每台售价3000元,B型每台售价3200元,预计销售额不低于12.32万元.设A型电脑购进x台、商场的总利润为y(元).(1)请你设计出进货方案;(2)求出总利润y(元)与购进A型电脑x(台)的函数关系式,并利用关系式说明哪种方案的利润最大,最大利润是多少元?24.如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,连接AC,若CA=CP,∠A=30°.(1)求证:CP是⊙O的切线;(2)若OA=2,求弦AC的长.25.【教材呈现】如图是华师版八年级上册数学教材第69页的部分内容:(1)【方法应用】如图①,在△ABC中,AB=6,AC=4,则BC边上的中线AD长度的取值范围是 .(2)【猜想证明】如图②,在四边形ABCD中,AB∥CD,点E是BC的中点,若AE是∠BAD的平分线,试猜想线段AB、AD、DC之间的数量关系,并证明你的猜想;(3)【拓展延伸】如图③,已知AB∥CF,点E是BC的中点,点D在线段AE上,∠EDF=∠BAE,若AB=5,CF=2,直接写出线段DF的长.26.已知,如图,已知抛物线y=ax2+bx﹣与x轴交于A(3,0),B(﹣1,0)两点,与y 轴交于点C,连接AC,BC,若点M是x轴上的动点(不与点B重合),MN⊥AC于点N,连接CM.(1)求抛物线的解析式;(2)当MN=1时,求点N的坐标;(3)是否存在以点C,M,N为顶点的三角形与△ABC相似,若存在,请直接写出点M的坐标;若不存在,请说明理由.答案一.选择题(满分36分)1.解:A、6﹣(﹣6)=12,本选项计算错误,不符合题意;B、17﹣(﹣3)=20,本选项计算错误,不符合题意;C、(﹣8)﹣(﹣4)=﹣4,本选项计算错误,不符合题意;D、0﹣5=﹣5,本选项计算正确,符合题意;故选:D.2.解:如图所示:∵AB∥DC,∠B=65°,∴∠CFE=∠B=65°,∵∠CFE是△DEF的一个外角,∴∠D+∠E=∠CFE=65°.故选:C.3.解:设∠A=2x°,∠B=3x°,∠C=4x°,∠D=3x°,由题意得:2x+3x+4x+3x=360,解得x=30,则∠C=4×30°=120°,∠C的外角为:180°﹣120°=60°,故选:A.4.解:Rt△ABC中,∠C=90°,∵AC=2,BC=3,∴AB==,∴sin A==,tan A==,tan B==,cos B==,5.解:x2﹣2x=1,整理,得x2﹣2x﹣1=0,∵Δ=(﹣2)2﹣4×1×(﹣1)=8>0,∴方程有两个不相等的实数根,故选:B.6.解:∵第1个单项式a2=12•a1+1,第2个单项式4a3=22•a2+1,第3个单项式9a4=32•a3+1,第4个单项式16a5=42•a4+1,……∴第n(n为正整数)个单项式为n2a n+1,故选:A.7.解:连接OB、BD,如图:∵△ABC为等边三角形,∴∠C=60°,∴∠D=∠C=60°,∵OB=OD,∴△BOD是等边三角形,∴∠BOD=60°,∵半径OA=3,∴劣弧BD的长为=π,8.解:20÷5%=400人,故选:A.9.解:连接OD,过点O作OE⊥AD垂足为E,如图,∵∠ABC=90°,AB=,BC=2,∴S△ABC===2,∴AC==,∵,∴∠BAC=30°,∠BOD=60°,S扇BOD===,在Rt△AOE中,∵∠OAE=30°,OA=,∴,AE==,∴AD=2AE=3,∴==,∴S阴=S△ABC﹣S扇BOD﹣S△AOD=2﹣﹣=﹣.故选:A.10.解:A、有一组邻边相等的矩形是正方形,正确,不合题意;B、在反比例函数中,每个象限内,y随x的增大而减小,故原说法错误,符合题意;C、顺次连接矩形各边中点得到的四边形是菱形,正确,不合题意;D、如果用反证法证明“三角形中至少有一个内角小于或等于60°”,首先应假设这个三角形中每一个内角都大于60°,正确,不合题意;故选:B.11.解:由消去y得到:x2﹣2x+1=0,∵△=0,∴直线y=4x与抛物线y=2x2+2只有一个交点,如图所示,观察图象可知:y1≤y2,故选D.12.解:解不等式x﹣<1得x<1+,而不等式x﹣<1的解集为x<1,所以1+=1,解得a=0,又因为Δ=a2﹣4=﹣4,所以关于x的一元二次方程x2+ax+1=0没有实数根.故选:C.二.填空题(满分24分)13.解:原式=ab(9a2﹣1)=ab(3a+1)(3a﹣1).故ab(3a+1)(3a﹣1)14.解:根据题意得:左视图的长为3cm,宽为2cm,则左视图的面积为2×3=6(cm2).故6.15.解:在AB上取点P,使AP=CE,连接EP,∵四边形ABCD是正方形,∴AB=BC,∠B=∠BCD=90°,∵AP=EC,∴BP=BE,∴∠BPE=45°,∠APE=135°,∵CF是正方形外角的平分线,∴∠ECF=135°,∵∠AEF=90°,∠B=90°,∴∠BAE=∠CEF,在△PAE和△CEF中,,∴△PAE≌△CEF(ASA),∴PE=CF,∵AB=BC=8,AP=CE=2,∴PB=BE=6,∴CF=PE=PB=6;故6.16.解:原式=•(m+2)==1.故答案为1.17.解:由旋转的性质可知:AE=AC,∠CAE=70°,∴∠ACE=∠AEC=55°,又∵∠AED=∠ACB,∠CAB=55°,∠ABC=25°,∴∠ACB=∠AED=100°,∴∠DEC=100°﹣55°=45°,∴tan∠DEC=tan45°=1,故118.解:过B点作BD⊥x轴于D,如图,∵A,C的坐标分别是(0,2),(2,0).∴OA=OC=2,∴△OAC为等腰直角三角形,∴AC=OC=2,∠ACO=45°,∵∠ACB=90°,∴∠BCD=45°,∵△BCD为等腰直角三角形,∴CD=BD=BC,∵AC=2BC,∴BC=,∴CD=BD=1,∴OD=2+1=3,∴B(3,1),∵函数y=(k>0,x>0)的图象经过点B,∴k=3×1=3.故答案为3.19.解:∵抛物线y=x2+bx+c与x轴交于A(﹣1,0)与B(5,0)两点,∴抛物线的解析式为y=(x+1)(x﹣5),即y=x2﹣4x﹣5,∴抛物线的对称轴为直线x=2,当x=0时,y=x2﹣4x﹣5=﹣5,∴C(0,﹣5),连接BC交直线x=2于P点,如图,∵PA=PB,∴PA+PC=PB+PC=BC,∴此时PA+PC的值最小,最小值等于BC的长,∵BC==5,∴PA+PC的最小值为5.故5.20.解:①∵四边形ABCD是矩形,O是AC中点,∴OB=OC=OA,∵∠COB=60°,∴△BOC是等边三角形,∴OB=BC,∴B在OC的垂直平分线上,同理,F在OC的垂直平分线上,∵两点确定一条直线,∴FB垂直平分OC,∴①是正确的;②∵FB垂直平分OC,∴∠CBM=∠OBM=30°,∠CMB=90°,又∠OBE=90°﹣∠CBO=30°,∴∠CBM=∠OBE,过O作OH⊥BE于H,如图1,∴∠OHB=∠CMB=90°,在△OHB与△CMB中,,∴△OHB≌△CMB(AAS),∵△OEB包含了△OHB,∴△EOB≌△CMB是不成立的,∴②是错误的;③由①可得,OA=OB,∴∠OAB=∠OBA=30°,∴∠ACB=90°﹣∠OAB=60°,∴∠ACD=90°﹣∠ACB=30°,∵FO=FC,∴∠FOC=∠ACD=30°,∴∠FOB=∠FOC+∠COB=90°,∴∠OFB=90°﹣∠OBF=60°,OB⊥EF,∵BF垂直平分OC,∴∠CFM=∠OFB=60°,∴∠DFE=180°﹣2∠OFB=60°,∵四边形ABCD为矩形,∴AB∥CD,∴∠BEF=∠DFE=60°,∴∠BEF=∠OFB=60°,∴△BEF是等边三角形,∵OB⊥EF,∴OB垂直平分EF,∵O是AC的中点,∴连接OD,O一定是BD的中点,∴B,O,D三点是共线的,∴BD垂直平分EF,∴DE=DF,∵∠DFE=60°,∴△DEF为等边三角形,∴DE=EF,∴③是正确的;④由②可得,,OH=CM,∵,∴=,∵AB∥CD,∴∠OCF=∠OAE,∠OFC=∠OEA,∴△OFC∽△OEA,∴,∴AE=FC,设FM=a,在直角△FCM中,∠FCM=30°,∴FC=2FM=2a,同理,BF=2FC=4a,∴BM=BF﹣FM=3a,AE=FC=2a,∴S△AOE:S△BOM=AE:BM=2:3,∴④是错误的;⑤由③可得,△DEF与△BEF是等边三角形,∴DE=DF=EF=BE=BF,∴四边形DEBF是菱形,由④可得,菱形的边长DF=BF=4a,在Rt△BCF中,BC==a,∴S△DEF===,在△BOM中,OM=CM==,∴S△BOM==a2,∴S△DEF:S△BCM=8:3,故⑤正确,故①③⑤.三.解答题(满分60分)21.解:(1)全班报名参加研学旅游活动的学生共有:20÷40%=50(人),扇形统计图中A部分所对应的扇形圆心角是:360°×=108°;故50,108°;(2)C景点的人数有:50﹣15﹣20﹣5=10(人),补全统计图如下:(3)根据题意有四种情形:AA,AB,BA,BB,其中两位老师在同一个小组的有2种情况,则两位老师在同一个小组的概率是.22.解:过点C作CD⊥BA的延长线于点D,如图.由题意可得:∠CAD=60°,∠CBD=30°=∠DCA,∴∠BCA=∠CAD﹣∠CBD=60°﹣30°=30°.即∠BCA=∠CBD,∴AC=AB=200(海里).在Rt△CDA中,CD=sin∠CAD×AC==100(海里).在Rt△CDB中,CB=2CD=200(海里).故位于A处的济南舰距C处的距离200海里,位于B处的西安舰距C处的距离200海里.23.解:(1)设A型电脑购进x台,则B型电脑购进(40﹣x)台,由题意,得,解得:21≤x≤24,∵x为整数,∴x=21,22,23,24∴有4种购买方案:方案1:购A型电脑21台,B型电脑19台;方案2:购A型电脑22台,B型电脑18台;方案3:购A型电脑23台,B型电脑17台;方案4:购A型电脑24台,B型电脑16台;(2)由题意,得y=(3000﹣2500)x+(3200﹣2800)(40﹣x),=500x+16000﹣400x,=100x+16000.∵k=100>0,∴y随x的增大而增大,∴x=24时,y最大=18400元.答:采用方案4,即购A型电脑24台,B型电脑16台的利润最大,最大利润是18400元.24.(1)证明:连接OC,如图1,∵OA=OC,∠A=30°,∴∠A=∠ACO=30°,∵CA=CP,∴∠A=∠P=30°,∴∠ACP=180°﹣∠A﹣∠P=180°﹣30°﹣30°=120°,∴∠OCP=∠ACP﹣∠ACO=120°﹣30°=90°,∴OC⊥CP,∴CP是⊙O的切线;(2)解:如图2,连接BC,∵OA=OB=2,∴AB=4,∵AB是⊙O的直径,∴∠ACB=90°,∵∠A=30°,∴BC=AB=2,∴AC===2.25.解:(1)延长AD到E,使AD=DE,连接BE,∵AD是BC边上的中线,∴BD=CD,在△ADC和△EDB中,,∴△ADC≌△EDB(SAS),∴AC=BE=4,在△ABE中,AB﹣BE<AE<AB+BE,∴6﹣4<2AD<6+4,∴1<AD<5,故1<AD<5.(2)结论:AD=AB+DC.理由:如图②中,延长AE,DC交于点F,∵AB∥CD,∴∠BAF=∠F,在△ABE和△FCE中,,∴△ABE≌△FEC(AAS),∴CF=AB,∵AE是∠BAD的平分线,∴∠BAF=∠FAD,∴∠FAD=∠F,∴AD=DF,∵DC+CF=DF,∴DC+AB=AD.(3)如图③,延长AE交CF的延长线于点G,∵E是BC的中点,∴CE=BE,∵AB∥CF,∴∠BAE=∠G,在△AEB和△GEC中,,∴△AEB≌△GEC(AAS),∴AB=GC,∵∠EDF=∠BAE,∴∠FDG=∠G,∴FD=FG,∴AB=DF+CF,∵AB=5,CF=2,∴DF=AB﹣CF=3.26.解:(1)∵抛物线ya=ax2+bx﹣与x轴交于A(3,0),B(﹣1,0)两点,得,解得:,∴,(2)∵∴当x=0时,y=,∴C(0,),∴OC=,∵A(3,0),∴OA=3,∴∠OAC=30°,∵MN=1,∠MNA=90°,在Rt△AMN中,AN=,过点N作NH⊥x轴于点H,∴NH=,AH=,当点M在点A左侧时,N的坐标为(,﹣),当点M在点A右侧时,N的坐标为,综上,点N的坐标为()或,(3)设M点为(x,0),则由(2)可得AB=4,BC==2,AC==2,∵BC2+AC2=AB2,∴△ABC是直角三角形,∠BCA=90°,又由2S△CMA=AM×OC=AC×MN得:MN==,∴若以点C,M,N为顶点的三角形与△ABC相似,则:=,即=,即6x=6,所以x=1,此时M为(1,0);=,即=,即x2+3x=0,解之可得:x=0或x=﹣3,∴M为(0,0)或(﹣3,0),综上所述,存在以点C,M,N为顶点的三角形与△ABC相似,且M的坐标为(1,0)或(0,0)或(﹣3,0).。
分式一、 选择题 A 组1、(2011年北京四中模拟26) 若分式31xx -有意义,则x 应满足 ( ) A .x =0 B .x ≠0 C .x =1 D .x ≠1答案:D3、(淮安市启明外国语学校2010-2011学年度第二学期初三数学期中试卷)化简 m 2-1m ÷m+1m的结果是( )A .m -1B .mC .1mD .1m -1答案:A4、(2010-2011学年度河北省三河市九年级数学第一次教学质量检测试题)化简22424422x x xx x x x ⎛⎫--+÷ ⎪-++-⎝⎭,其结果是( ) A .82x -- B .82x - C .82x -+ D .82x + 答案:D5、(2011年浙江杭州七模)在函数21-=x y 中,自变量x 的取值范围是( ) A .2-≠x B .2≠xC .x ≤2D .x ≥2答案:BB 组1、(2011浙江慈吉 模拟)已知分式xx -+21, 当x 取a 时, 该分式的值为0; 当x 取b 时, 分式无意义; 则ab 的值等于( ) A. 2- B. 21C. 1D. 2 答案:B2、(2011年三门峡实验中学3月模拟)要使式子a +2a有意义,a 的取值范围是( ) A 、a ≠0 B 、a >-2且a ≠0 C 、a >-2或a ≠0 D 、a ≥-2且a ≠0 答案:D3、(2011杭州上城区一模)下列判断中,你认为正确的是( )A .0的倒数是0 B.2π是分数 12答案:C4、(安徽芜湖2011模拟)化简29333a a a a a ⎛⎫++÷⎪--⎝⎭的结果为 ( ) A .aB .a -C .()23a +D .1答案: A5、(浙江杭州金山学校2011模拟)(原创)函数14y x =-中自变量x 的取值范围是( ▲ )A .x ≤3B .x =4C . x <3且x≠4D .x≤3且x ≠4 答案:A6、(2011深圳市全真中考模拟一)化简24()22a a a a a a---+ 的结果是 (A)一4 (B)4 (C)2a (13) 2a +4 答案:A7、(2011年北京四中33模)若分式1632--x x 的值为0,则x 的值为( ) A .4B. -4C. ±4D. 3答案D二、 填空题A 组1、(2011年北京四中三模)若x 为12-的倒数,则633622-++÷---x x x x x x 的值为 .答案:12、(2011年北京四中四模)化简112-+x x 得___ __. 答案:11-x 4.(2011年江苏连云港)若一个分式含有字母m 2,且当5m =时,它的值为2,则这个分式可以是 . (写出一个..即可) 答案250m(不唯一); B 组1、(2011浙江慈吉 模拟)化简: mm m -+-2242=______________. 答案:2--m2、(2011 天一实验学校 二模)在函数15y x =-中,自变量x 的取值范围是 . 答案: x ≠5__3、(2011北京四中模拟)化简:23224x x xx x x 骣÷ç-?÷ç÷ç桫++-答案:24x -4、(2011深圳市三模)函数函数12-+=x x y 中自变量x 的取值范围是 ;答案: 2-≥x 且1≠x ;5、(浙江杭州靖江2011模拟)函数y=)2(1--x x 的自变量x 的取值范围是_____________。
D 2010—2011学年第二学期期中测试初三数学试卷命题人:徐惠忠复核人:缪月红 (满分130分,考试时间120分钟)一、选择题(每题3分,共30分,请在答题卡指定区域内作答)1、-3的倒数是…………………………………………………………………………( )A . 3B . 31-C .-3D .31 2、下列运算中,结果正确的是…………………………………………………………( ) A .()532x x = B .()222y x y x +=+ C .532x x x =+ D .633x x x =⋅3、下列图形是几家电信公司的标志,其中既是轴对称图形又是中心对称图形的是( )4、已知33-=-y x ,则y x 35+-的值是………………………………………………( ) A . 2 B .5 C .8 D .05、下列调查适合作普查的是………………………………………………………………( ) A .了解在校大学生的主要娱乐方式 B .了解无锡市居民对废电池的处理情况 C .日光灯管厂要检测一批灯管的使用寿命D .对甲型H1N1流感患者的同一车厢的乘客进行医学检查6、如图:是由几个相同的小正方体搭成的一个几何体,它的左视图是…………………( )O 1O 2可能取的值 )8、已知圆锥的底面半径为2cm ,母线长为5cm ,则圆锥的侧面积是…………………( ) A .220cmB .220cm πC .210cm πD .25cm π9、下图是章老师早晨出门散步时,离家的距离(y )与时间(x )之间的函数图像,若用黑点表示章老师家的位置,则章老师散步行走的路线可能是……………………………( )A B CDABC10、如图,E F G H ,,,分别为正方形ABCD 的边AB ,BC ,CD , DA 上的点,且13AE BF CG DH AB ====,则图中阴影部分的面积与正方形ABCD 的面积之比为……………………………………………………………………………………………( )A .25B .49 C .12D .35二、填空(每空2分,共20分,请在答题卡指定区域内作答) 11、-8的相反数是 ;25的算术平方根是 12、函数y =x 的取值范围是13、2010年上海世界博览会中国馆投资110000万元,将110000万元用科学记数法表示为_________ 万元14、因式分解: x x 43-=___________15、关于x 的一元二次方程220x x m -+=有两个实数根分别为1x 和 2x ,则m 的取值范围是_____________,12x x +=16、如图:△ABC 为⊙O 的内接三角形,AB 为⊙O 的直径,点D 在⊙O 上, 若∠BAC =35°,则∠ADC = 度17、如图,点A B ,为直线y x =上的两点,过A B ,两点分别作y 轴的平行线交双曲线1y x=(x >0)于C D ,两点. 若2BD AC =,则224OC OD - 的值为 .18、如图,在Rt △ABC 中,斜边AB 的长为35,正方形CDEF 内接于△ABC ,且其边长为12,则△ABC 的周长为 .第9题(第10题)第16题第17题第18题第22题三、解答题(本大题共10小题,共80分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 19、(本题满分8分)计算:(1101()(5)4sin 603π----︒ (2)化简并求值:21(1)11a a a a --÷++,其中12a =.20、(本题满分8分) (1)解方程:213xx x +=+; (2)解不等式组:12,132,2x x x ->⎧⎪⎨-≤+⎪⎩………………①…………②21、(本题满分6分)中央电视台举办的第14届“蓝色经典·天之蓝”杯青年歌手大奖赛,由部队文工团的A (海政)、B (空政)、C (武警)组成种子队,由部队文工团的D (解放军)和地方文工团的E (江苏)、F (上海)组成非种子队.现从种子队A 、B 、C 与非种子队D 、E 、F 中各抽取一个队进行首场比赛.(1)请用适当方式写出首场比赛出场的两个队的所有可能情况(用代码A 、B 、C 、D 、E 、F 表示);(2)求首场比赛出场的两个队都是部队文工团的概率P. 22、(本题满分6分)已知:如图,E 、F 是平行四边行ABCD 的对角线AC 上的两点,AE=CF 。
2023-2024学年北京市海淀区中国人民大学附属中学本部中考模拟数学试题一、选择题:本题共8小题,每小题3分,共24分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.2022年5月18日是第46个国际博物馆日,今年国际博物馆日的宣传主题是“博物馆的力量”,在以下几幅古代纹样图案中,利用中心对称进行整体构图的是()A. B.C. D.2.在第46个国际博物馆日来临之际.中国国家博物馆推出了丰富多彩的“云上观展”活动.观众有机会在屏幕上欣赏国博140万余件藏品的真容,将140万用科学记数法表示为()A. B. C. D.3.下列各组角中,互为余角的是()A.与B.与C.与D.与4.下列说法中错误的是()A.成轴对称的两个图形的对应点连线的垂直平分线是它们的对称轴B.关于某条直线对称的两个图形全等C.两个全等三角形的对应高相等D.两个图形关于某直线对称,则这两个图形一定分别位于这条直线的两侧5.有一枚均匀的正方体骰子,骰子各个面上的点数分别为1,2,3,4,5,6,若任意抛掷一次骰子,朝上的点数记为x,则的概率是()A. B. C. D.6.实数a、b在数轴上的对应点的位置如图所示,下列式子成立的是()A. B. C. D.7.李老师是一位运动达人,他通过佩戴智能手环来记录自己一个月天每天所走的步数,并绘制成如右统计表:在每天所走的步数这组数据中,众数和中位数分别是()A.,B.,C.,D.,8.某学校对教室采用药薰消毒法进行消毒.现测得不同时刻的y与x的数据如表:时间分钟0246810121620含药量毫克03643则下列图象中,能表示y与x的函数关系的图象可能是()A. B.C. D.二、填空题:本题共8小题,每小题3分,共24分。
9.若有意义,则x的取值范围是__________.10.把多项式分解因式的结果是__________.11.若n为整数,且,则n的值为__________.12.分式方程的解__________.13.如图,点A,B,C,D在上,,,则__________.14.如图,在中,按以下步骤作图:①以点A为圆心,适当长为半径作弧,分别交于点M,N;②分别以点M,N为圆心,大于的长为半径作弧,两弧交于点P;③作射线AP交BC于点若,的面积为4,则的面积为__________.15.如图,已知等腰三角形ABC,,,若以点B为圆心,BC长为半径画弧,则__________16.以下是小亮的妈妈做晚饭的食材准备及加工时间列表,有一个炒菜锅,一个电饭煲,一个煲汤锅,两个燃气灶可用,做好这顿晚餐一般情况下至少需要__________分钟.用时种类准备时间分钟加工时间分钟米饭330炒菜156炒菜258汤56三、计算题:本大题共1小题,共6分。
2011-2012学年北京市东城区中考数学模拟试卷2011-2012学年北京市东城区中考数学模拟试卷一、选择题:(本大题共8小题.每小题3分,共24分.在每小题给出的四个选项中.只有一项是符合题目要求的,请将你认为正确的答案填涂在答题纸上) . 2.(3分)2009年1月9日,住房和城乡建设部部长在全国建设工作会议上透露,2008年全国住房公积金缴纳规模3.(3分)(2008•宁德)如图所示零件的左视图是( ).CD .4.(3分)(2010•安顺)不等式组的解集在数轴上表示为( ).CD .5.(3分)估计的运算结果应在( )6.(3分)(2008•仙桃)如图,四边形ABCD 是菱形,过点A 作BD 的平行线交CD 的延长线于点E ,则下列式子不成立的是( )7.(3分)如图,直线y=与双曲线y=(k>0)在第一象限内的交点为R,与x轴的交点为P,与y轴的交点为Q;作RM⊥x轴于点M,若△OPQ与△PRM的面积是4:1,则k等于().C8.(3分)(2010•建水县一模)如图,在矩形ABCD中,动点P从点B出发,沿BC,CD,DA运动到点A停止,设点P运动路程为x,△ABP的面积为y,如果y关于x的函数图象如图(2)所示,则矩形ABCD的面积是()二、填空题:(本大题共10小题.每小题3分.共30分.把答案填在答题纸上)9.(3分)(2013•沛县一模)函数y=中自变量x的取值范围是_________.10.(3分)(2012•鄂州)因式分解:2a3﹣8a=_________.11.(3分)(2013•阜宁县二模)已知一组数据:3,3,4,5,5,6,6,6.这组数据的众数是_________.12.(3分)(2010•海安县一模)为解决群众看病难的问题,一种药品连续两次降价,每盒的价格由原来的60元降至48.6元,则平均每次降价的百分率为_________%.13.(3分)(2010•海安县一模)已知实数a,b同时满足a2+b2﹣11=0,a2﹣5b﹣5=0,则b=_________.14.(3分)一连串分数,共有6个,是按照一种简单规律排成的.由于抄写的人笔头较慢,别人抄下来前3个,他只抄了前两个,把第3个空着;别人把后面3个也抄好了,他才抄了第4个和第5个,把第6个也空着.请你帮他补上:,,_________,,,_________.15.(3分)(2008•恩施州)如图,该图形经过折叠可以围成一个正方体形,折好以后,与“静”字相对的字是_________.16.(3分)(2008•怀化)如图,在平行四边形ABCD中,DB=DC,∠A=65°,CE⊥BD于E,则∠BCE=_________度.17.(3分)如图,将矩形纸片ABCD沿AE折叠,使点B落在直角梯形AECD的中位线FG上,若AB=3cm,则AE的长为_________cm.18.(3分)如图,MN=3,以MN为直径的⊙O1,与一个半径为5的⊙O2相切于点M,正方形ABCD的顶点A、B 在大圆上,小圆在正方形的外部且与CD切于点N,则正方形ABCD的边长为_________.三、解答题:(本大题共10小题,共96分,解答应写出必要的计算过程、推演步骤或文字说明)19.(8分)(2013•当涂县模拟)计算:.20.(8分)请先将下式化简,再选择一个适当的无理数代入求值..21.(8分)如图,方格纸上的每个小方格都是边长为1的正方形,我们把格点间连线为边的三角形称为“格点三角形”,图中的△ABC就是一个格点三角形.(1)在△ABC中,BC=_________,tanB=_________;(2)请在方格中画出一个格点三角形DEF,使△DEF∽△ABC,并且△DEF与△ABC的相似比为2.22.(10分)(2008•重庆)已知:如图,在梯形ABCD中,AD∥BC,BC=DC,CF平分∠BCD,DF∥AB,BF的延长线交DC于点E.求证:(1)△BFC≌△DFC;(2)AD=DE.23.(10分)(2009•黔南州)“农民也可以报销医疗费了!”这是某市推行新型农村医疗合作的成果.村民只要每人每年交10元钱,就可以加入合作医疗,每年先由自己支付医疗费,年终时可得到按一定比例返回的返回款.这一举措极大地增强了农民抵御大病风险的能力.小华与同学随机调查了他们乡的一些农民,根据收集到的数据绘制了以下的统计图.根据以上信息,解答以下问题:(1)本次调查了多少村民,被调查的村民中,有多少人参加合作医疗得到了返回款;(2)该乡若有10 000村民,请你估计有多少人参加了合作医疗?要使两年后参加合作医疗的人数增加到9 680人,假设这两年的年增长率相同,求这个年增长率.24.(10分)一个不透明的布袋内装有形状、大小、质地等完全相同的4个小球,分别标有数字1,2,3,4(1)从布袋中随机地取出一个小球,则小球上所标的数字恰好为4的概率是_________;(2)从布袋中随机地取出一个小球,记录小球上所标的数字为x,不将取出的小球放回布袋,再随机地取出一个小球,记录小球上所标的数字为y,这样就确定点P的一个坐标为(x,y),求点P落在直线y=x+1上的概率;(3)从布袋中随机地取出一个小球,用小球上所标的数字作为十位上的数字,将取出的小球放回布袋后,再随机地取出一个小球,用小球上所标的数字作为个位上的数字,求组成的两位数恰好是3的倍数的概率.25.(10分)(2011•深圳模拟)如图,AB是半圆O上的直径,E是的中点,OE交弦BC于点D,过点C作⊙O切线交OE的延长线于点F.已知BC=8,DE=2.(1)求⊙O的半径;(2)求CF的长;(3)求tan∠BAD的值.26.(10分)(2008•泰安)某市种植某种绿色蔬菜,全部用来出口.为了扩大出口规模,该市决定对这种蔬菜的种植实行政府补贴,规定每种植﹣亩这种蔬菜一次性补贴菜农若干元.经调查,种植亩数y(亩)与补贴数额x(元)之间大致满足如图1所示的一次函数关系.随着补贴数额x的不断增大,出口量也不断增加,但每亩蔬菜的收益z (元)会相应降低,且z与x之间也大致满足如图2所示的一次函数关系.(1)在政府未出台补贴措施前,该市种植这种蔬菜的总收益额为多少?(2)分别求出政府补贴政策实施后,种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式;(3)要使全市这种蔬菜的总收益w(元)最大,政府应将每亩补贴数额x定为多少?并求出总收益w的最大值.27.(10分)(2008•益阳)两个全等的直角三角形ABC和DEF重叠在一起,其中∠A=60°,AC=1.固定△ABC不动,将△DEF进行如下操作:(1)如图,△DEF沿线段AB向右平移(即D点在线段AB内移动),连接DC、CF、FB,四边形CDBF的形状在不断的变化,但它的面积不变化,请求出其面积.(2)如图,当D点移到AB的中点时,请你猜想四边形CDBF的形状,并说明理由.(3)如图,△DEF的D点固定在AB的中点,然后绕D点按顺时针方向旋转△DEF,使DF落在AB边上,此时F 点恰好与B点重合,连接AE,请你求出sinα的值.28.(12分)(2010•海安县一模)如图①,在平面直角坐标系中,已知△ABC是等边三角形,点B的坐标为(12,0),动点P在线段AB上从点A向点B以每秒个单位的速度运动,设运动时间为t秒.以点P为顶点,作等边△PMN,点M,N在x轴上.(1)当t为何值时,点M与点O重合;(2)求点P坐标和等边△PMN的边长(用t的代数式表示);(3)如果取OB的中点D,以OD为边在△AOB内部作如图②所示的矩形ODEF,点E在线段AB上.设等边△PMN 和矩形ODEF重叠部分的面积为S,请求出当0≤t≤2秒时S与t的函数关系式,并求出S的最大值.2011-2012学年北京市东城区中考数学模拟试卷参考答案与试题解析一、选择题:(本大题共8小题.每小题3分,共24分.在每小题给出的四个选项中.只有一项是符合题目要求的,请将你认为正确的答案填涂在答题纸上).)×=2.(3分)2009年1月9日,住房和城乡建设部部长在全国建设工作会议上透露,2008年全国住房公积金缴纳规模3.(3分)(2008•宁德)如图所示零件的左视图是().C D.4.(3分)(2010•安顺)不等式组的解集在数轴上表示为().C D.5.(3分)估计的运算结果应在()+26.(3分)(2008•仙桃)如图,四边形ABCD是菱形,过点A作BD的平行线交CD的延长线于点E,则下列式子不成立的是()7.(3分)如图,直线y=与双曲线y=(k>0)在第一象限内的交点为R,与x轴的交点为P,与y轴的交点为Q;作RM⊥x轴于点M,若△OPQ与△PRM的面积是4:1,则k等于().C点的坐标是(OP=的坐标是(的图象上,1=.8.(3分)(2010•建水县一模)如图,在矩形ABCD中,动点P从点B出发,沿BC,CD,DA运动到点A停止,设点P运动路程为x,△ABP的面积为y,如果y关于x的函数图象如图(2)所示,则矩形ABCD的面积是()AB BC=二、填空题:(本大题共10小题.每小题3分.共30分.把答案填在答题纸上)9.(3分)(2013•沛县一模)函数y=中自变量x的取值范围是x≤5.有意义,10.(3分)(2012•鄂州)因式分解:2a3﹣8a=2a(a+2)(a﹣2).11.(3分)(2013•阜宁县二模)已知一组数据:3,3,4,5,5,6,6,6.这组数据的众数是6.12.(3分)(2010•海安县一模)为解决群众看病难的问题,一种药品连续两次降价,每盒的价格由原来的60元降至48.6元,则平均每次降价的百分率为10%.13.(3分)(2010•海安县一模)已知实数a,b同时满足a2+b2﹣11=0,a2﹣5b﹣5=0,则b=1.±14.(3分)一连串分数,共有6个,是按照一种简单规律排成的.由于抄写的人笔头较慢,别人抄下来前3个,他只抄了前两个,把第3个空着;别人把后面3个也抄好了,他才抄了第4个和第5个,把第6个也空着.请你帮他补上:,,,,,.,,,,个数为,,与即.个数为填入的数分别为,..15.(3分)(2008•恩施州)如图,该图形经过折叠可以围成一个正方体形,折好以后,与“静”字相对的字是着.16.(3分)(2008•怀化)如图,在平行四边形ABCD中,DB=DC,∠A=65°,CE⊥BD于E,则∠BCE=25度.17.(3分)如图,将矩形纸片ABCD沿AE折叠,使点B落在直角梯形AECD的中位线FG上,若AB=3cm,则AE的长为2cm.BAE=BAD=AE=2218.(3分)如图,MN=3,以MN为直径的⊙O1,与一个半径为5的⊙O2相切于点M,正方形ABCD的顶点A、B 在大圆上,小圆在正方形的外部且与CD切于点N,则正方形ABCD的边长为6.)三、解答题:(本大题共10小题,共96分,解答应写出必要的计算过程、推演步骤或文字说明)19.(8分)(2013•当涂县模拟)计算:.20.(8分)请先将下式化简,再选择一个适当的无理数代入求值..﹣=21.(8分)如图,方格纸上的每个小方格都是边长为1的正方形,我们把格点间连线为边的三角形称为“格点三角形”,图中的△ABC就是一个格点三角形.(1)在△ABC中,BC=5,tanB=;(2)请在方格中画出一个格点三角形DEF,使△DEF∽△ABC,并且△DEF与△ABC的相似比为2.=5的正切,.22.(10分)(2008•重庆)已知:如图,在梯形ABCD中,AD∥BC,BC=DC,CF平分∠BCD,DF∥AB,BF的延长线交DC于点E.求证:(1)△BFC≌△DFC;(2)AD=DE.23.(10分)(2009•黔南州)“农民也可以报销医疗费了!”这是某市推行新型农村医疗合作的成果.村民只要每人每年交10元钱,就可以加入合作医疗,每年先由自己支付医疗费,年终时可得到按一定比例返回的返回款.这一举措极大地增强了农民抵御大病风险的能力.小华与同学随机调查了他们乡的一些农民,根据收集到的数据绘制了以下的统计图.根据以上信息,解答以下问题:(1)本次调查了多少村民,被调查的村民中,有多少人参加合作医疗得到了返回款;(2)该乡若有10 000村民,请你估计有多少人参加了合作医疗?要使两年后参加合作医疗的人数增加到9 680人,假设这两年的年增长率相同,求这个年增长率.参加医疗合作的百分率为=80%24.(10分)一个不透明的布袋内装有形状、大小、质地等完全相同的4个小球,分别标有数字1,2,3,4(1)从布袋中随机地取出一个小球,则小球上所标的数字恰好为4的概率是;(2)从布袋中随机地取出一个小球,记录小球上所标的数字为x,不将取出的小球放回布袋,再随机地取出一个小球,记录小球上所标的数字为y,这样就确定点P的一个坐标为(x,y),求点P落在直线y=x+1上的概率;(3)从布袋中随机地取出一个小球,用小球上所标的数字作为十位上的数字,将取出的小球放回布袋后,再随机地取出一个小球,用小球上所标的数字作为个位上的数字,求组成的两位数恰好是3的倍数的概率.的概率是;p==p=25.(10分)(2011•深圳模拟)如图,AB是半圆O上的直径,E是的中点,OE交弦BC于点D,过点C作⊙O切线交OE的延长线于点F.已知BC=8,DE=2.(1)求⊙O的半径;(2)求CF的长;(3)求tan∠BAD的值.的中点,∴,;DM=OM=.BAD===26.(10分)(2008•泰安)某市种植某种绿色蔬菜,全部用来出口.为了扩大出口规模,该市决定对这种蔬菜的种植实行政府补贴,规定每种植﹣亩这种蔬菜一次性补贴菜农若干元.经调查,种植亩数y(亩)与补贴数额x(元)之间大致满足如图1所示的一次函数关系.随着补贴数额x的不断增大,出口量也不断增加,但每亩蔬菜的收益z (元)会相应降低,且z与x之间也大致满足如图2所示的一次函数关系.(1)在政府未出台补贴措施前,该市种植这种蔬菜的总收益额为多少?(2)分别求出政府补贴政策实施后,种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式;(3)要使全市这种蔬菜的总收益w(元)最大,政府应将每亩补贴数额x定为多少?并求出总收益w的最大值.27.(10分)(2008•益阳)两个全等的直角三角形ABC和DEF重叠在一起,其中∠A=60°,AC=1.固定△ABC不动,将△DEF进行如下操作:(1)如图,△DEF沿线段AB向右平移(即D点在线段AB内移动),连接DC、CF、FB,四边形CDBF的形状在不断的变化,但它的面积不变化,请求出其面积.(2)如图,当D点移到AB的中点时,请你猜想四边形CDBF的形状,并说明理由.(3)如图,△DEF的D点固定在AB的中点,然后绕D点按顺时针方向旋转△DEF,使DF落在AB边上,此时F 点恰好与B点重合,连接AE,请你求出sinα的值.BC=•==DH===28.(12分)(2010•海安县一模)如图①,在平面直角坐标系中,已知△ABC是等边三角形,点B的坐标为(12,0),动点P在线段AB上从点A向点B以每秒个单位的速度运动,设运动时间为t秒.以点P为顶点,作等边△PMN,点M,N在x轴上.(1)当t为何值时,点M与点O重合;(2)求点P坐标和等边△PMN的边长(用t的代数式表示);(3)如果取OB的中点D,以OD为边在△AOB内部作如图②所示的矩形ODEF,点E在线段AB上.设等边△PMN 和矩形ODEF重叠部分的面积为S,请求出当0≤t≤2秒时S与t的函数关系式,并求出S的最大值.AB=8.4tAQ=AP=,AQ=4﹣=×=坐标为(,﹣=﹣÷,S=(=2t+6.﹣﹣(4t2FQ=2t(2=2t+6S=2t+6﹣(2t=t+62+6t+4;∵,参与本试卷答题和审题的老师有:CJX;zhangCF;心若在;zhjh;733599;zhehe;蓝月梦;lf2-9;wdxwzk;开心;Liuzhx;leikun;lanchong;wdxwwzy;MMCH;wenming;csiya;sjzx;py168;ZJX;自由人;mmll852;399462;438011;算术;xiawei;137-hui;HLing;HJJ;lanyan(排名不分先后)菁优网2014年2月27日。
2023-2024学年北京市海淀区首都师大二附中八年级(上)期末数学模拟练习试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.如图,将一张长方形纸片对折,再对折,然后沿第三个图中的虚线剪下,将纸片展开,得到一个四边形,这个四边形的面积是()A. B. C. D.2.化简的结果是()A. B. C. D.x3.如图,小明从A地出发,沿直线前进15米后向左转,再沿直线前进15米,又向左转……,照这样走下去,他第一次回到出发地A地时,一共走的路程是()A.200米B.250米C.300米D.350米4.一根蜡烛长30cm,点燃后每小时燃烧5cm,燃烧时蜡烛剩余的长度和燃烧时间小时之间的函数关系用图象可以表示为图中的()A. B.C. D.5.一个三角形的两边长分别为2和5,且第三边长为整数,这样的三角形的周长最大值是()A.11B.12C.13D.146.如图,在中,,BD是的角平分线交AC于点D,于E点,下列四个结论中正确的有()①;②;③;④≌A.1个B.2个C.3个D.4个7.下面计算正确的是()A. B.C. D.8.如图,在三角形ABC中,已知,D为BC边上的一点,且,,则等于()A. B. C. D.9.若是整数,则()A.6B.7C.8D.910.a,b是两个连续整数,若,则的值是()A.7B.9C.21D.25二、填空题:本题共8小题,每小题3分,共24分。
11.已知是方程组的解,则的值是______.12.计算的结果中不含x的一次项,则a的值是__________.13.如图,在中,,点D是BC的中点,交AB于E,点O在DE上,,,,则______.14.在平面直角坐标系中,已知一次函数的图象经过、两点,若,则______填“>”,“<”或“=”15.在实数范围内规定一种新的运算“☆”,其规则是:a☆,已知关于x的不等式:x☆的解集在数轴上表示出来如图所示.则m的值是______.16.已知点,若A、B两点关于x轴对称,则B的坐标是______.17.若分式,在实数范围内有意义,则实数x的取值范围是______.18.如图,直角坐标系中,直线和直线相交于点,则方程组的解为______.三、解答题:本题共8小题,共64分。
2022-2023学年北京区域联考中考数学专项提升仿真模拟测试题(二模)一.选一选(共10小题,满分30分,每小题3分)1. 元月份某,北京市的气温为﹣6℃,长泰县的气温为15℃,那么这长泰县的气温比北京市的气温高( )A. 15℃B. 20℃C. 21℃D. 21℃2. 据悉,超级磁力风力发电机可以大幅度提升风力发电效率,但其造价高昂,每座磁力风力发电机,其建造花费估计要5300万美元,“5300万”用科学记数法可表示为( )A. 5.3×103B. 5.3×104C. 5.3×107D. 5.3×1083. 下列电脑桌面快捷方式的图片中,是轴对称图形的是( )A. B. C. D.4. 在社会中,四名同学分别就同一种商品的价格变化情况,给了如下四幅图,为了更直观、清楚地体现该商品的价格增长势头,你认为比较理想的是( )A. B. C. D.5. 若a、b 是一元二次方程x2+3x -6=0 的两个没有相等的根,则a2﹣3b 的值是()A. -3B. 3C. ﹣15D. 156. 已知函数y=(k﹣2)x+k没有第三象限,则k的取值范围是( )A. k≠2B. k>2C. 0<k<2D. 0≤k<27. 已知⊙O的半径为10,P为⊙O内一点,且OP=6,则过P点,且长度为整数的弦有()A. 5条B. 6条C. 8条D. 10条8. 下列运算正确的是( )A. (x 3)2=x 5B. (﹣2x )2÷x =4xC. (x +y )2=x 2+y 2D. =1y x x y y x +--9. 如图,已知正方形ABCD 的边长为4,点E 、F 分别在边AB 、BC 上,且AE=BF=1,CE 、DF 交于点O.下列结论:①∠DOC=90°, ②OC=OE , ③tan ∠OCD = ,④ 中,正43ODC BEOF SS ∆=四边形确的有【 】A. 1个B. 2个C. 3个D. 4个10. 如图所示,向一个半径为、容积为的球形容器内注水,则能够反映容器内水的体积R V与容器内水深间的函数关系的图象可能是()yxA. B. C. D.二.填 空 题(共6小题,满分18分,每小题3分)11.都有意义,则x 的取值范围是 _____.12. 如图,AB ∥CD ,∠DCE=118°,∠AEC 的角平分线EF 与GF 相交于点F ,∠BGF=132°,则∠F 的度数是__.13. 一个几何体,是由许多规格相同的小正方体堆积而成的,其主视图,左视图如图所示要摆成这样的图形,至少需用_____块小正方体.14. [x]表示没有超过x 的整数,例如[﹣3.5]=﹣4,[2.1]=2,若y=x ﹣[x],下列命题:①当x=﹣0.5时,y=0.5;②y 的取值范围是:0≤y≤1;③对于所有的自变量x ,函数值y 随着x 增大而一直增大.其中正确命题有_____(只填写正确命题的序号).15. 已知△ABC 与△ABD 没有全等,且AC=AD =1,∠ABD=∠ABC=45°,∠ACB=60°,则CD =_____.16. 小明在操场上做游戏,他发现地上有一个没有规则的封闭图形ABC .为了知道它的面积,小明在封闭图形内划出了一个半径为1米的圆,在没有远处向圈内掷石子,且记录如下:依此估计此封闭图形ABC 的面积是_____m 2.三.解 答 题(共9小题,满分72分)17. (1)计算:()﹣2 ()0;13(2)先化简,再求值:()÷,其中x=﹣1.322x x x x --+24x x -18. 已知:如图,在△ABC 中,AB=AC ,点D 、E 分别在AB 、AC 上,(1)若∠BDO=∠CEO ,求证:BE=CD .(2)若点E 为AC 中点,问点D 满足什么条件时候,.12OE OB =19. 小军同学在学校组织的社会中负责了解他所居住的小区450户居民的生活用水情况,他从中随机了50户居民的月均用水量(单位:t ),并绘制了样本的频数分布表和频数分布直方图(如图).月均用水量(单位:t )频数百分比2≤x <324%3≤x <41224%4≤x <5 5≤x <61020%6≤x <7 12%7≤x <836%8≤x <924%(1)请根据题中已有的信息补全频数分布表和频数分布直方图;(2)如果家庭月均用水量“大于或等于4t 且小于7t”为中等用水量家庭,请你通过样本估计总体中的中等用水量家庭大约有多少户?(3)从月均用水量在2≤x <3,8≤x <9这两个范围内的样本家庭中任意抽取2个,求抽取出的2个家庭来自没有同范围的概率.20. 某种水果的价格如表:购买的质量(千克)没有超过10千克超过10千克每千克价格6元5元张欣两次共购买了25千克这种水果(第二次多于次),共付款132元.问张欣次、第二次分别购买了多少千克这种水果?21. 已知关于的没有等式的解是,求m 的值.x 24132m x mx +-≤16x ≥22. 随着人们经济收入的没有断提高,汽车已越来越多地进入到各个家庭.某大型超市为缓解停车难问题,建筑设计师提供了楼顶停车场的设计示意图.按规定,停车场坡道口上坡要张贴限高标志,以便告知车辆能否驶入.如图,地面所在的直线ME 与楼顶所在的直线AC 是平行的,CD 的厚度为0.5m ,求出汽车通过坡道口的限高DF 的长(结果到0.1m ,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53).23. 如图,象限内的点A 、B 在反比例函数的图象上,点C 在y 轴上,BC ∥x 轴,点A 的坐标为(2,4),且tan ∠ACB =32求:(1)反比例函数的解析式;(2)点C 的坐标;(3)sin∠ABC的值.24. 如图,AB是⊙O的直径,点C在⊙O上,∠ABC的平分线与AC相交于点D,与⊙O过点A的切线相交于点E.(1)∠ACB= °,理由是: ;(2)猜想△EAD的形状,并证明你的猜想;(3)若AB=8,AD=6,求BD.25. 已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个没有同的公共点,试求t的取值范围.2022-2023学年北京区域联考中考数学专项提升仿真模拟测试题(二模)一.选一选(共10小题,满分30分,每小题3分)1. 元月份某,北京市的气温为﹣6℃,长泰县的气温为15℃,那么这长泰县的气温比北京市的气温高( )A. 15℃B. 20℃C. 21℃D. 21℃【正确答案】D 【详解】分析:根据题意列出式子按有理数减法法则计算即可.详解:由题意可得:(℃).15(6)15621--=+=故选D.点睛:本题考查的是有理数减法的实际应用,解题的关键是根据题意列出正确的算式.2. 据悉,超级磁力风力发电机可以大幅度提升风力发电效率,但其造价高昂,每座磁力风力发电机,其建造花费估计要5300万美元,“5300万”用科学记数法可表示为( )A. 5.3×103B. 5.3×104C. 5.3×107D. 5.3×108【正确答案】C 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的值与小数点移动的位数相同.当原数值>1时,n 是正数;当原数的值<1时,n 是负数.【详解】解:5300万=53000000=.75.310⨯故选C.在把一个值较大的数用科学记数法表示为的形式时,我们要注意两点:①必须满足:10n a ⨯a ;②比原来的数的整数位数少1(也可以通过小数点移位来确定).110a ≤<n n 3. 下列电脑桌面快捷方式的图片中,是轴对称图形的是( )A. B. C. D.【正确答案】D【详解】分析:根据轴对称图形的定义进行判断即可.详解:A选项中的图形没有是轴对称图形,没有能选A;B选项中的图形没有是轴对称图形,没有能选B;C选项中的图形没有是轴对称图形,没有能选C;D选项中的图形是轴对称图形,可以选D.故选D.点睛:本题考查的是轴对称图形的识别,解题的关键是正确理解轴对称图形的定义:“把一个图形沿着某条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形”,这样对照定义进行判断即可得到正确答案了.4. 在社会中,四名同学分别就同一种商品的价格变化情况,给了如下四幅图,为了更直观、清楚地体现该商品的价格增长势头,你认为比较理想的是( )A. B. C. D.【正确答案】C【详解】分析:按照画折线统计图的规范要求进行判断即可.详解:因为绘制折线统计图时,首先要确定好横轴与纵轴的单位长度,然后根据具体数量通过向横轴和纵轴作垂线的方式确定好各点的位置,再顺次连接所描各点即可得到所求折线,所以对比四位同学所画折线统计图可知,符合画折线统计图的规范的,比较理想的是C.故选C.点睛:本题考查是绘制折线统计图,解题的关键是理解画折线统计图的步骤和注意事项.5. 若 a 、b 是一元二次方程 x 2+3x -6=0 的两个没有相等的根,则 a 2﹣3b 的值是()A. -3B. 3C. ﹣15D. 15【正确答案】D 【分析】根据根与系数的关系可得a +b =﹣3,根据一元二次方程的解的定义可得a 2=﹣3a +6,然后代入变形、求值即可.【详解】∵a 、b 是一元二次方程x 2+3x ﹣6=0的两个没有相等的根,∴a +b =﹣3,a 2+3a ﹣6=0,即a 2=﹣3a +6,则a 2﹣3b =﹣3a +6﹣3b =﹣3(a +b )+6=﹣3×(﹣3)+6=9+6=15.故选D .本题考查了根与系数的关系及一元二次方程的解,难度适中,关键掌握用根与系数的关系与代数式变形相进行解题.6. 已知函数y =(k ﹣2)x+k 没有第三象限,则k 的取值范围是( )A. k≠2B. k >2C. 0<k <2D. 0≤k <2【正确答案】D 【详解】直线没有第三象限,则第二、四象限或、二、四象限,当第二、四象限时,函数为正比例函数,k=0当、二、四象限时, ,解得0<k<2,200k k -<⎧⎨≥⎩综上所述,0≤k<2.故选D7. 已知⊙O 的半径为10,P 为⊙O 内一点,且OP =6,则过P 点,且长度为整数的弦有( )A. 5条B. 6条C. 8条D. 10条【正确答案】C 【详解】解:如图,AB 是直径,OA=10,OP=6,过点P 作CD ⊥AB ,交圆于点C ,D 两点.由垂径定理知,点P 是CD 的中点,由勾股定理求得,PC=8,CD=16,则CD 是过点P 最短的弦,长为16;AB是过P 最长的弦,长为20.所以过点P 的弦的弦长可以是17,18,19各两条.总共有8条长度为整数的弦.故选C .8. 下列运算正确的是( )A. (x 3)2=x 5B. (﹣2x )2÷x =4xC. (x +y )2=x 2+y 2D. =1y x x y y x +--【正确答案】B 【分析】按照幂的相关运算法则、乘法公式和分式的相关运算法则进行计算,再判断即可得到答案.【详解】A .因为,所以该选项计算错误;326()x x =B .因为,所以该选项计算正确;2(2)4x x x -÷=C .因为,所以该选项计算错误;222()2x y x xy y +=++D .因为,所以该选项计算错误.1y x y x x y y x x y x y +=-=-----故选:B .本题是一道考查整式和分式相关运算的题目,正确理解相关运算的运算法则是正确解答本题的关键.9. 如图,已知正方形ABCD 的边长为4,点E 、F 分别在边AB 、BC 上,且AE=BF=1,CE 、DF 交于点O.下列结论:①∠DOC=90°, ②OC=OE , ③tan ∠OCD = ,④ 中,正43ODC BEOF SS ∆=四边形确的有【 】A. 1个B. 2个C. 3个D. 4个【正确答案】C【详解】∵正方形ABCD 的边长为4,∴BC=CD=4,∠B=∠DCF=90°.∵AE=BF=1,∴BE=CF=4-1=3.在△EBC 和△FCD 中,∵BC=CD ,∠B=∠DCF ,BE=CF ,∴△EBC ≌△FCD (SAS ).∴∠CFD=∠BEC .∴∠BCE+∠BEC=∠BCE+∠CFD=90°.∴∠DOC=90°.故①正确.如图,连接DE若OC=OE ,∵DF ⊥EC ,∴CD=DE .∵CD=AD <DE (矛盾),故②错误.∵∠OCD+∠CDF=90°,∠CDF+∠DFC=90°,∴∠OCD=∠DFC .∴tan ∠OCD=tan ∠DFC=.故③正确.DC 4=FC 3∵△EBC ≌△FCD ,∴S △EBC =S △FCD .∴S △EBC -S △FOC =S △FCD -S △FOC ,即S △ODC =S 四边形BEOF .故④正确.故选C .10. 如图所示,向一个半径为、容积为的球形容器内注水,则能够反映容器内水的体积R V 与容器内水深间的函数关系的图象可能是( )y xA. B. C. D.【正确答案】A【详解】试题分析:观察可得,只有选项B 符合实际,故答案选A .考点:函数图象.二.填 空 题(共6小题,满分18分,每小题3分)11.都有意义,则x 的取值范围是 _____.【正确答案】x= 4或x >4.【详解】x 应满足①x 2+2x ≥0;②|x | 4≥0;③x 2 2x ≥0;④x +4≥0;≠⑥x 2 x 2≥0;⑦x 2+x 2≥0;≠2,依次解得:①x ≤ 2或x ≥0;②x ≤ 4或x ≥4;③x ≤0或x ≥2;④x ≥ 4;⑤x ≠4,x ≠ 1;⑥x ≤ 1或x ≥2;⑦x ≤ 2或x ≥1;⑧x≠ 3,x≠2,∴综合可得x= 4或x>4.故答案为x= 4或x>4.点睛:本题考查了分式和二次根式有意义的条件,分式有意义的条件是分母没有等于0,二次根式有意义的条件是被开方式大于且等于0.12. 如图,AB∥CD,∠DCE=118°,∠AEC的角平分线EF与GF相交于点F,∠BGF=132°,则∠F的度数是__.【正确答案】11°.【详解】分析:本题考查的是平行线的内错角相等,角平分线的性质和三角形外角的性质.解析:∵AB//CD,∠DCE=118°,∴∠AEC=118°,∵∠AEC的角平分线EF与GF相交线于点F, ∴∠AEF=∠FEC=59°,∵∠BGF=132°,∴∠F=11°.故答案为11°.13. 一个几何体,是由许多规格相同的小正方体堆积而成的,其主视图,左视图如图所示要摆成这样的图形,至少需用_____块小正方体.【正确答案】5【详解】由题图可得:第二层有2个小正方体,层至少有4个小正方体,故至少需用6个小正方体.14. [x]表示没有超过x的整数,例如[﹣3.5]=﹣4,[2.1]=2,若y=x﹣[x],下列命题:①当x=﹣0.5时,y=0.5;②y的取值范围是:0≤y≤1;③对于所有的自变量x,函数值y随着x增大而一直增大.其中正确命题有_____(只填写正确命题的序号).【正确答案】①.【分析】由[x]表示没有超过x 的整数可知取值代入检验即可判断出几个命题的[]1x x x -<≤正误.【详解】①∵[x]表示没有超过x 的整数,∴在y=x ﹣[x]中,当x=-0.5时,y=-0.5-(-1)=0.5,∴命题①成立;②∵[x]表示没有超过x 的整数,∴,[]1x x x -<≤∴在y=x ﹣[x]中,y<x-(x-1)=1,即y<1且,即;0y x x ≥-=0y ≥∴在y=x ﹣[x]中,y 的取值范围是:,01y ≤<∴命题②错误;③∵在y=x ﹣[x]中,当x=-3时,y=-3-(-3)=0;当x=4时,y=4-4=0;而此时-3<4,但0=0,∴命题③错误.综上所述,正确的命题是:①.故答案为①.本题是一道考查“新运算”的题目,解题的关键是:(1)读懂题中对新运算的定义;(2)对于第3个命题采用取值法进行验证说明比较简单.15. 已知△ABC 与△ABD 没有全等,且AC =AD =1,∠ABD=∠ABC=45°,∠ACB=60°,则CD =_____.【正确答案】1.【分析】根据题意分两种情形分别求解即可.【详解】解:如图,当CD在AB同侧时,∵AC=AD=1,∠C=60°,∴△ACD是等边三角形,∴CD=AC=1,当C、D在AB两侧时,∵△ABC与△ABD没有全等,∴△ABD′是由△ABD沿AB翻折得到,∴△ABD≌△ABD′,∴∠AD′B=ADB=120°,∵∠C+∠AD′B=180°,∴∠CAD′+∠CBD′=180°,∵∠CBD′=90°,∴∠CAD′=90°,∴CD′当D″在BD′的延长线上时,AD″=AC,也满足条件,此时CD″BC,此时△ABD≌△ABC,没有符合题意,故答案为1.本题考查等边三角形的判定和性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考填空题中的压轴题..16. 小明在操场上做游戏,他发现地上有一个没有规则的封闭图形ABC.为了知道它的面积,小明在封闭图形内划出了一个半径为1米的圆,在没有远处向圈内掷石子,且记录如下:依此估计此封闭图形ABC的面积是_____m2.【正确答案】3π.【详解】分析:由表中记录的数据通过计算可知,随着投掷石子次数的增加,石子落在阴影内的次数与落在⊙O 内(包括⊙O 上)的次数之比逐渐稳定在2:1左右,由此说明S 阴影=2S ⊙O 这样已知即可求出整个图形的面积了.详解:由表中数据可得:当投掷石子50次时,;当投掷石子150次时,40.7419m n =≈;当投掷石子300次时,;430.5185m n =≈930.5186m n ==∴石子落在阴影部分的概率大约是落在⊙O 内(包括和⊙O 上)的概率的2倍,∴S 阴影=2S ⊙O ,又∵S ⊙O =,π∴S 阴影=,2π∴此封闭图形ABC 的面积是:m 2.3π故答案为.3π点睛:读懂题意,明白“石子落在阴影部分和圆内(包括圆上)部分的概率之比等于两部分图形的面积之比”是正确解答此题的关键.三.解 答 题(共9小题,满分72分)17. (1)计算:()﹣2 ()0;13(2)先化简,再求值:()÷,其中x=﹣1.322x x x x --+24xx-【正确答案】(1)2)2x+8,6.【详解】试题分析:(1)先计算-2、0次方、去值符号和将tan 30°代入计算,再加减;(2)先化简,再将x=-1代入计算即可;试题解析:(1)原式=9-1+26=10=10(2)解:原式=[]·3(2)(2)(2)(2)(2)(2)x x x x x x x x +--+-+-(2)(2)x x x +-=23622(2)(2)·(2)(2)x x x x x x x x x +-++-+-=228x xx +=2x +8,当x =-1时,原式=2×(-1)+8=6.18. 已知:如图,在△ABC 中,AB=AC ,点D 、E 分别在AB 、AC 上,(1)若∠BDO=∠CEO ,求证:BE=CD .(2)若点E 为AC 中点,问点D 满足什么条件时候,.12OE OB =【正确答案】(1)详见解析;(2)详见解析.【详解】分析:(1)由AB=AC 可得∠ABC=∠ACB ,∠BDO=∠CEO 和BC=CB 可得△DBC ≌△ECB ,由此可得BE=CD ;(2)由E 为AC 中点可知,若此时D 为AB 的中点,则由三角形中位线定理可得DE ∥BC ,DE=BC ,从而可得△DEO ∽△BCO ,由此即可得到.1212OE DE OB BC ==详解:(1)∵AB=AC ,∴∠ABC=∠ACB ,在△DBC 与△ECB 中, ,ABC ACB BDO CEO BC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△DBC ≌△ECB ,∴BE=CD ;(2)当点D 为AB 的中点时,,理由如下:12OE OB =∵点E 为AC 中点,点D 为AB 的中点,∴DE=BC ,DE ∥BC ,12∴△DEO ∽△BCO ,∴.12OE DE OB BC ==点睛:本题是一道考查三角形全等和相似三角形判定和性质的几何题,解题的关键有两点:(1)熟悉等腰三角形的性质和全等三角形的判定方法;(2)熟悉三角形中位线定理和相似三角形的判定和性质.19. 小军同学在学校组织的社会中负责了解他所居住的小区450户居民的生活用水情况,他从中随机了50户居民的月均用水量(单位:t ),并绘制了样本的频数分布表和频数分布直方图(如图).月均用水量(单位:t )频数百分比2≤x <324%3≤x <41224%4≤x <5 5≤x <61020%6≤x <7 12%7≤x <836%8≤x <924%(1)请根据题中已有的信息补全频数分布表和频数分布直方图;(2)如果家庭月均用水量“大于或等于4t 且小于7t”为中等用水量家庭,请你通过样本估计总体中的中等用水量家庭大约有多少户?(3)从月均用水量在2≤x <3,8≤x <9这两个范围内的样本家庭中任意抽取2个,求抽取出的2个家庭来自没有同范围的概率.【正确答案】(1)的总数是:50(户),6≤x<7部分的户数是: 6(户),4≤x<5的户数是:15(户),所占的百分比是:30%.(2)279(户);(3).23【分析】(1)根据组的频数是2,百分比是4%即可求得总人数,然后根据百分比的意义求解:(2)利用总户数450乘以对应的百分比求解;(3) 在2≤x<3范围的两户用a 、b 表示,8≤x<9这两个范围内的两户用1,2表示,利用树状图表示出所有可能的结果,然后利用概率公式求解.【详解】解:(1)的总数是:2÷4%=50(户),则6≤x<7部分的户数是:50×12%=6(户),则4≤x<5的户数是:50﹣2﹣12﹣10﹣6﹣3﹣2=15(户),所占的百分比是:×=30%.1550月均用水量(单位:t )频数百分比2≤x <324%3≤x <41224%4≤x <51530%5≤x <61020%6≤x <7612%7≤x <836%8≤x <924%(2)中等用水量家庭大约有450×(30%+20%+12%)=279(户);(3)在2≤x<3范围的两户用a 、b 表示,8≤x<9这两个范围内的两户用1,2表示.则抽取出的2个家庭来自没有同范围的概率是:=.81223本题主要考查统计表和条形统计图,树状图求概率,较为容易,需注意频数、频率和总数之间的关系.20. 某种水果的价格如表:购买的质量(千克)没有超过10千克超过10千克每千克价格6元5元张欣两次共购买了25千克这种水果(第二次多于次),共付款132元.问张欣次、第二次分别购买了多少千克这种水果?【正确答案】张欣次、第二次购买这种水果的质量分别为7千克、18千克.【详解】分析:由题意设张欣次和第二次购买这种水果的量分别位x 千克和y 千克,由题意可知x<12.5<y ,然后所给数量关系分和两种情况分别列出二元方程组进行解答即可.10x ≤10x >详解:设张欣次、第二次购买了这种水果的量分别为x 千克、y 千克,因为第二次购买多于次,则x <12.5<y .①当x≤10时, ,2565132x y x y +=⎧⎨+=⎩解得 ;718x y =⎧⎨=⎩②当10<x <12.5时:,此方程组无解.2555132x y x y +=⎧⎨+=⎩综上所述,张欣次、第二次购买了这种水果的量分别为7千克和18千克.答:张欣次、第二次购买了这种水果的量分别为7千克、18千克.点睛:本题的解题的关键是抓住题目中“两次共购买水果25千克,且第二次的购买量多于次”分别设两次购买水果的数量为x 和y ,从而得到x <12.5<y ,再分x≤10和10<x <12.5两种情况解答即可.21. 已知关于的没有等式的解是,求m 的值.x 24132m x mx +-≤16x ≥【正确答案】m 无值.【分析】把原没有等式化简整理可得:(12m 2)x≥4m+3,题中所给原没有等式的解集为:,可得①及②,由①可得,由②可得,综合即16x ≥1220m ->4311226m m +=-16m >53m =-可得到满足题中条件的m 的值没有存在.【详解】原没有等式可化为:4m+2x≤12mx 3,即(12m 2)x≥4m+3,又∵原没有等式的解为,16x ≥∴有①、②,1220m ->4311226m m +=-∵由①解得,由②解得,16m >53m =-∴满足条件的m 的取值没有存在,即本题无解.本题解题的关键是由“原没有等式化简所得式子(12m 2)x≥4m+3原没有等式的解集为”16x ≥得到m 需同时满足两个条件:①可得;②可得,特别要注意没有要将第1个条16m >53m =-件忽略了.22. 随着人们经济收入的没有断提高,汽车已越来越多地进入到各个家庭.某大型超市为缓解停车难问题,建筑设计师提供了楼顶停车场的设计示意图.按规定,停车场坡道口上坡要张贴限高标志,以便告知车辆能否驶入.如图,地面所在的直线ME 与楼顶所在的直线AC 是平行的,CD 的厚度为0.5m ,求出汽车通过坡道口的限高DF 的长(结果到0.1m ,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53).【正确答案】坡道口的限高DF 的长是3.8m .【详解】试题分析:首先根据AC∥ME,可得∠CAB=∠AE28°,再根据三角函数计算出BC 的长,进而得到BD 的长,进而求出DF 即可.试题解析:∵AC∥ME,∴∠CAB=∠AEM,在Rt△ABC 中,∠CAB=28°,AC=9m ,∴BC=ACtan28°≈9×0.53=4.77(m ),∴BD=BC﹣CD=4.77﹣0.5=4.27(m ),在Rt△BDF 中,∠BDF+∠FBD=90°,在Rt△ABC 中,∠CAB+∠FBC=90°,∴∠BDF=∠CAB=28°,∴DF=BDcos28°≈4.27×0.88=3.7576≈3.8 (m ),答:坡道口的限高DF 的长是3.8m .23. 如图,象限内的点A 、B 在反比例函数的图象上,点C 在y 轴上,BC ∥x 轴,点A 的坐标为(2,4),且tan ∠ACB =32求:(1)反比例函数的解析式;(2)点C 的坐标;(3)sin ∠ABC的值.【正确答案】(1)y =;(2)点C 的坐标为(0,1);(3)sin ∠ABC .8x 【分析】(1)设反比例函数的解析式为,把点A 的坐标代入所设解析式中求得k 的值,即ky x =可求得所求解析式;(2)如图,过点A 作AF ⊥x 轴于点E ,交BC 于点F ,则由题意易得CF =2,tan ∠ACB =可解32得AF =3,从而可得EF =AE -AF =1,由此即可得点C 的坐标为(0,1);(3)由(1)(2)可求得点B 的坐标,从而可得BC 的长,进而可得BF 的长,AF 的长即可在Rt △ABF 中解得AB 的长,由此AF 的长即可求得sin ∠ABC 的值了.【详解】解:(1)设反比例函数解析式为,k y x =将点A (2,4)代入,得:k =8,∴反比例函数的解析式;8y x =(2)过点A 作AE ⊥x 轴于点E ,AE 与BC 交于点F ,则CF =2,又∵tan ∠ACB =,23CF AF =∴AF =3,∴EF =AE -AF =4-3=1,∴点C 的坐标为(0,1);(3)∵点C 的坐标为(0,1),BC ∥x 轴,∴点B 的纵坐标为1,∵ 当y =1时,在由1=可得x =8,8y x =8x ∴点B 的坐标为(8,1),∴BF =BC CF =6,∴AB,=∴sin∠ABC =AF AB=本题是一道反比例函数与几何图形和锐角三角函数相的题目,解题的关键是作出如图所示的辅助线,这样构造出两个直角三角形,已知条件和正切函数及正弦函数的意义即可求出所求量了.24. 如图,AB 是⊙O 的直径,点C 在⊙O 上,∠ABC 的平分线与AC 相交于点D ,与⊙O 过点A 的切线相交于点E .(1)∠ACB= °,理由是: ;(2)猜想△EAD 的形状,并证明你的猜想;(3)若AB=8,AD=6,求BD .【正确答案】(1)90°;直径所对的圆周角是直角;(2)证明见解析;(3)145【详解】试题分析:(1)根据AB 是⊙O 的直径,点C 在⊙O 上利用直径所对的圆周角是直角即可得到结论;(2)根据∠ABC 的平分线与AC 相交于点D ,得到∠CBD=∠ABE,再根据AE 是⊙O 的切线得到∠EAB=90°,从而得到∠CDB+∠CBD=90°,等量代换得到∠AED=∠EDA,从而判定△EAD 是等腰三角形.(3)证得△CDB∽△AEB 后设BD=5x ,则CB=4x ,CD=3x ,从而得到CA=CD+DA=3x+6,然后在直角三角形ACB 中,利用AC2+BC2=AB2得到(3x+6)2+(4x )2=82解得x 后即可求得BD 的长.试题解析:(1)∵AB 是⊙O 的直径,点C 在⊙O 上,∴∠ACB=90°(直径所对的圆周角是直角)(2)△EAD 是等腰三角形.证明:∵∠ABC 的平分线与AC 相交于点D ,∴∠CBD=∠ABE∵AE 是⊙O 的切线,∴∠EAB=90°∴∠AEB+∠EBA=90°,∵∠EDA=∠CDB,∠CDB+∠CBD=90°,∵∠CBE=∠ABE,∴∠AED=∠EDA,∴AE=AD∴△EAD 是等腰三角形.(3)解:∵AE=AD,AD=6,∴AE=AD=6,∵AB=8,∴在直角三角形AEB 中,EB=10∵∠CDB=∠E,∠CBD=∠ABE ∴△CDB∽△AEB,∴,6384AE DC AB BC ===∴设CB=4x ,CD=3x 则BD=5x ,∴CA=CD+DA=3x+6,在直角三角形ACB 中,AC 2+BC 2=AB 2即:(3x+6)2+(4x )2=82,解得:x=﹣2(舍去)或x=1425∴BD=5x=.145点睛:本题考查了圆的综合知识,题目中涉及到了圆周角定理、等腰三角形的性质与判定以及相似三角形的判定与性质,难度中等偏上.25. 已知,抛物线y =ax 2+ax +b (a ≠0)与直线y =2x +m 有一个公共点M (1,0),且a <b .(1)求b 与a 的关系式和抛物线的顶点D 坐标(用a 的代数式表示);(2)直线与抛物线的另外一个交点记为N ,求△DMN 的面积与a 的关系式;(3)a =﹣1时,直线y =﹣2x 与抛物线在第二象限交于点G ,点G 、H 关于原点对称,现将线段GH 沿y 轴向上平移t 个单位(t >0),若线段GH 与抛物线有两个没有同的公共点,试求t 的取值范围.【正确答案】(1)b= 2a ,顶点D的坐标为(﹣, );(2);(3) 2≤t <1294a2732748a a--.94【分析】(1)把M 点坐标代入抛物线解析式可得到b 与a 的关系,可用a 表示出抛物线解析式,化为顶点式可求得其顶点D 的坐标;(2)把点M (1,0)代入直线解析式可先求得m 的值,联立直线与抛物线解析式,消去y ,可得到关于x 的一元二次方程,可求得另一交点N 的坐标,根据a <b ,判断a <0,确定D 、M 、N 的位置,画图1,根据面积和可得△DMN 的面积即可;(3)先根据a 的值确定抛物线的解析式,画出图2,先联立方程组可求得当GH 与抛物线只有一个公共点时,t 的值,再确定当线段一个端点在抛物线上时,t 的值,可得:线段GH 与抛物线有两个没有同的公共点时t 的取值范围.【详解】解:(1)∵抛物线y=ax 2+ax+b 有一个公共点M (1,0),∴a+a+b=0,即b=-2a ,∴y=ax 2+ax+b=ax 2+ax-2a=a (x+)2-,1294a ∴抛物线顶点D的坐标为(-,-);1294a (2)∵直线y=2x+m 点M (1,0),∴0=2×1+m ,解得m=-2,∴y=2x-2,则,2222y x y ax ax a -⎧⎨+-⎩==得ax 2+(a-2)x-2a+2=0,∴(x-1)(ax+2a-2)=0,解得x=1或x=-2,2a ∴N 点坐标为(-2,-6),2a 4a ∵a <b ,即a <-2a ,∴a <0,如图1,设抛物线对称轴交直线于点E ,∵抛物线对称轴为,122a x a =-=-∴E (-,-3),12∵M (1,0),N (-2,-6),2a 4a 设△DMN 的面积为S ,∴S=S △DEN +S △DEM =|( -2)-1|•|--(-3)|=−−a ,122a 94a 2743a 278(3)当a=-1时,抛物线的解析式为:y=-x 2-x+2=-(x+)2+,1294由,222y x x y x ⎧=--+⎨=-⎩-x 2-x+2=-2x ,解得:x 1=2,x 2=-1,∴G (-1,2),∵点G 、H 关于原点对称,∴H (1,-2),设直线GH 平移后的解析式为:y=-2x+t ,-x 2-x+2=-2x+t ,x 2-x-2+t=0,△=1-4(t-2)=0,t=,94当点H 平移后落在抛物线上时,坐标为(1,0),把(1,0)代入y=-2x+t ,t=2,∴当线段GH 与抛物线有两个没有同的公共点,t 的取值范围是2≤t <.94本题为二次函数的综合应用,涉及函数图象的交点、二次函数的性质、根的判别式、三角形的面积等知识.在(1)中由M的坐标得到b与a的关系是解题的关键,在(2)中联立两函数解析式,得到关于x的一元二次方程是解题的关键,在(3)中求得GH与抛物线一个交点和两个交点的分界点是解题的关键,本题考查知识点较多,综合性较强,难度较大.2022-2023学年北京区域联考中考数学专项提升仿真模拟测试题(三模)一、选一选(每小题4分,满分40分)1. -|-2018|等于( )A. 2018B. 2018C. 1D. 02. 某红外线遥控器发出的红外线波长为0.000 000 94m ,用科学记数法表示这个数是( )A. mB. mC. mD. m79.410-⨯79.410⨯89.410-⨯89.410⨯3. 下列计算正确的是( )A. (2a -1)2=4a 2-1 B. 3a 6÷3a 3=a 2C. (-ab 2) 4=-a 4b 6D. -2a +(2a -1)=-14. 从棱长为2a 的正方体零件的一角,挖去一个棱长为a 的小正方体,得到一个如图所示的零件,则这个零件的俯视图是( )A. B. C. D.5. 如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A. 30°B. 25°C. 20°D. 15°6. 下列命题中,真命题是( )A. 两条对角线相等的四边形是矩形B. 两条对角线互相垂直且平分的四边形是正方形C. 等边三角形既是轴对称图形又是对称图形D. 有一个角是60°的等腰三角形是等边三角形7. 某校九年级(1)班全体学生2015年初中毕业体育考试的成绩统计如下表:成绩(分)35394244454850人数(人)2566876根据上表中的信息判断,下列结论中错误的是()A. 该班一共有40名同学B. 该班学生这次考试成绩的众数是45分C. 该班学生这次考试成绩的中位数是45分D. 该班学生这次考试成绩的平均数是45分8. 如图,AB是⊙O的直径,∠AOC=110°,则∠D=【】A. 250B. 350C. 550D. 7009. 已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c<0;②a-b+c<0;③b+2a<0;④abc>0,其中正确的是( )A. ①②③B. ②③C. ③④D. ①④10. 我们知道,一元二次方程x2=-1没有实数根,即没有存在一个实数的平方等于-1,若我。
2011-2012学年北京市丰台区中考数学模拟试卷2011-2012学年北京市丰台区中考数学模拟试卷一、单项选择题(每小题4分,共20分,请将所选选项的字母写在题目后的括号内)1.(4分)(2006•海南)今年1至4月份,我省旅游业一直保持良好的发展势头,旅游收入累计达5 163 000 000元,2.(4分)函数y=中自变量x的取值范围是()3.(4分)为了了解某校300名初三学生的睡眠时间,从中抽取30名学生进行调查,在这个问题中,下列说法正确4.(4分)(2009•吴江市模拟)如图,△ABC和△GAF是两个全等的等腰直角三角形,图中相似三角形(不包括全等)共有()5.(4分)(2012•藤县一模)一个空间几何体的主视图和左视图都是边长为2的正方形,俯视图是一个圆,那么这二、填空题(每小题4分,共20分,请把下列各题的正确答案填写在横线上)6.(4分)计算:﹣2﹣1+(π﹣3.142)0+2cos230°=_________.7.(4分)若x2﹣4x﹣1=(x+a)2﹣b,则|a﹣b|=_________.8.(4分)若相交两圆的半径长分别是方程x2﹣3x+2=0的两个根,则它们的圆心距d的取值范围是_________9.(4分)(2009•太原)有两把不同的锁和三把钥匙,其中两把钥匙分别能打开其中一把锁,第三把钥匙不能打开这两把锁,任意取出一把钥匙去开任意的一把锁,一次打开锁的概率为_________.10.(4分)(2001•绍兴)如图,菱形ABCD中,对角线AC、BD交于O点,分别以A、C为圆心,AO、CO为半径画圆弧,交菱形各边于点E、F、G、H,若AC=,BD=2,则图中阴影部分的面积是_________.三、解答下列各题(每小题7分,共35分)11.(7分)解不等式组(要求利用数轴求出解集):.12.(7分)(2006•自贡)已知x=+1,求的值.13.(7分)观察下面的几个算式:13×17=221可写成100×1×(1+1)+21;23×27=621可写成100×2×(2+1)+21;33×37=1221可写成100×3×(3+1)+21;43×47=2021可写成100×4×(4+1)+21;…根据上面规律填空:(1)83×87可写成_________.(2)(10n+3)(10n+7)可写成_________.(3)计算:1993×1997=_________.14.(7分)(2008•娄底)如图,方格纸中的每个小方格都是边长为1的正方形,我们把以格点间连线为边的三角形称为“格点三角形”,图中的△ABC是格点三角形.在建立平面直角坐标系后,点B的坐标为(﹣1,﹣1).(1)把△ABC向左平移8格后得到△A1B1C1,画出△A1B1C1的图形并写出点B1的坐标;(2)把△ABC绕点C按顺时针方向旋转90°后得到△A2B2C,画出△A2B2C的图形并写出点B2的坐标;(3)把△ABC以点A为位似中心放大,使放大前后对应边长的比为1:2,画出△AB3C3的图形.15.(7分)如图,△ABC中,AB=AC,D、E分别是BC、AC上的点,∠BAD与∠CDE满足什么条件时AD=AE?写出你的推理过程.四、解答下列各题(共38分)16.(9分)初三年级一位学生对本班同学的上学方式进行了一次调查统计,图①和图②是他通过采集数据后,绘制的两幅不完整的统计图,请你根据图中提供的信息,解答以下问题:(1)该班共有多少名学生?(2)在图①中将表示“骑车”的部分补充完整;(3)在扇形统计图中,“步行”部分对应的圆心角的度数是多少?(4)如果全年级共有300名学生,请你估算全年级骑车上学的学生人数.17.(9分)如图,一次函数y=kx+b的图象与反比例函数的图象交于A、B两点.(1)根据图中条件,求反比例函数和一次函数的解析式;(2)根椐函数图象直接写出一次函数的值大于反比例函数的值的x的取值范围.18.(10分)某班同学到离校24千米的农场参观,一部分骑自行车的同学先走,1小时后,没有自行车的同学乘汽车出发,结果他们同时到达农场,已知汽车速度是自行车速度的3倍,求两种车的速度.19.(10分)一条船在海面上自西向东沿直线航行,在A处测得航标C在北偏东60°方向上,前进100米到达B处,又测得航标C在北偏东45°方向上.(1)请根据以上描述,画出图形.(2)已知以航标C为圆心,120米为半径的圆形区域内有浅滩,若这条船继续前进,是否有被浅滩阻碍的危险?为什么?五、解答下列各题(共37分)20.(12分)如图,已知AB、AC分别为⊙O的直径和弦,D为弧BC的中点,DE⊥AC于E,DE=6,AC=16.(1)求证:DE是⊙O的切线;(2)求直径AB的长.21.(12分)(2006•兰州)如图所示,有一座抛物线形拱桥,桥下面在正常水位AB时,宽20m,水位上升3m就达到警戒线CD,这时水面宽度为10m.(1)在如图的坐标系中求抛物线的解析式;(2)若洪水到来时,水位以每小时0.2m的速度上升,从警戒线开始,再持续多少小时才能到达拱桥顶?22.(13分)如图所示,△OAB是边长为的等边三角形,其中O是坐标原点,顶点A在x轴的正方向上,将△OAB 折叠,使点B落在边OA上,记为B′,折痕为EF.(1)设OB′的长为x,△OB′E的周长为c,求c关于x的函数关系式;(2)当B′E∥y轴时,求点B′和点E的坐标;(3)当B′在OA上运动但不与O、A重合时,能否使△EB′F成为直角三角形?若能,请求出点B′的坐标;若不能,请说明理由.2011-2012学年北京市丰台区中考数学模拟试卷参考答案与试题解析一、单项选择题(每小题4分,共20分,请将所选选项的字母写在题目后的括号内)1.(4分)(2006•海南)今年1至4月份,我省旅游业一直保持良好的发展势头,旅游收入累计达5 163 000 000元,2.(4分)函数y=中自变量x的取值范围是()3.(4分)为了了解某校300名初三学生的睡眠时间,从中抽取30名学生进行调查,在这个问题中,下列说法正确4.(4分)(2009•吴江市模拟)如图,△ABC和△GAF是两个全等的等腰直角三角形,图中相似三角形(不包括全等)共有()5.(4分)(2012•藤县一模)一个空间几何体的主视图和左视图都是边长为2的正方形,俯视图是一个圆,那么这二、填空题(每小题4分,共20分,请把下列各题的正确答案填写在横线上)6.(4分)计算:﹣2﹣1+(π﹣3.142)0+2cos230°=2.+1+2(7.(4分)若x2﹣4x﹣1=(x+a)2﹣b,则|a﹣b|=7.8.(4分)若相交两圆的半径长分别是方程x2﹣3x+2=0的两个根,则它们的圆心距d的取值范围是1<d<39.(4分)(2009•太原)有两把不同的锁和三把钥匙,其中两把钥匙分别能打开其中一把锁,第三把钥匙不能打开这两把锁,任意取出一把钥匙去开任意的一把锁,一次打开锁的概率为..=10.(4分)(2001•绍兴)如图,菱形ABCD中,对角线AC、BD交于O点,分别以A、C为圆心,AO、CO为半径画圆弧,交菱形各边于点E、F、G、H,若AC=,BD=2,则图中阴影部分的面积是.××AC=×==,×=2三、解答下列各题(每小题7分,共35分)11.(7分)解不等式组(要求利用数轴求出解集):.12.(7分)(2006•自贡)已知x=+1,求的值.+1=13.(7分)观察下面的几个算式:13×17=221可写成100×1×(1+1)+21;23×27=621可写成100×2×(2+1)+21;33×37=1221可写成100×3×(3+1)+21;43×47=2021可写成100×4×(4+1)+21;…根据上面规律填空:(1)83×87可写成100×8×(8+1)+21.(2)(10n+3)(10n+7)可写成100n(n+1)+21.(3)计算:1993×1997=3980021.14.(7分)(2008•娄底)如图,方格纸中的每个小方格都是边长为1的正方形,我们把以格点间连线为边的三角形称为“格点三角形”,图中的△ABC是格点三角形.在建立平面直角坐标系后,点B的坐标为(﹣1,﹣1).(1)把△ABC向左平移8格后得到△A1B1C1,画出△A1B1C1的图形并写出点B1的坐标;(2)把△ABC绕点C按顺时针方向旋转90°后得到△A2B2C,画出△A2B2C的图形并写出点B2的坐标;(3)把△ABC以点A为位似中心放大,使放大前后对应边长的比为1:2,画出△AB3C3的图形.15.(7分)如图,△ABC中,AB=AC,D、E分别是BC、AC上的点,∠BAD与∠CDE满足什么条件时AD=AE?写出你的推理过程.四、解答下列各题(共38分)16.(9分)初三年级一位学生对本班同学的上学方式进行了一次调查统计,图①和图②是他通过采集数据后,绘制的两幅不完整的统计图,请你根据图中提供的信息,解答以下问题:(1)该班共有多少名学生?(2)在图①中将表示“骑车”的部分补充完整;(3)在扇形统计图中,“步行”部分对应的圆心角的度数是多少?(4)如果全年级共有300名学生,请你估算全年级骑车上学的学生人数.17.(9分)如图,一次函数y=kx+b的图象与反比例函数的图象交于A、B两点.(1)根据图中条件,求反比例函数和一次函数的解析式;(2)根椐函数图象直接写出一次函数的值大于反比例函数的值的x的取值范围.,便可求出)代入;得反比例函数为;)代入18.(10分)某班同学到离校24千米的农场参观,一部分骑自行车的同学先走,1小时后,没有自行车的同学乘汽车出发,结果他们同时到达农场,已知汽车速度是自行车速度的3倍,求两种车的速度.依题意得19.(10分)一条船在海面上自西向东沿直线航行,在A处测得航标C在北偏东60°方向上,前进100米到达B处,又测得航标C在北偏东45°方向上.(1)请根据以上描述,画出图形.(2)已知以航标C为圆心,120米为半径的圆形区域内有浅滩,若这条船继续前进,是否有被浅滩阻碍的危险?为什么?CAD=,AD=∴五、解答下列各题(共37分)20.(12分)如图,已知AB、AC分别为⊙O的直径和弦,D为弧BC的中点,DE⊥AC于E,DE=6,AC=16.(1)求证:DE是⊙O的切线;(2)求直径AB的长.21.(12分)(2006•兰州)如图所示,有一座抛物线形拱桥,桥下面在正常水位AB时,宽20m,水位上升3m就达到警戒线CD,这时水面宽度为10m.(1)在如图的坐标系中求抛物线的解析式;(2)若洪水到来时,水位以每小时0.2m的速度上升,从警戒线开始,再持续多少小时才能到达拱桥顶?y=∴22.(13分)如图所示,△OAB是边长为的等边三角形,其中O是坐标原点,顶点A在x轴的正方向上,将△OAB 折叠,使点B落在边OA上,记为B′,折痕为EF.(1)设OB′的长为x,△OB′E的周长为c,求c关于x的函数关系式;(2)当B′E∥y轴时,求点B′和点E的坐标;(3)当B′在OA上运动但不与O、A重合时,能否使△EB′F成为直角三角形?若能,请求出点B′的坐标;若不能,请说明理由.=2++BE+OE=x+OB==,)参与本试卷答题和审题的老师有:feng;心若在;zhjh;lf2-9;lanchong;csiya;ln_86;kuaile;zcx;hnaylzhyk;zzz;zhehe;CJX;Joyce;wdxwzk;lanyan;HLing;bjf;MMCH;Liuzhx;wdxwwzy;算术;蓝月梦;zxw;自由人(排名不分先后)菁优网2014年2月27日。
2023-2024学年北京市海淀区首都师范大学附属中学九年级下学期中考二模数学试题一、选择题:本题共8小题,每小题3分,共24分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.如图是某几何体的三视图,则该几何体是【】A.圆锥B.圆柱C.三棱柱D.三棱锥2.据报道,2024年春节假期北京接待游客约1750万人次,旅游收入同比增长近四成.将17500000用科学记数法表示应为()A. B.C.D.3.如图,,,若,则的大小为()A. B. C. D.4.实数a 在数轴上的对应点的位置如图所示,下列结论中正确的是()A.B.C. D.5.每一个外角都是的正多边形是() A.正四边形B.正六边形C.正七边形D.正九边形6.关于x 的一元二次方程有两个相等的实数根,则m 的值为()A.B.1C.D.47.2024年央视春晚的主题为“龙行龘龘,欣欣家国”.“龙行龘龘”寓意中华儿女奋发有为、昂扬向上的精神风貌.将分别印有“龙”“行”“龘”“龘”四张质地均匀、大小相同的卡片放入盒中,从中随机抽取一张不放回,再从中随机抽取一张,则抽取的两张卡片上恰有一张印有汉字“龘”的概率为()A.B.C.D.8.如图,在等边三角形ABC中,有一点P,连接PA、PB、PC,将BP绕点B逆时针旋转得到BD,连接PD、AD,有如下结论:①≌;②是等边三角形;③如果,那么以上结论正确的是()A.①②B.①③C.②③D.①②③二、填空题:本题共8小题,每小题3分,共24分。
9.若代数式在实数范围内有意义,则x的取值范围是__________.10.分解因式__________.11.方程的解为__________.12.在平面直角坐标系xOy中,若函数的图象经过点和则的值为__________.13.如图,在矩形ABCD中,M,N分别为BC,CD的中点,则的值为__________.14.某实验基地为全面掌握“无絮杨”树苗的生长规律,定期对2000棵该品种树苗进行抽测.近期从中随机抽测了100棵树苗,获得了它们的高度单位:数据经过整理后绘制的频数分布直方图如右图所示.若高度不低于300cm的树苗为长势良好,则估计此时该基地培育的2000棵“无絮杨”树苗中长势良好的有__________棵.15.如图,AB是的直径,点C在上,过点B作的切线与直线AC交于点若,则__________16.小明是某蛋糕店的会员,他有一张会员卡,在该店购买的商品均按定价打八五折.周末他去蛋糕店,发现店内正在举办特惠活动:任选两件商品,第二件打七折,如果两件商品不同价,则按照低价商品的价格打折,并且特惠活动不能使用会员卡.小明打算在该店购买两个面包,他计算后发现,使用会员卡与参加特惠活动两者的花费相差元,则__________花费较少直接填写序号:①使用会员卡;②参加特惠活动;两个面包的定价相差__________元.三、计算题:本大题共2小题,共12分。
网格专题一、选择题1.(2011年某某省某某市中考数学模拟22)如图,△ABC 的顶点都是正方形网格中的格点,则cos ∠ABC 等于( )A 、55B 、552C 、5D 、32答案:B2.(2011年四中模拟28)下列位于方格纸中的两个三角形,既不成轴对称又不成中心对称的是( )(A) (B) (C) (D)答案:A3.(2011某某某某盂县月考)如图△ABC 的顶点都是正方形网格中的格点,则sin∠ABC 等于( )A 、5B 、552C 、 55D 、32答案:C4.(2011四中模拟)如图,点A 、B 、C 、D 、E 、F 、G 、H 、K 都是7×8方格纸中的格点,为使△DEM ∽△ABC ,则点M 应是F 、G 、H 、K 四点中的 ( )(第1题)SR Q P ②①A .FB .GC .HD .K 答案:C5.(2011年某某省某某市中考数学模拟22)如图,△ABC 的顶点都是正方形网格中的格点,则cos ∠ABC 等于( )A 、55B 、552C 、5D 、32答案:B6.(2011年四中模拟28)下列位于方格纸中的两个三角形,既不成轴对称又不成中心对称的是( )(A) (B) (C) (D)答案:A7. (2011某某慈吉 模拟)如图所示网格中, 已知②号三角形是由①号三角形经旋转变化得到的, 其旋转中心是下列各点中的( )A. PB. QC. RD. S 答案:C(第5题)第7题图8. (某某某某2011模拟)如图,一圆弧过方格的格点A、B、C,试在方格中建立平面直角坐标系,使点A的坐标为(-2,4),则该圆弧所在圆的圆心坐标是()A.(-1,2)B. (1,-1)C. (-1,1)D. (2,1).答案: C二、填空题1.(2011年某某江津区七校联考一模)如图,在10×6的网格图中(每个小正方形的边长均为1个单位长)。
⊙A半径为2,⊙B半径为1,需使⊙A与静止的⊙B相切,那么⊙A由图示的位置向左平移个单位长.(第1题图)答案:2或42.(2011年四中33模)如图,方格图中小正方形的边长为1,将方格图中阴影部分剪下来,再把剪下的阴影部分重新剪成一个正方形,则所剪成的面积最大的正方形的边长为. 答案:5三、解答题1.(2011年某某某某)如图,在平面直角坐标系中,点A B C P ,,,的坐标分别为(02)(32)(23)(11),,,,,,,.(1)请在图中画出A B C '''△,使得A B C '''△与ABC △关于点P 成中心对称;(2)若一个二次函数的图象经过(1)中A B C '''△的三个顶点,求此二次函数的关系式.解:(1)A B C '''△如图所示. 3分(2)由(1)知,点A B C ''',,的坐标分别为(20)(10)(01)--,,,,,. 由二次函数图象与y 轴的交点C '的坐标为(01)-,,故可设所求二次函数关系式为21y ax bx =+-.5分将(20)(10)A B ''-,,,的坐标代入,得421010a b a b +-=⎧⎨--=⎩,解故所求二次函数关系式为211122y x x =--. ················· 8分 xOyACBP(第1图)xy01234-1-1-212 ABC D2.(2011年某某某某)已知抛物线y =x 2+(2n -1)x +n 2-1 (n 为常数) .(1)当该抛物线经过坐标原点,并且顶点在第四象限时,求出它所对应的函数关系式; (2)设A 是(1)所确定的抛物线上位于x 轴下方、且在对称轴左侧的一个动点,过A 作x 轴的平行线,交抛物线于另一点D ,再作AB ⊥x 轴于B ,DC ⊥x 轴于C . ①当BC =1时,求矩形ABCD 的周长;②试问矩形ABCD 的周长是否存在最大值?如果存在,请求出这个最大值,并指出此时A 点的坐标;如果不存在,请说明理由.解:(1)由已知条件,得 n 2-1=0 ………… 1分解这个方程,得n 1=1, n 2=-1 ……… 2分 当n=1时,得y=x 2+x, 此抛物线的顶点不在第四象限. 当n=-1时,得y=x 2-3x, 此抛物线的顶点在第四象限. ∴所求的函数关系为y=x 2-3x. ………………4分(2)由y=x 2-3x ,令y=0, 得x 2-3x=0,解得x 1=0,x 2=3,∴抛物线与x 轴的另一个交点为(3,0),∴它的顶点为(23,49 ), 对称轴为直线x=23, 其大致位置如图所示,…… 5分① ∵BC=1,由抛物线和矩形的对称性易知OB=21×(3-1)=1.∴B(1,0)…… 6分∴点A 的横坐标x=1, 又点A 在抛物线y=x 2-3x 上,∴点A 的纵坐标y=12-3×1=-2.∴AB=|y|=|-2|=2.∴矩形ABCD 的周长为:2(AB+BC)=2×(2+1)=6. …… 8分 ② ∵点A 在抛物线y=x 2-3x 上,故可设A 点的坐标为(x,x 2-3x), ∴B 点的坐标为(x,0). (0<x <23),∴BC=3-2x, A 在x 轴下方,∴x 2-3x <0,∴AB=|x 2-3x|=3x-x 2, ……… 10分 ∴矩形ABCD 的周长P=2[(3x-x 2)+(3-2x)]=-2(x-21)2+213∵a=-2<0,∴当x=21时,矩形ABCD 的周长P 最大值为213.此时点A 的坐标为A(21,45-). ………………12分3.(某某市启明外国语学校2010-2011学年度第二学期初三数学期中试卷)如图,网格中的每一个小正方形的边长都是1,四边形ABCD 的四个顶点都在格点上,O 为AD 边的中点,若把四边形ABCD 绕着点O 顺时针旋转180°. 试解决下列问题:(1)在答题纸对应图中画出四边形ABCD 旋转后的图形; (2)点C 旋转过程中所经过的路径长为.(3)设点B 旋转后的对应点为B ',求sin ∠DAB '的值.答案:(1)作图略 (2)5π (3)10104.(2011年某某仙居)图①、图②均为76⨯的正方形网格,点A B C 、、在格点(小正方形的顶点)上.(1)在图①中确定格点D ,并画出一个以A B C D 、、、为顶点的四边形,使其为轴对称图形;(2)在图②中确定格点E ,并画出一个以A B C E 、、、为顶点的四边形,使其为中心对称图形.ABCDO第3题图AB C图①AB C图②AB C E AB CEA B D AB CDC解:(1)有以下答案供参考:…………………3分(2)有以下答案供参考:5.(2011年某某江津区七校联考)在下面的网格图中,每个小正方形的边长均为1个单位,在Rt△ABC中,∠C=90°,AC=3,BC=6.(1)试作出△ABC以A为旋转中心、沿顺时针方向旋转90°后的图形△AB1C1;(2)若点B的坐标为(-4,5),试建立合适的直角坐标系,并写出A、C两点的坐标;(3)作出与△ABC关于原点对称的图形△A2B2C2,并写出A2、B2、C2三点的坐标.答案:(1)略 (2)A(-1,-1) B(-4,-1) (3)A2(1,1) B2(4,-5) CBA图甲C 2(4,1)6.(2011年某某市西湖区模拟)如图,ABC ∆是正方形网格中的格点三角形(顶点在格上),请在正方形网格上按下列要求画一个格点三角形与ABC ∆相似,并填空: (1)在图甲中画111A B C ∆,使得111A B C ∆的周长..是ABC ∆的周长的2倍,则11A B AB =; (2)在图乙中画222A B C ∆,使得222A B C ∆的面积..是ABC ∆的面积的2倍,则22A B AB=; ABCABC答案:(1)2; (2)2(每个填空题正确得1分,每个图形画正确得2分)7.(2011年某某省某某市七中模拟)在边长为1的正方形网格中,有形如帆船的图案①和半径为2的⊙P .(1)将图案①进行平移,使A 点平移到点E ,画出平移后的图案;(2)以点M 为位似中心,在网格中将图案①放大2倍,画出放大后的图案,并在放大后的图案中标出线段AB 的对应线段CD ;(3)在⑵所画的图案中,线段CD 被⊙P 所截得的弦长为______.(结果保留根号)图乙答案:解: ⑴平移后的图案,如图所示;⑵放大后的图案,如图所示;⑶线段CD 被⊙P 所截得的弦长为32. (每小题3分,共9分)8.(某某某某2011模拟)如图,方格纸中每个小正方形的边长为1,△ABC 和△DEF的顶点都在方格纸的格点上.(1) 判断△ABC 和△DEF 是否相似,并说明理由;(2) P 1,P 2,P 3,P 4,P 5,D ,F 是△DEF 边上的7个格点,请在这7个格点中选取3个点作为三角形的顶点,使构成的三角形与△ABC 相似(要求写出2个符合条件的三角形,并在图中连结相应线段,不必说明理由).MM答案: 解:(1) △ABC 和△DEF 相似.…………1分根据勾股定理,得 25AB =,5AC =,BC=5 ; 42DE =,22DF =,210EF =.∵522AB AC BC DE DF EF ===, …………5分∴△ABC ∽△DEF .…………6分(2) 答案不唯一,下面6个三角形中的任意2个均可.△P 2P 5D ,△P 4P 5F ,△P 2P 4D ,△ P 4P 5D ,△P 2P 4 P 5,△P 1FD .…………12分9.(2011年某某模拟17)如图9-1,正方形ABCD 是一个6 × 6网格电子屏的示意图,其中每个小正方形的边长为1.位于AD 中点处的光点P 按图9-2的程序移动.(1)请在图18-1中画出光点P 经过的路径;(2)求光点P 经过的路径总长(结果保留π).(2010某某中考第20题)ACBFEDP 1P 2 P 3P 4P 5ACBFE DP 1P 2 P 3P 4(第23P 5AP答案:: (1)如图1,若学生作图没用圆规,所画路线光滑且基本准确即给4分(2)∵90π346π180⨯⨯=,∴点P 经过的路径总长为6 π……………………2分10(2011某某市三模)如图,在错误!未找到引用源。
【中考数学】2022-2023学年北京市海淀区专项提升模拟卷(一模)一、选择题(本大题共8小题,共24分)1.(3分)下图中标注的角可以用∠O来表示的是( )A.B.C.D.2.(3分)要使二次根式有意义,则a的值可以为( )A.0B.﹣1C.﹣2D.﹣43.(3分)下列说法正确的是( )A.一个有理数的绝对值一定大于它本身B.只有正数的绝对值等于它本身C.负数的绝对值是它的相反数D.一个数的绝对值是它的相反数,则这个数一定是负数4.(3分)一个多边形的内角和等于1260°,则它是( )A.五边形B.七边形C.九边形D.十边形5.(3分)正比例函数y=kx和反比例函数y=﹣(k是常数且k≠0)在同一平面直角坐标系中的图象可能是( )A.B.C.D.6.(3分)若,则的结果是( )A.7B.9C.﹣9D.117.(3分)2021年世园会在中国西安举行,吉祥物“长安花”(如图)将组织带领一大堆志愿者们为参观者服务,安排参加志愿者的人数分别为33,34,32,31,32,28,26,33.这组数据的中位数是( )A.28B.31C.32D.338.(3分)如图,购买一种苹果所付款金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省( )A.4元B.3元C.2元D.1元二、填空题(本大题共8小题,共24分)9.(3分)某潜艇从海平面以下27米上升到海平面以下18米,此潜艇上升了 米.10.(3分)如图所示,围棋盘放置在某个平面直角坐标系中,白棋②的坐标为(﹣7,﹣4),黑棋④的坐标为(﹣6,﹣8),那么黑棋①的坐标应该是 .11.(3分)把“不相等的角不是对顶角”改写成“如果…,那么…”的形式是 .12.(3分)数据组:28,37,32,37,35的中位数是 .13.(3分)已知长为6cm宽为4cm的长方形是一个圆柱的侧面展开图,则圆柱的体积为 (结果保留π).14.(3分)如图,在矩形AOBC中,点O是坐标原点,点A在反比例函数y=的图象上,点B在反比例函数y=的图象上,sin∠CAB=,则k= .15.(3分)一组学生春游,预计共需要费用120元,后来又有2人参加进来,总费用不变,于是每人可少摊3元,若设原来这组学生人数为x,那么可列方程为 .16.(3分)如图,在Rt△ABC中,∠ABC=90°,∠A=32°,点B、C在⊙O上,边AB、AC分别交⊙O于D、E两点,点B是的中点,则∠ABE= .三、计算题(本大题共1小题,共5分)17.(5分)(1)计算:(﹣2)2+()0﹣﹣()﹣1(2)解方程:.四、解答题(本大题共8小题,共47分)18.(1)解不等式组,并将解集表示在数轴上(2)解分式方程:.19.计算:(1)(﹣m2n)3•(﹣2mn)÷(2m3);(2)(a﹣2b)2﹣(a+3b)(a﹣3b).20.已知关于x的一元二次方程x2﹣2(m+1)x+m(m+2)=0.(1)试说明不论实数m取何值,方程总有实数根;(2)如果当m=2时,α、β为方程的两个根,求α2﹣5α+β的值.21.如图,点A在线段EB上,且EA=AB,以AB直径作⊙O,过点E作射线EM交⊙O于D、C两点,且.过点B作BF⊥EM,垂足为点F.(1)求证:CD•CB=2CF•EA;(2)求tan∠CBF的值.22.已知双曲线y=和直线y=kx+2相交于点A(x1,y1)和点B(x2,y2),且x12+x22=10,求k的值.23.在△ABF中,C为AF上一点且AB=AC.(1)尺规作图:作出以AB为直径的⊙O,⊙O分别交AC、BC于点D、E,在图上标出D、E,在图上标出D、E(保留作图痕迹,不写作法).(2)若∠BAF=2∠CBF,求证:直线BF是⊙O的切线;(3)在(2)中,若AB=5,sin∠CBF=,求BC和BF的长.24.如图,在Rt△ABC中,∠ACB=90°,D为AB边的中点,连接CD,过点A作AG∥DC,过点C作CG∥DA,AG与CG相交于点G.(1)求证:四边形ADCG是菱形;(2)若AB=10,tan∠CAG=,求BC的长.25.如图,在矩形ABCD中,AB=6,BC=8,点A在直线l上,AD与直线l相交所得的锐角为60°.点F在直线l上,AF=8,EF⊥直线l,垂足为点F且EF=6,以EF为直径,在EF的左侧作半圆O,点M是半圆O上任一点.发现:AM的最小值为 ,AM的最大值为 ,OB与直线l的位置关系是 .思考:矩形ABCD保持不动,半圆O沿直线l向左平移,当点E落在AD边上时,求半圆与矩形重合部分的周长和面积.。
2011-2012学年北京市海淀区中考数学模拟试卷2011-2012学年北京市海淀区中考数学模拟试卷一、选择题(本题共8个小题,每小题4分,共32分)在下列各题的四个备选答案中,只有一个是正确的.D2.(4分)(2010•平谷区一模)温家宝总理在2010年3月5日的十一届全国人大第三次会议的政府工作报告中指出,3.(4分)(2011•内江)如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32°,那么∠2的度数是()4.(4分)(2012•武鸣县一模)一个几何体的三视图如图所示,这个几何体是()5.(4分)(2013•武侯区一模)小明要给刚结识的朋友小林打电话,他只记住了电话号码的前5位的顺序,后3位.C D.6.(4分)(2007•韶关)2007年5月份,某市市区一周空气质量报告中某项污染指数的数据是:31 35 31 34 30 32 31,7.(4分)(2010•福州)已知反比例函数y=(k≠0)的图象经过点(1,3),则此反比例函数的图象在()8.(4分)(2008•丽水)如图,已知⊙O是以数轴的原点O为圆心,半径为1的圆,∠AOB=45°,点P在数轴上运动,若过点P且与OA平行的直线与⊙O有公共点,设OP=x,则x的取值范围是()≤≤二、填空题(本题共16分,每小题4分)9.(4分)(2013•普洱)函数y=中,自变量x的取值范围是_________.10.(4分)(2008•无锡)如图,CD⊥AB于E,若∠B=60°,则∠A=_________度.11.(4分)(2011•石景山区二模)分解因式:8a3﹣8a2+2a=_________.12.(4分)(2012•宿迁模拟)如图,∠AOB=45°,过OA上到点O的距离分别为1,3,5,7,9,11…的点作OA 的垂线与OB相交,得到并标出一组黑色梯形,它们的面积分别为S1,S2,S3,S4…则第一个黑色梯形的面积S1= _________;观察图中的规律,第n(n为正整数)个黑色梯形的面积S n=_________.三、解答题(本题共25分,每小题5分)13.(5分)(2009•黄石)求值:|﹣2|+20090﹣(﹣)﹣1+3tan30°.14.(5分)(2013•湖北模拟)解分式方程:.15.(5分)(2013•东城区二模)已知:如图,点E、F分别为▱ABCD的BC、AD边上的点,且∠1=∠2.求证:AE=FC.16.(5分)(2010•平谷区一模)已知x2﹣4x+3=0,求(x﹣1)2﹣2(1+x)的值.17.(5分)如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(1,b).(1)求b的值;(2)不解关于x,y的方程组,,请你直接写出它的解;(3)直线l3:y=nx+m是否也经过点P?请说明理由._________.四、解答题(本题共10分,每小题5分)18.(5分)(2009•金华)如图,有一块半圆形钢板,直径AB=20cm,计划将此钢板切割成下底为AB的等腰梯形,上底CD的端点在圆周上,且CD=10cm.(1)求梯形ABCD面积;(2)求图中阴影部分的面积.19.(5分)(2013•兰州)已知,如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D,过D作DE⊥MN于E.(1)求证:DE是⊙O的切线;(2)若DE=6cm,AE=3cm,求⊙O的半径.五、解答题(本题共6分)20.(6分)(2009•本溪)初中生对待学习的态度一直是教育工作者关注的问题之一.为此某市教育局对该市部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了_________名学生;(2)将图①补充完整;(3)求出图②中C级所占的圆心角的度数;(4)根据抽样调查结果,请你估计该市近20 000名初中生中大约有多少名学生学习态度达标?(达标包括A级和B级)六、解答题(本题共9分,21小题5分,22小题4分)21.(5分)(2012•合浦县模拟)某商场用2500元购进A、B两种新型节能台灯共50盏,这两种台灯的进价、标价(2)在每种台灯销售利润不变的情况下,若该商场计划销售这批台灯的总利润至少为1400元,问至少需购进B种台灯多少盏?22.(4分)如图(1),凸四边形ABCD,如果点P满足∠APD=∠APB=α,且∠BPC=∠CPD=β,则称点P为四边形ABCD的一个半等角点.(1)在图(2)正方形ABCD内画一个半等角点P,且满足α≠β;(2)在图(3)四边形ABCD中画出一个半等角点P,保留画图痕迹(不需写出画法).七、解答题(共22分,其中23题7分、24题8分,25题7分)23.(7分)(2013•密云县二模)已知:关于x的一元二次方程(m﹣1)x2+(m﹣2)x﹣1=0(m为实数)(1)若方程有两个不相等的实数根,求m的取值范围;(2)在(1)的条件下,求证:无论m取何值,抛物线y=(m﹣1)x2+(m﹣2)x﹣1总过x轴上的一个固定点;(3)关于x的一元二次方程(m﹣1)x2+(m﹣2)x﹣1=0有两个不相等的整数根,把抛物线y=(m﹣1)x2+(m ﹣2)x﹣1向右平移3个单位长度,求平移后的解析式.24.(8分)(2009•宁德)如图,已知抛物线C1:y=a(x+2)2﹣5的顶点为P,与x轴相交于A、B两点(点A在点B的左边),点B的横坐标是1.(1)求P点坐标及a的值;(2)如图(1),抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,C3的顶点为M,当点P、M关于点B成中心对称时,求C3的解析式;(3)如图(2),点Q是x轴正半轴上一点,将抛物线C1绕点Q旋转180°后得到抛物线C4.抛物线C4的顶点为N,与x轴相交于E、F两点(点E在点F的左边),当以点P、N、F为顶点的三角形是直角三角形时,求点Q的坐标.25.(7分)(2013•湖北模拟)已知,正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N,AH⊥MN于点H.(1)如图①,当∠MAN点A旋转到BM=DN时,请你直接写出AH与AB的数量关系:_________;(2)如图②,当∠MAN绕点A旋转到BM≠DN时,(1)中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由,如果成立请证明;(3)如图③,已知∠MAN=45°,AH⊥MN于点H,且MH=2,NH=3,求AH的长.(可利用(2)得到的结论)2011-2012学年北京市海淀区中考数学模拟试卷参考答案与试题解析一、选择题(本题共8个小题,每小题4分,共32分)在下列各题的四个备选答案中,只有一个是正确的.D2.(4分)(2010•平谷区一模)温家宝总理在2010年3月5日的十一届全国人大第三次会议的政府工作报告中指出,3.(4分)(2011•内江)如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32°,那么∠2的度数是()4.(4分)(2012•武鸣县一模)一个几何体的三视图如图所示,这个几何体是()5.(4分)(2013•武侯区一模)小明要给刚结识的朋友小林打电话,他只记住了电话号码的前5位的顺序,后3位.C D.=6.(4分)(2007•韶关)2007年5月份,某市市区一周空气质量报告中某项污染指数的数据是:31 35 31 34 30 32 31,7.(4分)(2010•福州)已知反比例函数y=(k≠0)的图象经过点(1,3),则此反比例函数的图象在()y=y=中8.(4分)(2008•丽水)如图,已知⊙O是以数轴的原点O为圆心,半径为1的圆,∠AOB=45°,点P在数轴上运动,若过点P且与OA平行的直线与⊙O有公共点,设OP=x,则x的取值范围是()≤≤.所以≤OP=≤二、填空题(本题共16分,每小题4分)9.(4分)(2013•普洱)函数y=中,自变量x的取值范围是x≠2.10.(4分)(2008•无锡)如图,CD⊥AB于E,若∠B=60°,则∠A=30度.11.(4分)(2011•石景山区二模)分解因式:8a3﹣8a2+2a=2a(2a﹣1)2.12.(4分)(2012•宿迁模拟)如图,∠AOB=45°,过OA上到点O的距离分别为1,3,5,7,9,11…的点作OA 的垂线与OB相交,得到并标出一组黑色梯形,它们的面积分别为S1,S2,S3,S4…则第一个黑色梯形的面积S1= 4;观察图中的规律,第n(n为正整数)个黑色梯形的面积S n=8n﹣4.(×三、解答题(本题共25分,每小题5分)13.(5分)(2009•黄石)求值:|﹣2|+20090﹣(﹣)﹣1+3tan30°.==6﹣14.(5分)(2013•湖北模拟)解分式方程:.15.(5分)(2013•东城区二模)已知:如图,点E、F分别为▱ABCD的BC、AD边上的点,且∠1=∠2.求证:AE=FC.16.(5分)(2010•平谷区一模)已知x2﹣4x+3=0,求(x﹣1)2﹣2(1+x)的值.17.(5分)如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(1,b).(1)求b的值;(2)不解关于x,y的方程组,,请你直接写出它的解;(3)直线l3:y=nx+m是否也经过点P?请说明理由.经过.的坐标即为方程组的解;,所以四、解答题(本题共10分,每小题5分)18.(5分)(2009•金华)如图,有一块半圆形钢板,直径AB=20cm,计划将此钢板切割成下底为AB的等腰梯形,上底CD的端点在圆周上,且CD=10cm.(1)求梯形ABCD面积;(2)求图中阴影部分的面积.=5=(×π=CD=25π25π)19.(5分)(2013•兰州)已知,如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D,过D作DE⊥MN于E.(1)求证:DE是⊙O的切线;(2)若DE=6cm,AE=3cm,求⊙O的半径.五、解答题(本题共6分)20.(6分)(2009•本溪)初中生对待学习的态度一直是教育工作者关注的问题之一.为此某市教育局对该市部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了名学生;(2)将图①补充完整;(3)求出图②中C级所占的圆心角的度数;(4)根据抽样调查结果,请你估计该市近20 000名初中生中大约有多少名学生学习态度达标?(达标包括A级和B级)六、解答题(本题共9分,21小题5分,22小题4分)21.(5分)(2012•合浦县模拟)某商场用2500元购进A、B两种新型节能台灯共50盏,这两种台灯的进价、标价(2)在每种台灯销售利润不变的情况下,若该商场计划销售这批台灯的总利润至少为1400元,问至少需购进B种台灯多少盏?,;,22.(4分)如图(1),凸四边形ABCD,如果点P满足∠APD=∠APB=α,且∠BPC=∠CPD=β,则称点P为四边形ABCD的一个半等角点.(1)在图(2)正方形ABCD内画一个半等角点P,且满足α≠β;(2)在图(3)四边形ABCD中画出一个半等角点P,保留画图痕迹(不需写出画法).七、解答题(共22分,其中23题7分、24题8分,25题7分)23.(7分)(2013•密云县二模)已知:关于x的一元二次方程(m﹣1)x2+(m﹣2)x﹣1=0(m为实数)(1)若方程有两个不相等的实数根,求m的取值范围;(2)在(1)的条件下,求证:无论m取何值,抛物线y=(m﹣1)x2+(m﹣2)x﹣1总过x轴上的一个固定点;(3)关于x的一元二次方程(m﹣1)x2+(m﹣2)x﹣1=0有两个不相等的整数根,把抛物线y=(m﹣1)x2+(m ﹣2)x﹣1向右平移3个单位长度,求平移后的解析式.,再根据两根之积等于﹣解方程,得是整数.24.(8分)(2009•宁德)如图,已知抛物线C1:y=a(x+2)2﹣5的顶点为P,与x轴相交于A、B两点(点A在点B的左边),点B的横坐标是1.(1)求P点坐标及a的值;(2)如图(1),抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,C3的顶点为M,当点P、M关于点B成中心对称时,求C3的解析式;(3)如图(2),点Q是x轴正半轴上一点,将抛物线C1绕点Q旋转180°后得到抛物线C4.抛物线C4的顶点为N,与x轴相交于E、F两点(点E在点F的左边),当以点P、N、F为顶点的三角形是直角三角形时,求点Q的坐标.y=m=点坐标为(,点坐标为(,)或(;y=,点坐标为(,点坐标为(,)或(,25.(7分)(2013•湖北模拟)已知,正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N,AH⊥MN于点H.(1)如图①,当∠MAN点A旋转到BM=DN时,请你直接写出AH与AB的数量关系:AH=AB;(2)如图②,当∠MAN绕点A旋转到BM≠DN时,(1)中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由,如果成立请证明;(3)如图③,已知∠MAN=45°,AH⊥MN于点H,且MH=2,NH=3,求AH的长.(可利用(2)得到的结论)中,中,参与本试卷答题和审题的老师有:ln_86;zhjh;Linaliu;nhx600;zcx;kuaile;HLing;zhangCF;蓝月梦;心若在;lf2-9;shuiyu;张超。