向量知识点题型归纳
- 格式:doc
- 大小:1.56 MB
- 文档页数:8
根据向量知识点总结及题型归纳一、向量的基本概念向量是由大小和方向确定的物理量,用箭头表示。
向量有两个重要特征:模和方向,用 |v| 和→v 表示。
A、向量的模:向量的模表示向量的大小或长度,用数值表示。
B、向量的方向:向量的方向表示从起点指向终点的直线方向,一般用角度或方向余弦表示。
二、向量的加减法A、向量的加法:向量相加按照平行四边形法则进行,首尾相接,和向量的起点为第一个向量的起点,终点为最后一个向量的终点。
即 A + B = C,表示从向量 A 的起点到向量 B 的终点的向量 C。
B、向量的减法:向量相减等于将减去的向量的方向反向,然后与要减的向量相加。
即 A - B = A + (-B),表示由向量 A 的起点到向量 B 的终点的负向量。
三、向量的数量积和向量积A、向量的数量积:向量的数量积是两个向量的模和它们的夹角的余弦的乘积。
记作A·B = |A||B|cosθ,其中 |A| 和 |B| 分别表示两个向量的模,θ表示两个向量的夹角。
B、向量的向量积:向量的向量积是两个向量的模和它们的夹角的正弦的乘积。
记作A×B = |A||B|sinθ,其中 |A| 和 |B| 分别表示两个向量的模,θ表示两个向量的夹角。
四、向量的题型归纳1、向量的加减法题:根据给定的向量,进行向量的加法或减法运算。
2、向量的数量积题:根据给定的向量,计算向量的数量积及其性质。
3、求模问题:根据已知的向量的模和方向,求解未知向量的模。
4、夹角问题:根据已知的向量和夹角,计算向量的数量积或向量的向量积。
5、平行四边形问题:根据已知的向量和平行四边形的性质,判断向量的关系。
6、垂直问题:根据已知的向量和垂直性质,判断向量的关系。
7、三角形面积问题:根据已知的向量,计算三角形的面积。
8、平面问题:根据已知的向量和平面的性质,判断向量的关系。
以上是根据向量的基本概念、加减法、数量积和向量积等知识点总结的,包括了常见的向量题型归纳。
向量专题复习向量是高考的一个亮点,因为向量知识,向量观点在数学、物理等学科的很多分支有着广泛的应用,而它具有代数形式和几何形式的“双重身份”能融数形于一体,能与中学数学教学内容的许多主干知识综合,形成知识交汇点,所以高考中应引起足够的重视。
一、平面向量加、减、实数与向量积 (一)基本知识点提示1、重点要理解向量、零向量、向量的模、单位向量、平行向量、反向量、相等向量、两向量的夹角等概念。
2、了解平面向量基本定理和空间向量基本定理。
3、向量的加法的平行四边形法则(共起点)和三角形法则(首尾相接)。
4、向量形式的三角形不等式:||a |-|b ||≤|a ±b |≤|a |+|b |(试问:取等号的条件是什么?);向量形式的平行四边形定理:2(|a |2+|b |2)=|a -b |2+|a +b |25、实数与向量的乘法(即数乘的意义)实数λ与向量的积是一个向量,记λ,它的长度与方向规定如下:(1)|λa |=|λ|²|a |;(2)当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反;当λ=0时,λ=,方向是任意的.6、共线向量定理的应用:若≠,则∥⇔存在唯一实数对λ使得=λ⇔x 1y 2-x 2y 1=0(其中=(x 1,y 1),=(x 2,y 2)) (二)典型例题例1、O 是平面上一 定点,A 、B 、C 是平面上不共线的三个点,动点P 满足).,0[||||+∞∈++=λλAC AB 则P 的轨迹一定通过△ABC 的( )A .外心B .内心C .重心D .垂心+是在∠BAC 的平分线上,∴选B例2、对于任意非零向量与,求证:|||-|||≤|±|≤||+||证明:(1)两个非零向量与不共线时,+的方向与,的方向都不同,并且||-||<|±|<||+||(3)两个非零向量a 与b 共线时,①a 与b 同向,则a +b 的方向与a 、b 相同且|a +b |=|a |+|b |.②a 与b 异向时,则a +b 的方向与模较大的向量方向相同,设|a |>||,则|+|=||-||.同理可证另一种情况也成立。
第七节 立体几何中的向量方法一、空间向量与平行关系【知识点11】直线的方向向量与平面的法向量 (1)直线的方向向量的定义直线的方向向量是指和这条直线平行或共线的非零向量,一条直线的方向向量有无数个. (2)平面的法向量的定义直线l ⊥α,取直线l 的方向向量a ,则a 叫做平面α的法向量. 注:直线的方向向量(平面的法向量)不唯一?【例1】如图3,已知ABCD 是直角梯形,∠ABC =90°,SA ⊥平面ABCD ,SA =AB =BC =1,AD =12,试建立适当的坐标系.(1)求平面ABCD 的一个法向量; (2)求平面SAB 的一个法向量; (3)求平面SCD 的一个法向量.【反思】1.利用待定系数法求平面法向量的步骤 (1)设向量:设平面的法向量为n =(x ,y ,z). (2)选向量:在平面内选取两个不共线向量,. (3)列方程组:由列出方程组. (4)解方程组:(5)赋非零值:取其中一个为非零值(常取±1). (6)得结论:得到平面的一个法向量. 2.求平面法向量的三个注意点(1)选向量:在选取平面内的向量时,要选取不共线的两个向量.(2)取特值:在求n 的坐标时,可令x ,y ,z 中一个为一特殊值得另两个值,就是平面的一个法向量.(3)注意0:提前假定法向量n=(x,y,z)的某个坐标为某特定值时一定要注意这个坐标不为0.[练习1]正方体ABCDA1B1C1D1中,E、F分别为棱A1D1、A1B1的中点,在如图322所示的空间直角坐标系中,求:图322(1)平面BDD1B1的一个法向量;(2)平面BDEF的一个法向量.【知识点12】空间中平行关系的向量表示【类型一】用向量证明线线平行【例1】如图323所示,在正方体ABCDA1B1C1D1中,E,F分别为DD1和BB1的中点.求证:四边形AEC1F是平行四边形.图323111111112EB1,BF=2F A1.求证:EF∥AC1.【类型二】用向量证明线面平行【例2】在正方体ABCDA1B1C1D1中,M,N分别是CC1,B1C1的中点.求证:MN∥平面A1BD.【练习2】在如图所示的多面体中,EF⊥平面AEB,AE⊥EB,AD∥EF,EF∥BC,BC=2AD =4,EF=3,AE=BE=2,G是BC的中点,求证:AB∥平面DEG.【类型三】利用向量证明面面平行【例3】在正方体ABCDA1B1C1D1中,M,N分别是CC1,B1C1的中点,试证明平面A1BD∥平面CB1D1.【练习3】如图329,在正方体ABCDA1B1C1D1中,O为底面ABCD的中心,P是DD1的中点.设Q是CC1上的点,则当点Q在什么位置时,平面D1BQ∥平面P AO?图329二、空间向量与垂直关系【知识点13】空间中垂直关系的向量表示【类型一】用向量证明线面垂直【例1】如图所示,正三棱柱ABCA1B1C1的所有棱长都为2,D为CC1的中点.求证:AB1⊥平面A1BD.【练习1】如图3215,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=2,AF=1,M是线段EF的中点.求证:AM⊥平面BDF.图3215【类型二】用向量法证明面面垂直【例2】如图3212所示,在直三棱柱ABCA1B1C1中,AB⊥BC,AB=BC=2,BB1=1,E 为BB1的中点,证明:平面AEC1⊥平面AA1C1C.=2BD.求证:平面DEA⊥平面ECA.三、空间向量与空间角【知识点14】空间角的向量求解方法【类型一】求两条异面直线所成的角【例1】如图,在三棱柱OABO1A1B1中,平面OBB1O1⊥平面OAB,∠O1OB=60°,∠AOB =90°,且OB=OO1=2,OA=3,求异面直线A1B与AO1所成角的余弦值的大小.θ=φθ=π-φ点,则AE,SD所成的角的余弦值为多少?【类型二】求直线与平面所成的角【例2】如图,四棱锥PABCD中,P A⊥底面ABCD,AD∥BC,AB=AD=AC=3,P A=BC =4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明MN∥平面P AB;(2)求直线AN与平面PMN所成角的正弦值.【练习2】如图,在四棱锥P ABCD 中,平面P AD⊥平面ABCD ,P A ⊥PD ,P A =PD ,AB ⊥AD ,AB =1,AD =2,AC =CD = 5.(1)求证:PD ⊥平面P AB .(2)求直线PB 与平面PCD 所成角的正弦值.(3)在棱P A 上是否存在点M ,使得BM ∥平面PCD ?若存在,求AMAP 的值;若不存在,说明理由.【类型三】求二面角【例3】如图,在四棱锥P ABCD 中,AB ∥CD ,且∠BAP =∠CDP =90°.(1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,∠APD =90°,求二面角A PB C 的余弦值.旋转轴旋转120°得到的,G 是DF ︵的中点.图3224(1)设P 是CE ︵上的一点,且AP ⊥BE ,求∠CBP 的大小;(2)当AB =3,AD =2时,求二面角E AG C 的大小.【练习4】如图,在三棱锥PABQ中,PB⊥平面ABQ,BA=BP=BQ,D,C,E,F分别是AQ,BQ,AP,BP的中点,AQ=2BD,PD与EQ交于点G,PC与FQ交于点H,连接GH.(1)求证:AB∥GH;(2)求二面角DGHE的余弦值.四、空间向量与距离【知识点15】利用空间向量求距离(※)【例1】已知正方体ABCD-A1B1C1D1的棱长为2,E,F,G分别是C1C,D1A1,AB的中点,求点A到平面EFG的距离.【练习1】如图所示,在棱长为1的正方体ABCD-A1B1C1D1中,E,F分别为BB1,CC1的中点,DG=13DD1,过E,F,G的平面交AA1于点H,求D1A1到平面EFGH的距离.点到平面的距离:先确定平面的法向量,再求点与平面内一点的连线形成的斜线段在平面的法向量上的射影长.如图,设n=(a,b,c)是平面α的一个法向量,P0(x0,y0,z0)为α外一点,P(x,y,z)是平面α内的任意一点,则点P0到平面α的距离:d=|PP0→·n||n|=|a(x0-x)+b(y0-y)+c(z0-z)|a2+b2+c2.注:线面距离、面面距离都可以转化为点到平面的距离.。
空间向量知识点总结题型一、基本概念1. 空间中的向量空间中的向量是指具有大小和方向的量,在数学中以有向线段的形式表示,通常用字母加上一个箭头来表示向量,如a→。
2. 向量的运算空间中的向量可以进行加法、减法、数乘等运算。
加法运算是将两个向量的对应分量相加;减法运算是将两个向量的对应分量相减;数乘运算是将一个向量的每个分量都乘以一个实数。
3. 向量的模向量的模是指向量的大小,用||a||来表示,其计算公式为:||a|| = √(a1^2 + a2^2 + a3^2)。
二、向量的表示1. 分量表示空间中的向量可以用分量表示法来表示,即将向量投影到坐标轴上,得到三个分量。
例如,向量a可以表示为a = (a1, a2, a3)。
2. 向量的坐标向量的坐标通常用方向余弦来表示,即向量与坐标轴的夹角的余弦值。
向量a的坐标可表示为cosα,cosβ,cosγ。
三、向量的数量积和向量积1. 向量的数量积向量的数量积也称为点积,表示为a·b,其计算公式为a·b = a1b1 + a2b2 + a3b3。
其几何意义为:a·b = ||a|| ||b|| cosθ,其中θ为a与b之间的夹角。
2. 向量的向量积向量的向量积也称为叉积,表示为a×b,其计算公式为a×b = (a2b3 - a3b2, a3b1 - a1b3,a1b2 - a2b1)。
其几何意义为:a×b的大小为平行四边形的面积,方向垂直于平行四边形,满足右手定则。
四、空间中的直线和平面1. 空间中的直线空间中的直线可以用点和方向向量来表示,通常表示为l:r = a + λb,其中a为直线上的一个点,b为直线的方向向量,λ为参数。
2. 空间中的平面空间中的平面可以用一个点和法向量来表示,通常表示为Ax + By + Cz + D = 0,其中A、B、C为法向量的分量,D为平面到原点的距离。
五、空间向量的应用空间向量在物理、工程、计算机图形学等领域有广泛的应用,如力的合成、三维坐标系的运动、三维图形的计算等。
高三数学向量的知识点题型主要有以下几种:
1. 向量的概念和表示:这种题型会要求你理解向量的定义和性质,以及向量的表示方法。
2. 向量的运算:包括向量的加法、减法、数乘以及向量的数量积、向量积等。
3. 向量的坐标表示:要求你能够根据向量的坐标,利用向量的坐标运算来解决问题。
4. 向量的应用:这类题型通常会结合实际问题,要求你能够利用向量的知识来解决实际问题。
对于这些题型,你需要熟练掌握向量的概念和性质,以及向量的各种运算方法。
同时,你还需要理解向量的坐标表示,以及如何利用向量的坐标来进行运算。
最后,你需要能够将向量知识应用到实际问题中,以解决实际问题。
以下是一些学习向量的建议:
1. 理解向量的概念和性质:向量是一种有方向和大小的量,具有许多独特的性质。
理解这些性质是学习向量的基础。
2. 学习向量的运算:向量的运算包括加法、减法、数乘、数量积、向量积等。
这些运算都有其特定的规则和意义,需要认真学习。
3. 掌握向量的坐标表示:向量的坐标表示是一种方便快捷的表示方法,能够将向量转化为数轴上的点。
掌握这种表示方法能够使你更好地理解和应用向量。
4. 了解向量的应用:向量不仅仅是一种数学工具,也是一种重
要的物理和工程工具。
了解向量的应用能够使你更好地理解向量的意义和价值。
5. 做题巩固知识:通过做题来巩固和加深对向量的理解是一个有效的方法。
可以选择一些经典的向量题目进行练习,以加深对向量的理解。
空间向量知识点与题型归纳总结知识点精讲一、空间向量及其加减运算1.空间向量在空间,我们把具有大小和方向的量叫做空间向量,向量的大小叫做向量的长度或模.空间向量也可用有向线段表示,有向线段的长度表示向量的模,若向量a 的起点是A ,终点是B ,则向量a 也可以记作AB ,其模记为a 或AB .2.零向量与单位向量规定长度为0的向量叫做零向量,记作0.当有向线段的起点A 与终点B 重合时,0AB =. 模为1的向量称为单位向量. 3.相等向量与相反向量方向相同且模相等的向量称为相等向量.在空间,同向且等长的有向线段表示同一向量或相等向量.空间任意两个向量都可以平移到同一个平面,成为同一平面内的两个向量.与向量a 长度相等而方向相反的向量,称为a 的相反向量,记为a -. 4.空间向量的加法和减法运算(1)OC OA OB a b =+=+,BA OA OB a b =-=-.如图8-152所示.(2)空间向量的加法运算满足交换律及结合律 a b b a +=+,()()a b c a b c ++=++ 二、空间向量的数乘运算1.数乘运算实数λ与空间向量a 的乘积a λ称为向量的数乘运算.当0λ>时,a λ与向量a 方向相同;当0λ<时,向量a λ与向量a 方向相反. a λ的长度是a 的长度的λ倍.2.空间向量的数乘运算满足分配律及结合律()a b a b λλλ+=+,()()a a λμλμ=.3.共线向量与平行向量如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量,a 平行于b ,记作//a b .4.共线向量定理对空间中任意两个向量a ,b ()0b ≠,//a b 的充要条件是存在实数λ,使a b λ=. 5.直线的方向向量如图8-153所示,l 为经过已知点A 且平行于已知非零向量a 的直线.对空间任意一点O ,点P 在直线l 上的充要条件是存在实数t ,使OP OA ta =+①,其中向量a 叫做直线l 的方向向量,在l 上取AB a =,则式①可化为()()1OP OA t AB OA t OB OA t OA tOB =+=+-=-+②①和②都称为空间直线的向量表达式,当12t =,即点P 是线段AB 的中点时,()12OP OA OB =+,此式叫做线段AB 的中点公式.6.共面向量如图8-154所示,已知平面α与向量a ,作OA a =,如果直线OA 平行于平面α或在平面α内,则说明向量a 平行于平面α.平行于同一平面的向量,叫做共面向量.7.共面向量定理如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在唯一的有序实数对(),x y ,使p xa yb =+.推论:(1)空间一点P 位于平面ABC 内的充要条件是存在有序实数对(),x y ,使AP xAB y AC =+;或对空间任意一点O ,有OP OA x AB y AC -=+,该式称为空间平面ABC 的向量表达式.(2)已知空间任意一点O 和不共线的三点A ,B ,C ,满足向量关系式OP xOA yOB zOC =++(其中1x y z ++=)的点P 与点A ,B ,C 共面;反之也成立. 三、空间向量的数量积运算1.两向量夹角已知两个非零向量a ,b ,在空间任取一点O ,作OA a =,OB b =,则AOB ∠叫做向量a ,b 的夹角,记作,a b ,通常规定0,a b π≤≤,如果,2a b π=,那么向量a ,b 互相垂直,记作a b ⊥.2.数量积定义Aaaα图 8-154O已知两个非零向量a ,b ,则cos ,a b a b 叫做a ,b 的数量积,记作a b ⋅,即cos ,a b a b a b ⋅=.零向量与任何向量的数量积为0,特别地,2a a a ⋅=.3.空间向量的数量积满足的运算律: ()()a b a b λλ⋅=⋅,a b b a ⋅=⋅(交换律); ()a b c a b a c ⋅+=⋅+⋅(分配律). 四、空间向量的坐标运算及应用(1)设()123,,a a a a =,()123,,b b b b =,则()112233,,a b a b a b a b +=+++;()112233,,a b a b a b a b -=---;()123,,a a a a λλλλ=; 112233a b a b a b a b ⋅=++;()112233//0,,a b b a b a b a b λλλ≠⇒===; 1122330a b a b a b a b ⊥⇒++=.(2)设()111,,A x y z ,()222,,B x y z ,则()212121,,AB OB OA x x y y z z =-=---.这就是说,一个向量在直角坐标系中的坐标等于表示该向量的有向线段的终点的坐标减起点的坐标. (3)两个向量的夹角及两点间的距离公式. ①已知()123,,a a a a =,()123,,b b b b =,则221a a a ==+221b b b ==+;112233a b a b a b a b ⋅=++;cos ,a b =;②已知()111,,A x y z ,()222,,B x y z ,则(AB x =或者(),d A B AB =.其中(),d A B 表示A 与B 两点间的距离,这就是空间两点的距离公式.(4)向量a 在向量b 上的射影为cos ,a b a a b b⋅=.(5)设()0n n ≠是平面M 的一个法向量,AB ,CD 是M 内的两条相交直线,则0n AB ⋅=,由此可求出一个法向量n (向量AB 及CD 已知).(6)利用空间向量证明线面平行:设n 是平面的一个法向量,l 为直线l 的方向向量,证明0l n ⋅=,(如图8-155所示).已知直线l (l α⊄),平面α的法向量n ,若0l n ⋅=,则//l α.(7)利用空间向量证明两条异面直线垂直:在两条异面直线中各取一个方向向量a ,b ,只要证明a b ⊥,即0a b ⋅=.(8)利用空间向量证明线面垂直:即证平面的一个法向量与直线的方向向量共线.(9)证明面面平行、面面垂直,最终都要转化为证明法向量互相平行、法向量互相垂直.(10)空间角公式.①异面直线所成角公式:设a ,b 分别为异面直线1l ,2l 上的方向向量,θ为异面直线所成角的大小,则cos cos ,a b a b a bθ⋅==.②线面角公式:设l 为平面α的斜线,a 为l 的方向向量,n 为平面α的法向量,θ为l 与α所成角的大小,则sin cos ,a n a n a nθ⋅==.③二面角公式:设1n ,2n 分别为平面α,β的法向量,二面角的大小为θ,则12,n n θ=或12,n n π-(需要根据具体情况判断相等或互补),其中1212cos n n n n θ⋅=.(11)点A 到平面α的距离为d ,B α∈,n 为平面α的法向量,则AB n d n⋅=.题型归纳及思路提示题型1 空间向量及其运算 思路提示空间向量的运算包括空间向量的加法、减法、数乘、数量积的几何意义及坐标运算,可以类比平面向量的运算法则.一、空间向量的加法、减法、数乘运算例8.41 如图8-156所示,已知空间四边形OABC ,点,M N 分别为OA ,BC 的中点,且OA a =,OB b =,OC c =,用a ,b ,c 表示MN ,则MN = .解析 1122OM OA a ==,()()1122ON OB OC b c =+=+,()()111222MN ON OM b c a b c a =-=+-=+-.变式1 如图8-157所示,已知空间四边形OABC ,其对角线为OB ,AC ,M 和N 分别是对边OA 和BC的中点,点G 在线段MN 上,且2MG GN =,现用基向量OA ,OB ,OC 表示向量OG ,设OG xOA yOB zOC =++,则,,x y z 的值分别是( ).A 111,,333x y z === .B 111,,336x y z ===.C 111,,363x y z === .D 111,,633x y z ===变式2 如图8-158所示,在四面体O ABC -中,OA a =,OB b =,OC c =,D 为BC 的中点,E 为AD 的中点,则OE = (用a ,b ,c 表示).变式 3 在空间四边形ABCD 中,连接对角线,AC BD ,若BCD ∆是正三角形,且E 为其重心,则1322AB BC DE AD +--的化简结果为 .变式4 如图8-159所示,在平行六面体1111ABCD A B C D -中,M 为11A C 与11B D 的交点,若AB a =,AD b =,1AA c =,则下列向量中与BM 相等的向量是( ).A 1122a b c -++ .B 1122a b c ++ .C 1122a b c --+ .D 1122a b c -+二、空间共线向量定理的应用空间共线向量定理:()//0a b b a b λ≠⇔=. 利用此定理可解决立体几何中的平行问题.例8.42 已知3240m a b c =--≠,()182n x a b yc =+++,且,,a b c 不共面,若//m n ,求,x y 的值.解析 因为//m n 且0m ≠,所以n m λ=,即()()182324x a b yc a b c λ+++=--.又因为,,a b c 不共面,所以138224x y λλλ+=⎧⎪=-⎨⎪=-⎩,解得138x y =-⎧⎨=⎩.二、空间向量的数量积运算121212cos ,a b a b a b x x y y z z ⋅==++;求模长时,可根据2222111a a x y z ==++;求空间向量夹角时,可先求其余弦值cos ,a b a b a b⋅=.要判断空间两向量垂直时,可以求两向量的数量积是否为0,即0a b a b ⋅=⇔⊥.,a b 为锐角0a b ⇒⋅>;,a b 为钝角0a b ⇒⋅<.由此,通常通过计算a b ⋅的值来判断两向量夹角是锐角还是钝角.例8.43 已知空间四边形ABCD 的每条边和对角线的长都等于a ,点,E F 分别是,BC AD 的中点,AE ⋅AF 的值为( )..A 2a .B 21.2B a 21.4C a 23.4D a 解析 依题意,点,EF 分别是,BC AD 的中点,如图8-160所示,AE ⋅AF ()1122AB AC AD =+⋅()14AB AD AC AD =⋅+⋅ ()22211cos60cos6044a a a =︒+︒=. 故选C . 变式1 如图8-161所示,已知平行六面体1111ABCD A B C D -中,1160A AD A AB DAB ∠=∠=∠=︒,且11A A AB AD ===,则1AC = .变式2 如图8-162所示,设,,,A B C D 是空间不共面的4个点,且满足0AB AC ⋅=,0AD AC ⋅=,0AD AB ⋅=,则BCD ∆的形状是( )..A 钝角三角形 .B 直角三角形 .C 锐角三角形 .D 无法确定例8.44 如图8-163所示,在45︒的二面角l αβ--的棱上有两点,A B ,点,C D 分别在,αβ内,且AC AB ⊥,45ABD ∠=︒,1AC BD AB ===,则CD 的长度为 .分析 求CD 的长度转化为求空间向量CD 的模.解析 因为CD CA AB BD =++,故()22CD CA AB BD =++ 222222CA AB BD CA AB AB BD CA BD =+++⋅+⋅+⋅1110211cos1352CA BD =++++⨯⨯⨯︒+⋅,设点C 在β内的射影为H ,则HA AB ⊥,,135HA BD =︒.故()CA BD CH HA BD CH BD HA BD ⋅=+⋅=⋅+⋅10cos1351cos 45cos1352HA BD =+︒=⨯︒︒=-.故222CD =,则22CD =-变式1 已知二面角l αβ--为60︒,动点,P Q 分别在面,αβ内,P 到β3Q 到α的距离为3,P Q 两点之间距离的最小值为( )..2.2B .23C .4D变式2 在直角坐标系中,设()3,2A ,()2,3B --,沿y 轴把坐标平面折成120︒的二面角后,AB 的长为( )..6A .42B .23C .211D例8.45 如图8-164所示,设动点P 在棱长为1的正方体1111ABCD A B C D -的对角线1BD 上,记11D PD Bλ=.当APC ∠为钝角时,求λ的取值范围.解析 由题设可知,以1,,DA DC DD 为单位正交基底,建立如图8-165所示的空间直角坐标系D xyz -,则有()1,0,0A ,()1,1,0B ,()0,1,0C ,()10,0,1D . 由()11,1,1D B =-,()11,,D P D B λλλλ==-,()()()111,0,1,,1,,1PA D A D P λλλλλλ=-=---=---,()()()110,1,1,,,1,1PC DC D P λλλλλλ=-=---=---. 显然APC ∠不是平角,所以APC ∠为钝角,cos cos ,0PA PC APC PA PC PA PC⋅∠==<,等价于0PA PC ⋅<,即()()()()()21110λλλλλ--+--+-<,得113λ<<.因此,λ的取值范围是1,13⎛⎫⎪⎝⎭.评析 利用向量知识将APC ∠为钝角转化为cos ,0PA PC <求解是本题的关键.变式 1 已知正方体1111ABCD A B C D -的棱长为1,点P 在线段1BD 上,当APC ∠最大时,三棱锥P ABC -的体积为( ).1.24A 1.18B 1.9C 1.12D 例8.46 如图8-166所示,在四棱锥P ABCD -中,侧面PAD 为正三角形,底面ABCD 为正方形,侧面PAD ⊥底面ABCD ,M 为底面ABCD 内的一个动点,且满足MP MC =,则点M 在正方形ABCD 内的轨迹为( ).解析 取AD 的中点O ,以OA 为x 轴,垂直于OA 的OE 为y 轴,OP 为z 轴,建立空间直角坐标系如图8-167所示.设(),,0M x y ,正方形的边长为a ,30,0,2P a ⎛⎫ ⎪ ⎪⎝⎭,,,02a C a ⎛⎫- ⎪⎝⎭, 则()222a MC x y a ⎛⎫=++- ⎪⎝⎭,22234MP x y a =++,MP MC =,得()22222324a a x y a x y ⎛⎫++-=++ ⎪⎝⎭,即202a x y -+=.所以点M 在正方形ABCD 内的轨迹为一条线段,且过D 点和AB 的中点.故选A .评注 本题利用空间线面位置关系求解也很快.由题意知空间内与两定点距离相等的点均在线段中垂面内,即M 在线段PC 的中垂面内.又M 为底面ABCD 内一动点,则M 的轨迹为两平面的交线落在底面内的部分,排除C 、D .又BP BC >,故排除B .故选A .变式1 到两互相垂直的异面直线距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是( )..A 直线 .B 椭圆 .C 抛物线 .D 双曲线变式2 空间点到平面的距离定义如下:过空间一点作平面的垂线,这个点和垂足之间的距离叫做这个点到这个平面的距离,已知平面α,β,γ两两互相垂直,点A α∈,点A 到β,γ的距离都是3,点P 是α上的动点,满足P 到β的距离是点P 到点A 距离的2倍,则点P 的轨迹上的点到γ的距离的最小值是( )..33A - .323B - .63C - .3D题型2 空间向量在立体几何中的应用 思路提示用向量法可以证点共线、线共点、线(或点)共面、两直线(或线与面、面与面)垂直的问题,也可以求空间角和距离.因此,凡涉及上述类型的问题,都可以考虑利用向量法求解,且其解法一般都比较简单.用向量法解题的途径有两种:一种是坐标法,即通过建立空间直角坐标系,确定出一些点的坐标,进而求出向量的坐标,再进行坐标运算;另一种是基底法,即先选择基向量(除要求不共面外,还要能够便于表示所求的目标向量,并优先选择相互夹角已知的向量作为基底,如常选择几何体上共点而不共面的三条棱所在的向量为基底),然后将有关向量用基底向量表示,并进行向量运算.一、证明三点共线(如A ,B ,C 三点共线)的方法先构造共起点的向量AB ,AC ,然后证明存在非零实数λ,使得AB AC λ=.例8.47 如图8-168所示,已知在长方体1111ABCD A B C D -中,点M 为1DD 的中点,点N 在AC 上,且:2:1AN NC =,点E 为BM 的中点.求证:1A ,E ,N 三点共线.解析 以D 为坐标原点建立空间直角坐标系-D xyz ,如图8-169所示.不妨设DA a =,DC b =,1DD c =,则0,0,2c M ⎛⎫ ⎪⎝⎭,(),,0B a b ,,,224a b c E ⎛⎫ ⎪⎝⎭,()1,0,A a c ,2,,033a b N ⎛⎫⎪⎝⎭,则13,,224a b c A E ⎛⎫=-- ⎪⎝⎭,122,,33a b A N c ⎛⎫=-- ⎪⎝⎭,因为1143A N A E =,故1A ,E ,N 三点共线.变式 1 在正方体1111ABCD A B C D -中,E ,F 分别为棱1AA 和1CC 的中点,则在空间中与三条直线11A D ,EF ,CD 都相交的直线( )..A 不存在 .B 有且只有两条 .C 有且只有三条 .D 有无数条变式2 如图8-170所示,在空间四边形ABCD 中,M ,N 分别是AB 和CD 的中点,P 为线段MN 的中点,Q 为BCD ∆的重心.求证:,,A P Q 三点共线.二、证明多点共面的方法要证明多点(如A ,B ,C ,D )共面,可使用以下方法解题.先作出从同一点出发的三个向量(如AB ,AC ,AD ),然后证明存在两个实数,x y ,使得AD x AB y AC =+.例8.48 如图8-171所示,平面ABEF ⊥平面ABCD ,四边形ABEF 与ABCD 都是直角梯形,90BAD FAB ∠=∠=︒,1//2BC AD ,1//2BE AF .求证:,,,C D E F 四边共面.解析 由平面ABEF ⊥平面ABCD ,又AF AB ⊥,平面ABEF 平面ABCD AB =,得AF ⊥平面ABCD ,以A 为坐标原点,建立空间直角坐标系A xyz -,如图8-172所示.设AB a =,BC b =,BE c =,则(),0,0B a ,(),,0C a b ,()0,2,0D b ,(),0,E a c ,()0,0,2F c .()0,,CE b c =-,()0,2,2DF b c =-,因为2DF CE =,所以//DF CE ,则,CE DF 确定一个平面,即,,,C D E F 四点共面.变式1 如图8-173所示,已知平行六面体1111ABCD A B C D -,,,,E F G H 分别是棱11111,,,A D D C C C AB 的中点.求证:,,,E F G H 四点共面.三、证明直线和直线平行的方法将证线线平行转化为证两向量共线.设,a b 是两条不重合的直线,它们的方向向量分别为,a b ,则()//,0a b a b R λλλ⇔=∈≠.例8.49 如图8-174所示,在正方体1111ABCD A B C D -中,MN 是异面直线1A D 与AC 的公垂线段.求证:1//MN BD .解析 以点D 为坐标原点,建立空间直角坐标系D xyz -,如图8-175所示.设正方体的棱长为a ,则()1,0,A a a ,(),0,0A a ,()0,,0C a ,(),,0B a a ,()10,0,D a .设(),,z MN x y =,由MN 是异面直线1A D 与AC 的公垂线段,得1MN A D ⊥,MN AC ⊥,又()1,0,A D a a =--,(),,0AC a a =-,故100MN A D MN AC ⎧⋅=⎪⎨⋅=⎪⎩,00ax az ax ay --=⎧⎨-+=⎩, 令1x =,则1z =-,1y =,所以()1,1,1MN =-,()1,,BD a a a aMN =--=-,即1//BD MN .因此1//MN BD .四、证明直线和平面平行的方法(1)利用共面向量定理.设,a b 为平面α内不共线的两个向量,证明存在两个实数,x y ,使得l xa yb =+,则//l α.(2)转化为证明直线和平面内的某一直线平行.(3)转化为证明直线的方向向量与平面的法向量垂直(此方法最常用).例8.50 如图8-176所示,在直四棱柱1111ABCD A B C D -中,已知122DC DD AD AB ===,AD DC ⊥,//AB DC ,E 是DC 的中点.求证:1//D E 平面1A BD .解析 因为11D E DE DD =-,11DD AA =,E 是DC 的中点,12DE DC AB ==,所以111D E AB AA A B =-=.又因为1D E ⊄平面1A BD ,11//D E A B ,所以1//D E 平面1A BD .评注 利用空间向量证明线面平行,已知直线的方向向量为a ,只要在平面内找到一条直线的方向向量为b ,问题转化为证明a b λ=即可.变式1 如图8-177所示,已知P 是正方形ABCD 所在平面外一点,M 、N 分别是PA 、 BD 上的点,且::5:8PM MA BN ND ==.求证:直线//MN 平面PBC .五、证明平面与平面平行的方法(1)证明两平面内有两条相交直线分别平行.(2)转化为证两平面的法向量平行(常用此方法).例8.51 如图8-178所示,在正方体1111ABCD A B C D -中,,,M N P 分别是11111,,C C B C C D 的中点.求证:平面//MNP 平面1A BD .解析 解法一:以1D 为坐标原点,11D A 为x 轴,11D C 为y 轴,1D D 为z 轴,建立空间直角坐标系1D xyz -,如图8-179所示.设正方体的棱长为a ,则()1,0,0A a ,()0,0,D a ,()10,,0C a ,()0,,C a a ,()1,,0B a a ,0,,2a M a ⎛⎫ ⎪⎝⎭,0,,02a P ⎛⎫ ⎪⎝⎭,,,02a N a ⎛⎫⎪⎝⎭,()1,0,A D a a =-,11,0,222aa MN A D ⎛⎫=-=- ⎪⎝⎭,所以1//MN A D ,即1//MN A D ,(),,0BD a a =--,1,,0222a a PN BD ⎛⎫==- ⎪⎝⎭,所以//PN BD ,即//PN BD .因为MNPN N =,1A DBD D =,所以平面//MNP 平面1A BD .解法二:设平面MNP 的法向量为()1111,,n x y z =,由1MN n ⊥,1PN n ⊥,得1111022022a a x z a a x y ⎧-=⎪⎪⎨⎪+=⎪⎩,令11z =,得111111x y z =⎧⎪=-⎨⎪=⎩, 所以()11,1,1n =-.设平面1A BD 的法向量为()2222,,n x y z =,由12A D n ⊥,2BD n ⊥,得222200ax az ax ay -+=⎧⎨--=⎩,令21z =,得222111x y z =⎧⎪=-⎨⎪=⎩, 所以()21,1,1n =-.因为12//n n ,所以平面//MNP 平面1A BD .变式1 如图8-180所示,在平行六面体1111ABCD A B C D -中,,,E F G 分别是11111,,A D D D D C 的中点. 求证:平面//EFG 平面1AB C .六、证明直线与直线垂直的方法设直线12,l l 的方向向量为,a b ,则a b ⊥0a b ⇔⋅=.这里要特别指出的是,用向量法证明两直线尤其是两异面直线垂直是非常有效的方法.例8.52 如图8-181所示,四棱锥A BCDE -中,底面BCDE 为矩形,侧面ABC ⊥底面BCDE ,2BC =,2CD =,AB AC =.求证:AD CE ⊥.分析 平面ABC ⊥平面BCDE ,在平面ABC 内作AO BC ⊥AO ⇒⊥平面BCDE ,以点O 为坐标原点建立空间直角坐标系.解析 作AO BC ⊥,垂足为O ,则AO ⊥平面BCDE ,且O 为BC 的中点,以O 为坐标原点,OC 为x 轴,建立如图8-182所示的直角坐标系O xyz -.设()0,0,A a ,由已知条件知()1,0,0C ,()1,2,0D ,()1,2,0E -,()2,2,0CE =-,()1,2,AD a =-.因为0CE AD=⋅,所以CE AD ⊥。
高考平面向量题型归纳总结在高考数学考试中,平面向量是一个常见的考点,也是学生普遍认为较为困难的部分之一。
平面向量题型包括向量的加减、数量积、向量方向等。
本文将对高考平面向量题型进行归纳总结,帮助学生更好地掌握此类题型。
一、向量的加减1. 向量的加法向量的加法满足交换律和结合律,即a + b = b + a,(a + b) + c = a + (b + c)。
在解题过程中,可以利用向量的平移性质,将向量平移至同一起点,再连接终点得到新的向量。
2. 向量的减法向量的减法可以转化为加法进行处理,即a - b = a + (-b)。
其中,-b表示b的反向量,即方向相反的向量,模长相等。
二、数量积数量积又称为内积或点积,记作a·b。
1. 定义对于两个向量a(x₁, y₁)和b(x₂, y₂),它们的数量积a·b = x₁x₂ +y₁y₂。
另外,数量积还可以表示为向量模长和夹角的乘积,即a·b =|a| · |b| · cosθ,其中θ为a与b的夹角。
2. 性质(1) 交换律:a·b = b·a(2) 分配律:a·(b + c) = a·b + a·c(3) 结合律:k(a·b) = (ka)·b = a·(kb),其中k为实数(4) 若a·b = 0,则a与b垂直或其中一个为零向量(5) 若a·b > 0,则夹角θ为锐角;若a·b < 0,则夹角θ为钝角。
三、向量方向向量的方向可以用两种方式来表示:1. 向量的方向角:向量a(x, y)的方向角为与x轴正方向之间的夹角α,其中-π < α ≤ π。
2. 方向余弦:向量a(x, y)的方向余弦为与x轴的夹角的余弦值cosα,与y轴的夹角的余弦值cosβ。
在解决平面向量题型时,可以利用这两种方式来确定向量的方向。
6.1平面向量的概念 (精讲)6.1.1向量的实际背景与概念6.1.2向量的几何表示6.1.3相等向量与共线向量目录一、必备知识分层透析二、重点题型分类研究题型1:向量的有关概念题型2:向量的几何表示角度1:向量的模角度2:零向量与单位向量题型3:相等向量与共线向量角度1:相等向量角度2:平行向量(共线向量)一、必备知识分层透析知识点1:向量的概念(1)向量在数学中,我们把既有大小又有方向的量叫做向量.①我们所学的向量是自由向量,即只有大小和方向,而无特定的位置,这样的向量可以作任意平移.②向量与向量之间不能比较大小.(2)数量只有大小没有方向的量称为数量,如年龄、身高、长度、面积体积、质量等(3)向量与数量的区别①向量与数量的区别:向量有方向,而数量没有方向;数量与数量之间可以比较大小,而向量与向量之间不能比较大小②向量与矢量:数学中的向量是从物理中的矢量(如位移、力、加速度、速度等)中抽象出来的,但在这里我们仅考虑它的大小及方向;而物理中的这些量,既同时具备大小和方向这两个属性,还具有其他属性(如“力”就是由大小方向、作用点所决定的).知识点2:向量的几何表示(1)有向线段具有方向的线段叫做有向线段①有向线段:具有方向的线段叫做有向线段,其方向是由起点指向终点.以A为起点、B为终AB. 表点的有向线段记作AB(如图所示),线段AB的长度也叫做有向线段的长度,记作||示有向线段时,起点一定要写在终点的前面,上面标上箭头.②有向线段的三个要素:起点、方向、长度.知道了有向线段的起点、方向、长度,它的终点就唯一确定了.(2)向量的表示①几何表示:向量可以用有向线段表示,有向线段的长度表示向量的大小,有向线段的方向表示向量的方向.②字母表示:向量可以用字母a,b,c,…表示(3)向量的模AB.向量AB的大小称为向量AB的长度(或称模),记作||(4)两种特殊的向量零向量:长度为0的向量叫做零向量,记作0.单位向量:长度等于1个单位长度的向量,叫做单位向量①若用有向线段表示零向量,则其终点与起点重合.与0的区别与联系,0是一个向量|0|;书写时0表示零向量方向相同或相反的非零向量叫做平行向量.向量a 与b 平行,记作a b .规定:零向量与任意即对于任意向量a ,都有0a .长度相等且方向相同的向量叫做相等向量.向量a 与b 相等,记作a b =.两个向量相等必须具备的条件是长度相等,方向相同因为向量完全由它的方向和模确定,故任意两个相等的非零向量与有向线段的起点无关.)共线向量任一组平行向量都可以平移到同一条直线上共线向量所在直线平行或重合,如果两个向量所在的直线平行或重合·高一课时练习)下列四个命题正确的是( ).若a 与b 不共线,则a 与b 都是非零向量.两个相等的向量起点、方向、长度必须都.(2022·全国·高一专题练习)下列命题中,正确的是||||a b =,则a b =.若a b =,则||||a b = ||||a b >,则a b > ||0a =,则0a = .(2022·全国·高一假期作业)有下列命题:①两个相等向量,若它们的起点相同,则终点也相同;②若||a b |=|,则a b =; ③若AB DC =,则四边形ABCD 是平行四边形;m n =,n k =,则m k =;⑤若//a b ,//b c ,则//a c ; ⑥有向线段就是向.(2022·高一课时练习)下列说法正确的是(.向量AB与向量BA的长度相等例题2.(BD=________.例题3.(·全国·高一专题练习)若在一个边长为的正三角形所对应的有向线段为AD(其中则向量AD的模的最小值为高一专题练习)如果一架飞机向东飞行200 km,再向南飞行机飞行的路程为s,位移为a,那么(a aa a不能比大小2022·高一课时练习)已知在边长为ABCD中,∠,则BD=2022·高一课时练习)已知圆O的周长是,AB是圆O的直径,是圆周上一点,π=⊥CD=___________.,CD角度2:零向量与单位向量典型例题.向量就是有向线段>,则a b||||a b>.(2022秋·新疆巴音郭楞·高一校考阶段练习)下列说法正确的是(e=.单位向量均相等.单位向量1.零向量与任意向量平行.若向量a,b满足||||a b=,则a b=±.(2022秋·广东东莞·高一校联考期中)下列说法错误的是(.若0a =,则0a =.零向量是没有方向的 .(多选)(2022春·广东佛山向量的说法正确的是( ).单位向量:模为1的向量例题1.(2022春·广东揭阳·中,AB DC =,则下列向量相等的是(.AD 与CB.OC 与OA .AC 与DB D .DO OB =例题2.(2022·全国·高三专题练习)“a b =”是“||||a b =”的( .充分非必要条件B .必要非充分条件 .充分必要条件 D .既非充分又非必要条件例题3.(多选)(2022·高一课时练习)下列说法中错误的是( )||||a b =,则a b = B .若a b ≠,则||||a b ≠||||a b =,则a 与b 可能共线||||a b ≠,则a 一定不与b 共线(1)分别写出与AO 、BO 相等的向量;写出与AO 共线的向量;写出与AO 的模相等的向量;写出与AO 的夹角为90︒的向量;向量AO 与CO 是否相等?(多选)(2022秋·浙江嘉兴若非零向量a ,b ,下列命题正确的是.若a b =,则a b =.若a b =,则a b = .若//a b ,则a b = .若a b =,则//a b.(多选)(2022秋·山东菏泽高一统考期中)设点O 是平行四边形ABCD 点,则下列结论正确的是( ).AO OC = B .AO BO = .AO BO = D .AB 与CD 共线 .(2022·高一课时练习)如图所示,在平行四边形ABCD 中,E ,F 分别是CD ,AB 中点.(1)写出与向量FC 共线的向量;(2)求证:BE FD =.4.(2022·全国·高三专题练习)在平行四边形ABCD 中,E ,F 分别为边AD 、BC 的中点,如图.(1)写出与向量FC 共线的向量;(2)求证:BE FD =.角度2:平行向量(共线向量)典型例题例题1.(2022春·河南·高三校联考阶段练习)已知,,,A B C D 为平面上四点,则“向量AB CD ∥”是“直线AB CD ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件例题2.(2022秋·上海杨浦·高一复旦附中校考期中)①加速度是向量;②若//a b 且//b c ,则//a c ;③若AB CD =,则直线AB 与直线CD 平行.上面说法中正确的有( )个.A .0B .1C .2D .3同类题型演练1.(2022秋·湖北·高一校联考期中)“//b a ”是“a b =”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.(2022秋·上海浦东新·高一校考期末)命题:若//,//a b b c ,则//a c ,则命题为_______(填写:真命题或假命题)3.(2022·高一课时练习)已知命题“若//a b ,//b c ,则//a c ”是假命题,则b =__________.。
向量知识点归纳与常见题型总结 高三理科数学组全体成员一、向量知识点归纳1.与向量概念有关的问题⑴向量不同于数量,数量是只有大小的量(称标量),而向量既有大小又有方向;数量可以比较大小,而向量不能比较大小,只有它的模才能比较大小.记号“>”错了,而||>||才有意义.⑵有些向量与起点有关,有些向量与起点无关.由于一切向量有其共性(大小和方向),故我们只研究与起点无关的向量(既自由向量).当遇到与起点有关向量时,可平移向量. ⑶平行向量(既共线向量)不一定相等,但相等向量一定是平行向量,既向量平行是向量相等的必要条件.⑷单位向量是模为1的向量,其坐标表示为(,),其中x 、y 满足 +2x 2y =1(可用(cos θ,sin θ)(0≤θ≤2π)表示).特别:||ABAB →→表示与AB →同向的单位向量。
例如:向量()(0)||||AC AB AB AC λλ+≠所在直线过ABC ∆的内心(是BAC ∠的角平分线所在直线);例1、O 是平面上一个定点,A 、B 、C 不共线,P 满足()[0,).|||AB AC OP OA AB ACλλ=++⋅∈+∞则点P 的轨迹一定通过三角形的内心。
(变式)已知非零向量AB →与AC →满足(AB →|AB →| +AC →|AC →| )·BC →=0且AB →|AB→| ·AC →|AC →| =12 , 则△ABC 为( ) A.三边均不相等的三角形 B.直角三角形C.等腰非等边三角形 D.等边三角形 (06陕西)⑸的长度为0,是有方向的,并且方向是任意的,实数0仅仅是一个无方向的实数. ⑹有向线段是向量的一种表示方法,并不是说向量就是有向线段.(7)相反向量(长度相等方向相反的向量叫做相反向量。
a 的相反向量是-a 。
)2.与向量运算有关的问题⑴向量与向量相加,其和仍是一个向量.(三角形法则和平行四边形法则) ①当两个向量和不共线时,+的方向与、都不相同,且|+|<||+||; ②当两个向量和共线且同向时,+、、的方向都相同,且=+||||||+; ③当向量和反向时,若||>||,+与 方向相同 ,且|+|=||-||; 若||<||时,+与 方向相同,且|+|=||-||.⑵向量与向量相减,其差仍是一个向量.向量减法的实质是加法的逆运算.三角形法则适用于首尾相接的向量求和;平行四边形法则适用于共起点的向量求和。
平面向量知识点归纳及常考题型分析【知识点回顾】1、实数与向量的积的运算律:设λ、μ为实数,那么(1) 结合律:λ(μa )=(λμ) a ;(2)第一分配律:(λ+μ) a =λa +μa ;(3)第二分配律:λ(a +b )=λa +λb2、向量的数量积的运算律:(1) a ·b = b ·a (交换律);(2)(λa )·b = λ(a ·b )=λa ·b =a ·(λb );(3)(a +b )·c = a ·c +b ·c3、平面向量基本定理如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a =λ11e +λ22e .不共线的向量1e 、2e 叫做表示这一平面内所有向量的一组基底.4、向量共线(平行)的坐标表示设a =11(,)x y ,b =22(,)x y ,且b ≠0,则a //b (b ≠0)1221x y x y ⇔-=5、a 与b 的数量积(或内积):a ·b =|a ||b |cos θ6、a ·b 的几何意义:数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积.7、平面向量的坐标运算(1)设a =11(,)x y ,b =22(,)x y ,则a +b =1212(,)x x y y ++(2)设a =11(,)x y ,b =22(,)x y ,则a -b =1212(,)x x y y --(3)设A 11(,)x y ,B 22(,)x y ,则2121(,AB OB OA x x y y =-=--(4)设a =(,),x y R λ∈,则λa =(,x y λλ (5)设a =11(,)x y ,b =22(,)x y ,则a ·b =1212(x x y y +8、两向量的夹角公式 121cos ||||x a b a b x θ⋅==⋅+a =11(,)x y ,b =22(,)x y )9、平面两点间的距离公式,A B d =||AB AB AB =⋅=11(,)x y ,B 22(,)x y ) 10、向量的平行与垂直 :设a =11(,)x y ,b =22(,)x y ,且b ≠0,则 a ||b ⇔b =λa 1221x y x y ⇔-=a ⊥b (a ≠0)⇔ a ·b =01212x x y y ⇔+=11、线段的定比分公式 :设111(,)P x y ,222(,)P x y ,(,)P x y 是线段12P P 的分点,λ是实数,且12PP PP λ=,则121211x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩⇔121OP OP OP λλ+=+⇔12(1)OP tOP t OP =+-(11t λ=+) 12、三角形的重心坐标公式 △ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC 的重心的坐标是123123(,33x x x y y y G ++++ 13、点的平移公式''''x x h x x h y y k y y k⎧⎧=+=-⎪⎪⇔⎨⎨=+=-⎪⎪⎩⎩''OP OP PP ⇔=+ 注:图形F 上的任意一点P(x ,y)在平移后图形'F 上的对应点为'''(,)P x y ,且'PP 的坐标为(,h k 14、“按向量平移”的几个结论(1)点(,)P x y 按向量a =(,)h k 平移后得到点'(,P x h y k ++ (2) 函数()y f x =的图象C 按向量a =(,)h k 平移后得到图象'C ,则'C 的函数解析式为()y f x h k =-+ (3) 图象'C 按向量a =(,)h k 平移后得到图象C ,若C 的解析式()y f x =,则'C 的函数解析式为()y f x h k =+-(4)曲线C :(,)0f x y =按向量a =(,)h k 平移后得到图象'C ,则'C 的方程为(,)f x h y k --= (5) 向量m =(,)x y 按向量a =(,)h k 平移后得到的向量仍然为m =(,x y15、 三角形五“心”向量形式的充要条件设O 为ABC ∆所在平面上一点,角,,A B C 所对边长分别为,,a b c ,则(1)O 为ABC ∆的外心222OA OB OC ⇔== (2)O 为ABC ∆的重心0OA OB OC ⇔++=(3)O 为ABC ∆的垂心OA OB OB OC OC OA ⇔⋅=⋅=⋅(4)O 为ABC ∆的内心0aOA bOB cOC ⇔++=(5)O 为ABC ∆的A ∠的旁心aOA bOB cOC ⇔=+【题型归纳】一、向量的概念和基本运算例1、(1)判断下列命题是否正确:①若a b =,则a b =;②两个向量相等的充要条件是它们的起点相同,终点相同;③若AB DC =,则ABCD 是平行四边形;④若ABCD 是平行四边形,则AB DC =;⑤若,a b b c ==,则a c =;⑥若//,//a b b c ,则//a c 。
向量题型知识点总结一、向量的定义向量是一个由大小和方向确定的量,可以表示为有向线段。
常用大写拉丁字母表示向量,例如A、B、C等。
在直角坐标系中,一个向量可以表示为一个由两个坐标表示的有序对,例如(Ax, Ay)。
向量的定义有很多种表达方式,其中比较常见的有以下几种:1. 平行向量的定义:如果两个向量的方向相同或者相反,且大小相等,我们称它们为平行向量。
2. 零向量的定义:大小为0的向量称为零向量。
3. 自由向量的定义:不受限制的向量称为自由向量,即向量在空间中可以以任意点作为起点。
4. 共线向量的定义:如果存在一个非零向量a和一个实数k,使得另一个向量b=ka,则向量a和向量b共线。
5. 等量向量的定义:如果两个向量的大小相等,但方向可能不同,则这两个向量称为等量向量。
二、向量的运算1. 向量的加法:当两个向量相加时,可以将它们的起点放到一起,将终点放到一起,然后连接起点和终点,从而得到一个新的向量。
2. 向量的数乘:向量a与实数k的乘积表示在向量a的方向上,长度为|k|倍的向量。
当k>0时,方向不变;当k<0时,方向相反。
3. 向量的减法:向量的减法可以转化为向量的加法,即a-b=a+(-b)。
其中,-b为向量b的反向量。
4. 向量的数量积:数量积又称为内积,是两个向量的对应分量乘积的和,其中对应分量是指同一个位置上的两个分量。
5. 向量的叉积:叉积又称为外积,是两个向量相乘得到的一个新向量,在物理学中常用于求解力矩的方向。
三、向量的线性相关性1. 线性相关的定义:如果存在一组不全为0的实数,使得向量的线性组合等于零向量,我们称这组向量是线性相关的。
2. 线性无关的定义:如果一组向量不是线性相关的,这组向量就是线性无关的。
3. 线性相关与线性无关的判定:通过列向量组的秩和行列式的值来判定。
四、向量的坐标表示在二维直角坐标系中,一个向量可以表示为一个有序对(a, b),其中a和b分别表示该向量在x轴和y轴上的分量。
专题--平面向量1.向向量旳有关概念、、2.向量旳线性运算二. 向量旳表达措施:1. 几何表达法: 用带箭头旳有向线段表达, 如, 注意起点在前, 终点在后;2.符号表达法: 用一种小写旳英文字母来表达, 如, , 等;3. 坐标表达法: 在平面内建立直角坐标系, 以与轴、轴方向相似旳两个单位向量, 为基底, 则平面内旳任历来量可表达为, 称为向量旳坐标, =叫做向量旳坐标表达。
假如向量旳起点在原点, 那么向量旳坐标与向量旳终点坐标相似。
三. 平面向量旳基本定理:假如e1和e2是同一平面内旳两个不共线向量, 那么对该平面内旳任历来量a, 有且只有一对实数、, 使a= e1+e2。
如(1)若, 则______ (答: );(2)下列向量组中, 能作为平面内所有向量基底旳是A..B.C..D..........(答:B);(3)已知分别是旳边上旳中线,且,则可用向量表达为_____ (答: );(4)已知中, 点在边上, 且, , 则旳值是(答: 0)四.实数与向量旳积: 实数与向量旳积是一种向量, 记作, 它旳长度和方向规定如下: 当>0时, 旳方向与旳方向相似, 当<0时, 旳方向与旳方向相反, 当=0时, , 注意: ≠0。
五. 平面向量旳数量积:1.两个向量旳夹角:对于非零向量, , 作,称为向量, 旳夹角, 当=0时, , 同向, 当=时, , 反向, 当=时, , 垂直。
2. 平面向量旳数量积: 假如两个非零向量, , 它们旳夹角为, 我们把数量叫做与旳数量积(或内积或点积), 记作: , 即=。
规定: 零向量与任历来量旳数量积是0, 注意数量积是一种实数, 不再是一种向量。
如(1)△ABC中, , , , 则_________ (答: -9);(2)已知, 与旳夹角为, 则等于___(答: 1);(3)已知, 则等于____ (答: );(4)已知是两个非零向量, 且, 则旳夹角为____(答: )3. 在上旳投影为, 它是一种实数, 但不一定不小于0。
空间向量及其运算知识点及练习题1. 空间向量的概念(1)定义:空间中既有大小又有方向的量叫作空间向量.(2)向量的夹角:过空间任意一点O 作向量a ,b 的相等向量OA →和OB →,则∠AOB 叫作向量a ,b 的夹角,记作〈a ,b 〉,0≤〈a ,b 〉≤π. 2. 共线向量定理和空间向量基本定理(1)共线向量定理对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使得a =λb . (2)空间向量基本定理如果向量e 1,e 2,e 3是空间三个不共面的向量,a 是空间任一向量,那么存在唯一一组实数λ1,λ2,λ3使得a =λ1e 1+λ2e 2+λ3e 3,其中e 1,e 2,e 3叫作空间的一个基底. 3. 空间向量的数量积及运算律(1)定义空间两个向量a 和b 的数量积是一个数,等于|a ||b |cos 〈a ,b 〉,记作a ·b . (2)空间向量数量积的运算律 ①结合律:(λa )·b =λ(a·b ); ②交换律:a·b =b·a ; ③分配律:a·(b +c )=a·b +a·c . 4. 空间向量的坐标表示及应用(1)数量积的坐标运算设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则a·b =a 1b 1+a 2b 2+a 3b 3. (2)共线与垂直的坐标表示设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a ∥b ⇔a =λb ⇔a 1=λb 1,a 2=λb 2,a 3=λb 3 (λ∈R ), a ⊥b ⇔a·b =0⇔a 1b 1+a 2b 2+a 3b 3=0(a ,b 均为非零向量). (3)模、夹角公式设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则|a |=a·a =a 21+a 22+a 23,cos 〈a ,b 〉=a·b |a||b|=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 23(a ≠0,b ≠0) . 基础练习:1. 判断下面结论是否正确(请在括号中打“√”或“×”)(1)空间中任意两非零向量a ,b 共面.( √ )(2)在向量的数量积运算中(a ·b )·c =a ·(b ·c ).( × )(3)对于非零向量b ,由a ·b =b ·c ,则a =c .( × )(4)两向量夹角的范围与两异面直线所成角的范围相同.( × )(5)若A 、B 、C 、D 是空间任意四点,则有AB →+BC →+CD →+DA →=0.( √ )(6)|a |-|b |=|a +b |是a 、b 共线的充要条件.( × )2. 如图所示,在平行六面体ABCD —A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB →=a ,AD →=b ,AA 1→=c ,则下列向量中与BM →相等的向 量是( )A .-12a +12b +cB.12a +12b +c C .-12a -12b +cD.12a -12b +c 答案 A解析 BM →=BB 1→+B 1M →=AA 1→+12(AD →-AB →)=c +12(b -a )=-12a +12b +c .3. 已知正方体ABCD -A 1B 1C 1D 1中,点E 为上底面A 1C 1的中心,若AE →=AA 1→+xAB →+yAD →,则x ,y 的值分别为( )A .x =1,y =1B .x =1,y =12C .x =12,y =12D .x =12,y =1答案 C解析 如图,AE →=AA 1→+A 1E →=AA 1→+12A 1C 1→=AA 1→+12(AB →+AD →).4. 同时垂直于a =(2,2,1)和b =(4,5,3)的单位向量是_______________.答案 ⎝⎛⎭⎫13,-23,23或⎝⎛⎭⎫-13,23,-23 解析 设与a =(2,2,1)和b =(4,5,3)同时垂直的单位向量是c =(p ,q ,r ),则⎩⎪⎨⎪⎧p 2+q 2+r 2=1,2p +2q +r =0,4p +5q +3r =0,解得⎩⎪⎨⎪⎧ p =13,q =-23,r =23,或⎩⎪⎨⎪⎧p =-13,q =23,r =-23,即同时垂直于a ,b 的单位向量为⎝⎛⎭⎫13,-23,23或⎝⎛⎭⎫-13,23,-23.5. 在四面体O -ABC 中,OA →=a ,OB →=b ,OC →=c ,D 为BC 的中点,E 为AD 的中点,则OE →=________(用a ,b ,c 表示). 答案 12a +14b +14c解析 OE →=12OA →+12OD →=12OA →+14OB →+14OC →=12a +14b +14c . 典型例题:题型一 空间向量的线性运算例1 三棱锥O —ABC 中,M ,N 分别是OA ,BC 的中点,G 是△ABC的重心,用基向量OA →,OB →,OC →表示MG →,OG →.思维启迪 利用空间向量的加减法和数乘运算表示即可. 解 MG →=MA →+AG →=12OA →+23AN →=12OA →+23(ON →-OA →) =12OA →+23[12(OB →+OC →)-OA →] =-16OA →+13OB →+13OC →.OG →=OM →+MG →=12OA →-16OA →+13OB →+13OC →=13OA →+13OB →+13OC →. 思维升华 用已知向量来表示未知向量,一定要结合图形,以图形为指导是解题的关键.要正确理解向量加法、减法与数乘运算的几何意义.首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量,我们可把这个法则称为向量加法的多边形法则.如图,在长方体ABCD -A 1B 1C 1D 1中,O 为AC 的中点.(1)化简A 1O →-12AB →-12AD →=________;(2)用AB →,AD →,AA 1→表示OC 1→,则OC 1→=________. 答案 (1)A 1A →(2)12AB →+12AD →+AA 1→解析 (1)A 1O →-12AB →-12AD →=A 1O →-12AC →=A 1O →-AO →=A 1A →.(2)OC 1→=OC →+CC 1→=12AB →+12AD →+AA 1→.题型二 共线定理、空间向量基本定理的应用例2 已知E 、F 、G 、H 分别是空间四边形ABCD 的边AB 、BC 、CD 、DA 的中点,(1)求证:E 、F 、G 、H 四点共面; (2)求证:BD ∥平面EFGH ;(3)设M 是EG 和FH 的交点,求证:对空间任一点O ,有OM →=14(OA →+OB →+OC →+OD →).思维启迪 对于(1)只要证出向量EG →=EF →+EH →即可;对于(2)只要证出BD →与EH →共线即可;对于(3),易知四边形EFGH 为平行四边形,则点M 为线段EG 与FH 的中点,于是向量OM →可由向量OG →和OE →表示,再将OG →与OE →分别用向量OC →,OD →和向量OA →,OB →表示.证明 (1)连接BG , 则EG →=EB →+BG → =EB →+12(BC →+BD →)=EB →+BF →+EH →=EF →+EH →, 由共面向量定理的推论知: E 、F 、G 、H 四点共面. (2)因为EH →=AH →-AE →=12AD →-12AB →=12(AD →-AB →)=12BD →, 所以EH ∥BD .又EH 平面EFGH ,BD 平面EFGH ,所以BD ∥平面EFGH .(3)找一点O ,并连接OM ,OA ,OB ,OC ,OD ,OE ,OG . 由(2)知EH →=12BD →,同理FG →=12BD →,所以EH →=FG →,即EH 綊FG , 所以四边形EFGH 是平行四边形. 所以EG ,FH 交于一点M 且被M 平分. 故OM →=12(OE →+OG →)=12OE →+12OG →=12⎣⎡⎦⎤12(OA →+OB →)+12⎣⎡⎦⎤12(OC →+OD →) =14(OA →+OB →+OC →+OD →). 思维升华 (1)证明点共线的方法证明点共线的问题可转化为证明向量共线的问题,如证明A ,B ,C 三点共线,即证明AB →,AC →共线,亦即证明AB →=λAC →(λ≠0). (2)证明点共面的方法证明点共面问题可转化为证明向量共面问题,如要证明P ,A ,B ,C 四点共面,只要能证明P A →=xPB →+yPC →或对空间任一点O ,有OA →=OP →+xPB →+yPC →或OP →=xOA →+yOB →+zOC (x +y +z =1)即可.共面向量定理实际上也是三个非零向量所在直线共面的充要条件.如图,正方体ABCD -A 1B 1C 1D 1中,E 是A 1B 上的点,F 是AC 上的点,且A 1E =2EB ,CF =2AF ,则EF 与平面A 1B 1CD 的位置关系为________. 答案 平行解析 取AB →=a ,AD →=b ,AA 1→=c 为基底, 易得EF →=-13(a -b +c ),而DB 1→=a -b +c ,即EF →∥DB 1→,故EF ∥DB 1, 且EF平面A 1B 1CD ,DB 1平面A 1B 1CD ,所以EF ∥平面A 1B 1CD . 题型三 空间向量数量积的应用例3 如图所示,已知空间四边形AB -CD 的各边和对角线的长都等于a ,点M 、N 分别是AB 、CD 的中点. (1)求证:MN ⊥AB ,MN ⊥CD ; (2)求MN 的长;(3)求异面直线AN 与CM 所成角的余弦值.思维启迪 两条直线的垂直关系可以转化为两个向量的垂直关系;利用|a |2=a ·a 可以求线段长;利用cos θ=a ·b|a ||b |可求两条直线所成的角.(1)证明 设AB →=p ,AC →=q ,AD →=r .由题意可知,|p |=|q |=|r |=a ,且p 、q 、r 三向量两两夹角均为60°. MN →=AN →-AM →=12(AC →+AD →)-12AB →=12(q +r -p ),∴MN →·AB →=12(q +r -p )·p =12(q ·p +r ·p -p 2)=12(a 2cos 60°+a 2cos 60°-a 2)=0. ∴MN →⊥AB →. 即MN ⊥AB . 同理可证MN ⊥CD .(2)解 由(1)可知MN →=12(q +r -p ),∴|MN →|2=14(q +r -p )2=14[q 2+r 2+p 2+2(q ·r -p ·q -r ·p )] =14[a 2+a 2+a 2+2(a 22-a 22-a 22)] =14×2a 2=a 22. ∴|MN →|=22a .∴MN 的长为22a . (3)解 设向量AN →与MC →的夹角为θ. ∵AN →=12(AC →+AD →)=12(q +r ),MC →=AC →-AM →=q -12p ,∴AN →·MC →=12(q +r )·(q -12p )=12(q 2-12q ·p +r ·q -12r ·p ) =12(a 2-12a 2cos 60°+a 2cos 60°-12a 2cos 60°) =12(a 2-a 24+a 22-a 24)=a 22. 又∵|AN →|=|MC →|=32a ,∴AN →·MC →=|AN →||MC →|cos θ=32a ×32a ×cos θ=a 22.∴cos θ=23.∴向量AN →与MC →的夹角的余弦值为23,从而异面直线AN 与CM 所成角的余弦值为23.思维升华 (1)当题目条件有垂直关系时,常转化为数量积为零进行应用;(2)当异面直线所成的角为α时,常利用它们所在的向量转化为向量的夹角θ来进行计算.应该注意的是α∈(0,π2],θ∈[0,π],所以cos α=|cos θ|=|a ·b ||a ||b |;(3)立体几何中求线段的长度可以通过解三角形,也可依据|a |=a 2转化为向量求解.已知空间中三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB →,b =AC →.(1)求向量a 与向量b 的夹角的余弦值;(2)若k a +b 与k a -2b 互相垂直,求实数k 的值. 解 (1)∵a =(1,1,0),b =(-1,0,2), ∴a ·b =(1,1,0)·(-1,0,2)=-1, 又|a |=12+12+02=2, |b |=(-1)2+02+22=5, ∴cos 〈a ,b 〉=a ·b |a ||b |=-110=-1010, 即向量a 与向量b 的夹角的余弦值为-1010. (2)方法一 ∵k a +b =(k -1,k,2). k a -2b =(k +2,k ,-4), 且k a +b 与k a -2b 互相垂直,∴(k -1,k,2)·(k +2,k ,-4)=(k -1)(k +2)+k 2-8=0,∴k =2或k =-52,∴当k a +b 与k a -2b 互相垂直时,实数k 的值为2或-52.方法二 由(1)知|a |=2,|b |=5,a ·b =-1, ∴(k a +b )·(k a -2b )=k 2a 2-k a ·b -2b 2 =2k 2+k -10=0, 得k =2或k =-52.易失分点:********“两向量同向”意义不清致误典例:(5分)已知向量a =(1,2,3),b =(x ,x 2+y -2,y ),并且a ,b 同向,则x ,y 的值分别为________.易错分析 将a ,b 同向和a ∥b 混淆,没有搞清a ∥b 的意义:a ·b 方向相同或相反.解析 由题意知a ∥b ,所以x 1=x 2+y -22=y3,即⎩⎪⎨⎪⎧y =3x ①x 2+y -2=2x ② 把①代入②得x 2+x -2=0,(x +2)(x -1)=0, 解得x =-2,或x =1当x =-2时,y =-6;当x =1时,y =3.当⎩⎪⎨⎪⎧x =-2y =-6时,b =(-2,-4,-6)=-2a , 两向量a ,b 反向,不符合题意,所以舍去.当⎩⎪⎨⎪⎧ x =1y =3时,b =(1,2,3)=a ,a 与b 同向,所以⎩⎪⎨⎪⎧x =1y =3. 答案 1,3温馨提醒 (1)两向量平行和两向量同向不是等价的,同向是平行的一种情况.两向量同向能推出两向量平行,但反过来不成立,也就是说,“两向量同向”是“两向量平行”的充分不必要条件;(2)若两向量a ,b 满足a =λb (b ≠0)且λ>0则a ,b 同向;在a ,b 的坐标都是非零的条件下,a ,b 的坐标对应成比例.******方法与技巧1.利用向量的线性运算和空间向量基本定理表示向量是向量应用的基础.2.利用共线向量定理、共面向量定理可以证明一些平行、共面问题;利用数量积运算可以解决一些距离、夹角问题.3.利用向量解立体几何题的一般方法:把线段或角度转化为向量表示,用已知向量表示未知向量,然后通过向量的运算或证明去解决问题. 失误与防范1.向量的数量积满足交换律、分配律,但不满足结合律,即a·b =b·a ,a ·(b +c )=a·b +a·c 成立,(a·b )·c =a·(b·c )不一定成立.2.求异面直线所成的角,一般可以转化为两向量的夹角,但要注意两种角的范围不同,最后应进行转化.A 组 专项基础训练 (时间:40分钟)一、选择题1. 空间直角坐标系中,A (1,2,3),B (-2,-1,6),C (3,2,1),D (4,3,0),则直线AB 与CD的位置关系是( )A .垂直B .平行C .异面D .相交但不垂直答案 B解析 由题意得,AB →=(-3,-3,3),CD →=(1,1,-1), ∴AB →=-3CD →,∴AB →与CD →共线,又AB →与CD →没有公共点. ∴AB ∥CD .2. 已知O ,A ,B ,C 为空间四个点,又OA →,OB →,OC →为空间的一个基底,则( )A .O ,A ,B ,C 四点不共线 B .O ,A ,B ,C 四点共面,但不共线 C .O ,A ,B ,C 四点中任意三点不共线D .O ,A ,B ,C 四点不共面 答案 D解析 OA →,OB →,OC →为空间的一个基底,所以OA →,OB →,OC →不共面,但A ,B ,C 三种情况都有可能使OA →,OB →,OC →共面.3. 已知a =(λ+1,0,2),b =(6,2μ-1,2λ),若a ∥b ,则λ与μ的值可以是( )A .2,12B .-13,12C .-3,2D .2,2答案 A解析 由题意知:⎩⎪⎨⎪⎧λ+16=22λ,2μ-1=0,解得⎩⎪⎨⎪⎧ λ=2,μ=12或⎩⎪⎨⎪⎧λ=-3,μ=12.4. 空间四点A (2,3,6)、B (4,3,2)、C (0,0,1)、D (2,0,2)的位置关系是( )A .共线B .共面C .不共面D .无法确定答案 C解析 ∵AB →=(2,0,-4),AC →=(-2,-3,-5),AD →=(0,-3,-4). 假设四点共面,由共面向量定理得,存在实数x ,y , 使AD →=xAB →+yAC →,即⎩⎪⎨⎪⎧2x -2y =0, ①-3y =-3, ②-4x -5y =-4, ③由①②得x =y =1,代入③式不成立,矛盾. ∴假设不成立,故四点不共面.5. 如图所示,已知空间四边形OABC ,OB =OC ,且∠AOB =∠AOC =π3,则cos 〈OA →,BC →〉的值为( )A .0 B.12 C.32D.22答案 A解析 设OA →=a ,OB →=b ,OC →=c ,则|b |=|c |, 〈a ,b 〉=〈a ,c 〉=π3,BC →=c -b ,∴OA →·BC →=a ·(c -b )=a ·c -a ·b =|a ||c |cos π3-|a ||b |cos π3=0,∴OA →⊥BC →,∴cos 〈OA →,BC →〉=0.二、填空题6. 已知2a +b =(0,-5,10),c =(1,-2,-2),a ·c =4,|b |=12,则以b ,c 为方向向量的两直线的夹角为________.答案 60°解析 由题意得,(2a +b )·c =0+10-20=-10.即2a ·c +b ·c =-10,又∵a ·c =4,∴b ·c =-18,∴cos 〈b ,c 〉=b ·c |b |·|c |=-1812×1+4+4=-12, ∴〈b ,c 〉=120°,∴两直线的夹角为60°.7. 已知a =(1-t,1-t ,t ),b =(2,t ,t ),则|b -a |的最小值为________.答案 355解析 b -a =(1+t,2t -1,0),∴|b -a |=(1+t )2+(2t -1)2= 5⎝⎛⎭⎫t -152+95, ∴当t =15时,|b -a |取得最小值355. 8. 如图所示,已知P A ⊥平面ABC ,∠ABC =120°,P A =AB =BC =6,则PC 等于________.答案 12解析 因为PC →=P A →+AB →+BC →,所以PC →2=P A →2+AB →2+BC →2+2AB →·BC →=36+36+36+2×36cos 60°=144.所以|PC →|=12.三、解答题9. 已知向量a =(1,-3,2),b =(-2,1,1),点A (-3,-1,4),B (-2,-2,2).(1)求|2a +b |;(2)在直线AB 上是否存在一点E ,使得OE →⊥b (O 为原点)?解 (1)∵a =(1,-3,2),b =(-2,1,1),∴2a +b =(0,-5,5),∴|2a +b |=02+(-5)2+52=5 2. (2)假设存在点E ,其坐标为E (x ,y ,z ),则AE →=λAB →,即(x +3,y +1,z -4)=λ(1,-1,-2),∴⎩⎪⎨⎪⎧ x =λ-3y =-λ-1z =-2λ+4,∴E (λ-3,-λ-1,-2λ+4),∴OE →=(λ-3,-λ-1,-2λ+4).又∵b =(-2,1,1),OE →⊥b ,∴OE →·b =-2(λ-3)+(-λ-1)+(-2λ+4)=-5λ+9=0,∴λ=95,∴E (-65,-145,25),∴在直线AB 上存在点E (-65,-145,25),使OE →⊥b .10.如图所示,四棱柱ABCD -A 1B 1C 1D 1中,底面为平行四边形,以顶点A 为端点的三条棱长都为1,且两两夹角为60°.(1)求AC 1的长;(2)求BD 1与AC 夹角的余弦值.解 记AB →=a ,AD →=b ,AA 1→=c ,则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°,∴a ·b =b ·c =c ·a =12.(1)|AC 1→|2=(a +b +c )2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a )=1+1+1+2×(12+12+12)=6,∴|AC 1→|=6,即AC 1的长为 6.(2)BD 1→=b +c -a ,AC →=a +b ,∴|BD 1→|=2,|AC →|=3,BD 1→·AC →=(b +c -a )·(a +b )=b 2-a 2+a ·c +b ·c =1.∴cos 〈BD 1→,AC →〉=BD 1→·AC →|BD 1→||AC →|=66. ∴BD 1与AC 夹角的余弦值为66. B 组 专项能力提升(时间:30分钟)1. 若向量c 垂直于不共线的向量a 和b ,d =λa +μb (λ、μ∈R ,且λμ≠0),则( )A .c ∥dB .c ⊥dC .c 不平行于d ,c 也不垂直于dD .以上三种情况均有可能答案 B解析 由题意得,c 垂直于由a ,b 确定的平面.∵d =λa +μb ,∴d 与a ,b 共面.∴c ⊥d .2. 以下命题中,正确的命题个数为 ( ) ①若a ,b 共线,则a 与b 所在直线平行;②若{a ,b ,c }为空间一个基底,则{a +b ,b +c ,c +a }构成空间的另一个基底; ③若空间向量m 、n 、p 满足m =n ,n =p ,则m =p ;④对空间任意一点O 和不共线三点A 、B 、C ,若OP →=xOA →+yOB →+zOC →(其中x ,y ,z ∈R ),则P 、A 、B 、C 四点共面.A .1B .2C .3D .4答案 B解析 由共线向量知a 与b 所在直线可能重合知①错;若a +b ,b +c ,c +a 共面,则存在实数x ,y ,使a +b =x (b +c )+y (c +a )=y a +x b +(x +y )c ,∵a ,b ,c 不共面,∴y =1,x =1,x +y =0,∴x ,y 无解,∴{a +b ,b +c ,c +a }能构成空间的一个基底,∴②正确;由向量相等的定义知③正确;由共面向量定理的推论知,当x +y +z =1时,P ,A ,B ,C 四点共面,∴④不正确.故选B.3. 如图,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 、N 分别是A 1B 1和BB 1的中点,那么直线AM 和CN 所成角的余弦值为________.答案 25解析 以D 为原点,DA 、DC 、DD 1为x 、y 、z 轴正半轴建立空间直 角坐标系,则A (1,0,0),A 1(1,0,1),B 1(1,1,1),B (1,1,0),C (0,1,0),∴M (1,12,1),N (1,1,12), ∴AM →=(0,12,1),CN →=(1,0,12),∴cos 〈AM →,CN →〉=AM →·CN→|AM →|·|CN →|=12(12)2+12× 12+(12)2=25.4. 已知空间三点A (0,2,3),B (-2,1,6),C (1,-1,5).(1)求以AB →,AC →为边的平行四边形的面积;(2)若|a |=3,且a 分别与AB →,AC →垂直,求向量a 的坐标.解 (1)由题意可得:AB →=(-2,-1,3),AC →=(1,-3,2),∴cos 〈AB →,AC →〉=AB →·AC →|AB →||AC →|=-2+3+614×14=714=12.∴sin 〈AB →,AC →〉=32,∴以AB →,AC →为边的平行四边形的面积为S =2×12|AB →|·|AC →|·sin 〈AB →,AC →〉=14×32=7 3.(2)设a =(x ,y ,z ),由题意得⎩⎪⎨⎪⎧ x 2+y 2+z 2=3-2x -y +3z =0x -3y +2z =0,解得⎩⎪⎨⎪⎧ x =1y =1z =1或⎩⎪⎨⎪⎧ x =-1y =-1z =-1,∴向量a 的坐标为(1,1,1)或(-1,-1,-1).5. 直三棱柱ABC —A ′B ′C ′中,AC =BC =AA ′,∠ACB =90°,D 、E 分别为AB 、BB ′的中点.(1)求证:CE ⊥A ′D ;(2)求异面直线CE 与AC ′所成角的余弦值.(1)证明 设CA →=a ,CB →=b ,CC ′→=c ,根据题意,|a |=|b |=|c |,且a·b =b·c =c·a =0,∴CE →=b +12c ,A ′D →=-c +12b -12a . ∴CE →·A ′D →=-12c 2+12b 2=0. ∴CE →⊥A ′D →,即CE ⊥A ′D .(2)解 ∵AC ′→=-a +c ,|AC ′→|=2|a |,|CE →|=52|a |. AC ′→·CE →=(-a +c )·⎝⎛⎭⎫b +12c =12c 2=12|a |2, ∴cos 〈AC ′→,CE →〉=12|a |22·52|a |2=1010. 即异面直线CE 与AC ′所成角的余弦值为1010.。
高中数学平面向量知识点总结及常见题型平面向量一、向量的基本概念与基本运算1.向量的概念:向量是既有大小又有方向的量。
向量一般用a、b、c等字母来表示,或用有向线段的起点与终点的大写字母表示,如:AB(几何表示法)或a(坐标表示法)。
向量的大小即向量的模(长度),记作|AB|或|a|。
向量不能比较大小,但向量的模可以比较大小。
②零向量:长度为0的向量,记为0,其方向是任意的,与任意向量平行。
③单位向量:模为1个单位长度的向量。
向量a为单位向量|a|=1.④平行向量(共线向量):方向相同或相反的非零向量。
任意一组平行向量都可以移到同一直线上。
方向相同或相反的向量,称为平行向量,记作a∥b。
由于向量可以进行任意的平移(即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量。
⑤相等向量:长度相等且方向相同的向量。
相等向量经过平移后总可以重合,记为a b。
大小相等,方向相同(x1,y1)(x2,y2)x1x2,y1y2.2.向量加法求两个向量和的运算叫做向量的加法。
设AB a,BC b,则a+b=AB BC=AC。
1)0+a=a;(2)向量加法满足交换律与结合律;向量加法有“三角形法则”与“平行四边形法则”:1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量。
2)三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点。
当两个向量的起点公共时,用平行四边形法则;当两向量是首尾连接时,用三角形法则。
向量加法的三角形法则可推广至多个向量相加:AB BC CD…+PQ QR AR,但这时必须“首尾相连”。
3.向量的减法①相反向量:与a长度相等、方向相反的向量,叫做a的相反向量,记作a。
零向量的相反向量仍是零向量。
关于相反向量有:(i)(a)=a;(ii) a+(a)=(a)+a=0.iii) 若向量a、b互为相反向量,则a=-b,b=-a,a+b=0.向量减法:向量a加上b的相反向量叫做a与b的差,记作a-b=a+(-b),求两个向量差的运算,叫做向量的减法。
高中数学平面向量知识点与典型例题总结(师)《数学》必会基础题型——《平面向量》【基本概念与公式】【任何时候写向量时都要带箭头】1.向量:既有大小又有方向的量。
记作:AB 或a 。
2.向量的模:向量的大小(或长度),记作:||AB 或||a 。
3.单位向量:长度为1的向量。
若e 是单位向量,则||1e =。
4.零向量:长度为0的向量。
记作:0。
【0方向是任意的,且与任意向量平行】5.平行向量(共线向量):方向相同或相反的向量。
6.相等向量:长度和方向都相同的向量。
7.相反向量:长度相等,方向相反的向量。
AB BA =-。
8.三角形法则:AB BC AC +=;AB BC CD DE AE +++=;AB AC CB -=(指向被减数)9.平行四边形法则:以,a b 为临边的平行四边形的两条对角线分别为a b +,a b -。
10.共线定理://a b a b λ=?。
当0λ>时,a b 与同向;当0λ<时,a b 与反向。
11.基底:任意不共线的两个向量称为一组基底。
12.向量的模:若(,)a x y =,则2||a x y =+,22||a a =,2||()a ba b +=+13.数量积与夹角公式:||||cos a b a b θ?=?; cos ||||a b a b θ?=? 14.平行与垂直:1221//a b a b x y x y λ?=?=;121200a b a b x x y y ⊥??=?+=题型1.基本概念判断正误:(1)共线向量就是在同一条直线上的向量。
(2)若两个向量不相等,则它们的终点不可能是同一点。
(3)与已知向量共线的单位向量是唯一的。
(4)四边形ABCD 是平行四边形的条件是AB CD =。
(5)若AB CD =,则A 、B 、C 、D 四点构成平行四边形。
(6)因为向量就是有向线段,所以数轴是向量。
(7)若a 与b 共线, b 与c 共线,则a 与c 共线。
专题 空间向量与动点问题十四大题型汇总常考题型目标题型1共面问题与动点问题 01题型2线线平行与动点问题 06题型3线面平行与动点问题 08题型4面面平行与动点问题 13题型5线线垂直与动点问题 15题型6线面垂直与动点问题 23题型7面面垂直与动点问题 30题型8线线角与动点问题 36题型9线面角与动点问题 40题型10面面角与动点问题 49题型11点面、线面距离与动点问题 57题型12点线、线线距离问题 65题型13面积体积相关问题 68题型14三角形形状问题 74知识梳理知识点一.利用空间向量解决立体几何的探索性问题思路:1.根据题设条件的垂直关系,建立适当空间直角坐标系,将相关点、相关向量用坐标表示.2.假设所成的点或参数存在,并用相关参数表示相关点的坐标,根据线、面满足的位置关系、数量关系,构建方程(组)求解,若能求出参数的值且符合该限定的范围,则存在,否则不存在.知识点二.动点的设法(减少变量数量)在解决探索性问题中点的存在性四,经常需要设出点的坐标,而(x ,y ,z )可表示空间中的任一点,使用三个变量设点需要列三个方程,导致运算量增大.为了减少变量数量,用以下设法.1.直线(一维)上的点:用一个变量可以表示出所求点的坐标;依据:根据平面向量共线定理--若a ⎳b ⟹∃λ∈R ,使得a =λb2.平面(二维)上的点:用两个变量可以表示出所求点的坐标.3.依据:平面向量基本定理,若a ,b 不共线,则平面上任意一个向量c ,均存在x ,y ∈R ,使得c =xa +yb题型分类题型一共面问题与动点问题【方法总结】共面定理:平面向量基本定理,若a ,b 不共线,则平面上任意一个向量c ,均存在x ,y ∈R ,使得c =xa +yb1(2021·高二课时练习)如图,在空间直角坐标系Axyz 中,E 0,0,1 ,B 1,0,0 ,F 0,2,2 ,C a ,2,0 .(1)求向量BC 在向量EF 上的投影的数量.(2)是否存在实数a ,使得点E ,F ,C ,B 共面?若存在,求出a 的值;若不存在,说明理由.1.(2021·高二课时练习)如图,在棱长为2的正方体AC 1中,点E ,F 分别是BC ,C 1D 1的中点,点G 在AB 上,AB =3BG .(1)已知上底面A 1C 1内一点H 满足GH ⎳EF ,求A 1H 的长.(2)棱A 1D 1上是否存在一点K ,使得GK ,EF 共面?若存在,求A 1K 的长;若不存在,说明理由.2.(2023·全国·高三专题练习)如图,在四棱锥P-ABCD中,PA⊥面ABCD,AD⊥CD,AD∥BC,PA=AD=CD=2,BC=3.E为PD的中点,点F在PC上,且PFPC =13.(1)求证:CD⊥面PAD;(2)求二面角F-AE-P的正弦值;(3)设点G在PB上,且PGPB=λ.判断是否存在这样的λ,使得A,E,F,G四点共面.3.(2022·全国·高三专题练习)如图所示,在四棱锥P-ABCD中,底面ABCD为正方形,E为侧棱PC上靠近P的三等分点,PA⊥底面ABCD,且PA=AD=2.(1)在侧棱PD上是否存在点F,使得点A,B,E,F四点共面?若存在,指出点F的位置,并证明;若不存在,请说明理由;(2)求二面角P-AB-E的余弦值.1(2023·全国·高二专题练习)如图,已知空间几何体P -ABCD 的底面ABCD 是一个直角梯形,其中∠BAD =90°,AD ⎳BC ,BA =BC =a ,AD =2a ,且PA ⊥底面ABCD ,PD 与底面成30°角.(1)若BC ⋅PD =8,求该几何体的体积;(2)若AE 垂直PD 于E ,证明:BE ⊥PD ;(3)在(2)的条件下,PB 上是否存在点F ,使得EF ⎳BD ,若存在,求出该点的坐标;若不存在,请说明理由.1.(2021·高二课时练习)如图,在棱长为2的正方体AC 1中,点E ,F 分别是BC ,C 1D 1的中点,点G 在AB 上,AB =3BG .(1)已知上底面A 1C 1内一点H 满足GH ⎳EF ,求A 1H 的长.(2)棱A 1D 1上是否存在一点K ,使得GK ,EF 共面?若存在,求A 1K 的长;若不存在,说明理由.1(2023·全国·高二专题练习)如图,直角梯形ABCD与等腰直角三角形ABP所在的平面互相垂直,且AB⎳CD,AB⊥BC,AP⊥PB,AB=2,BC=CD=1.(1)求证:AB⊥PD;(2)求直线PC与平面ABP所成角的余弦值;(3)线段PA上是否存在点E,使得PC⎳平面EBD?若存在,求出AEAP的值;若不存在,请说明理由.1.(2023·全国·高二专题练习)如图所示的几何体中,四边形ABCD是等腰梯形,AB∥CD,∠DAB=60°,FC⊥平面ABCD,AE⊥BD,CB=CD=CF.(1)求二面角D-BF-C的余弦值;(2)在线段AB(含端点)上,是否存在一点P,使得FP∥平面AED.若存在,求出APAB的值;若不存在,请说明理由.2.(2023·全国·高二假期作业)如图:在正方体ABCD-A1B1C1D1中,M为DD1的中点.(1)求证:BD1∥平面AMC;(2)在线段CC1上是否存在一点N,使得平面AMC∥平面BND1,说明理由.3.(2023·全国·高二假期作业)如图,在平面五边形ABCDE中,AB⎳DC,∠BCD=90°,AB= AD=10,AE=6,BC=8,CD=4,∠AED=90°,EH⊥AD,垂足为H,将△ADE沿AD折起(如图),使得平面ADE⊥平面ABCD.(1)求证:EH⊥平面ABCD;(2)求三棱锥C-ADE的体积;(3)在线段BE上是否存在点M,使得MH⎳平面CDE?若存在,求EMEB的值;若不存在,请说明理由.4.(2023·全国·高二专题练习)如图,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC= 2,AA1=22.M是AB的中点,N是B1C1的中点,P是BC1与B1C的交点.(1)求直线A1P与平面A1CM所成角的正弦值;(2)线段A1N上是否存在点Q,使得PQ⎳平面A1CM?题型四面面平行与动点问题1(2023·高三校联考单元测试)如图,在三棱锥ABOC中,AO⊥平面BOC,∠OAB=∠OAC=π6,AB=AC=2,BC=2,D,E分别为AB,OB的中点.(1)求O到平面ABC的距离;(2)在线段CB上是否存在一点F,使得平面DEF⎳平面AOC?若存在,试确定F的位置,并证明此点满足要求;若不存在,请说明理由.1.(2023·全国·高二假期作业)如图,四棱锥P-ABCD中,AB⎳CD,AB=2CD,E为PB的中点.(1)求证:CE⎳平面PAD.(2)在线段AB上是否存在一点F,使得平面PAD⎳平面CEF?若存在,证明你的结论,若不存在,请说明理由.2.(2023·全国·高二假期作业)如图,在三棱柱ABC -A 1B 1C 1中,E ,F 分别为线段AC 1,A 1C 1的中点.(1)求证:EF ⎳平面BCC 1B 1.(2)在线段BC 1上是否存在一点G ,使平面EFG ⎳平面ABB 1A 1?请说明理由.题型五线线垂直与动点问题1(2023秋·全国·高二随堂练习)如图所示,三棱柱ABC -A 1B 1C 1中,CA =a ,CB =b ,CC 1 =c ,CA =CB =CC 1=1,a ,b =a ,c =2π3,b ,c =π2,N 是AB 中点.(1)用a ,b ,c 表示向量A 1N ;(2)在线段C 1B 1上是否存在点M ,使AM ⊥A 1N ?若存在,求出M 的位置,若不存在,说明理由.1.(2023春·浙江杭州·高二浙江大学附属中学期中)如图,将长方形OAA 1O 1(及其内部)绕OO 1旋转一周形成圆柱,其中OA =1,O 1O =2,劣弧A 1B 1的长为π6,AB 为圆O 的直径.(1)在弧AB 上是否存在点C (C ,B 1在平面OAA 1O 1的同侧),使BC ⊥AB 1,若存在,确定其位置,若不存在,说明理由;(2)求平面A 1O 1B 与平面B 1O 1B 夹角的余弦值. 2.(2023·全国·高二专题练习)如图,在三棱锥P -ABC 中,PB ⊥平面ABC ,AB ⊥BC ,AB =PB =2,BC =23,E 、G 分别为PC 、PA 的中点.(1)求证:平面BCG ⊥平面PAC ;(2)在线段AC 上是否存在一点N ,使PN ⊥BE ?证明你的结论.3.(2023·全国·高二专题练习)在①DE +DF ⊥DE -DF ,②DE =172,③0<cos EF ,DB <1这三个条件中任选一个,补充在下面的问题中,并作答.问题:如图,在正方体ABCD -A 1B 1C 1D 1,中,以D 为坐标原点,建立空间直角坐标系D -xyz .已知点D 1的坐标为0,0,2 ,E 为棱D 1C 1上的动点,F 为棱B 1C 1上的动点,,则是否存在点E ,F ,使得EF ⋅A 1C =0?若存在,求出AE ⋅BF 的值;若不存在,请说明理由.4.(2021·高二课时练习)如图四棱锥P -ABCD 中,底面ABCD 是平行四边形,PG ⊥平面ABCD ,垂足为G ,G 在AD 上且AG =13GD ,BG ⊥GC ,GB =GC =2,E 是BC 的中点,四面体P -BCG 的体积为83.(1)求过点P ,C ,B ,G 四点的球的表面积;(2)求直线DP 与平面PBG 所成角的正弦值;(3)在棱PC 上是否存在一点F ,使DF ⊥GC ,若存在,确定点F 的位置,若不存在,说明理由.5.(2023·全国·高二专题练习)如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4(1)求证AC⊥BC1;(2)在AB上是否存在点D,使得AC1⊥CD?并说明理由6.(2023·全国·高二专题练习)如图,四棱锥S-ABCD中,ABCD为矩形,SD⊥AD,且SD⊥AB,AD=1,AB=2,SD=3.E为CD上一点,且CE=3DE.(1)求证:AE⊥平面SBD;(2)M、N分别在线段SB、CD上的点,是否存在M、N,使MN⊥CD且MN⊥SB,若存在,确定M、N的位置;若不存在,说明理由.线面垂直与动点问题1(2023·全国·高二专题练习)如图,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,点E 为BC 的中点.(1)在B 1B 上是否存在一点P ,使D 1P ⊥平面B 1AE ?(2)在平面AA 1B 1B 上是否存在一点N ,使D 1N ⊥平面B 1AE ?1.(2023·全国·高二专题练习)在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点P 满足AP =λAC +μAA 1 ,其中λ∈[0,1],μ∈0,1 .(1)当λ=1时,求三棱锥B -DD 1P 的体积;(2)当2λ2+μ2=1时,直线BP 与平面ACC 1A 1所成角的正切值的取值范围;(3)当λ+μ=1时,是否存在唯一个点P ,使得BP ⊥平面ADP ,若存在,求出P 点的位置;若不存在,请说明理由.2.(2023·全国·高二专题练习)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,正方形ABCD的边长为2,E是PA的中点.(1)求证:PC⎳平面BDE.(2)若PA=2,线段PC上是否存在一点F,使AF⊥平面BDE?若存在,求出PF的长度;若不存在,请说明理由.3.(2023·全国·高二专题练习)已知四棱锥P-ABCD中,PA⊥平面ABCD,AD∥BC,BC⊥BC,BD=2,PD=5.AB,AB=AD=12(1)求直线PC与平面PBD所成角的正弦值;(2)线段PB上是否存在一点M,使得CM⊥平面PBD?若存在,请指出点M的位置;若不存在,请说明理由.4.(2023春·全国·高二合肥市第六中学校联考开学考试)如图,在长方体ABCD-A1B1C1D1中,点E为AD的中点,且AA1=4,AB=BC=2,点P在线段BD1上.(1)问:是否存在一点P,使得直线BD1⊥平面PEC?若存在,请指出点P的位置;若不存在,请说明理由.(2)若P是线段BD1的中点,求平面PEC与平面ECD1的夹角的余弦值.5.(2023·全国·高二专题练习)如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧面PAD ⊥底面ABCD,E,F分别为PA,BD中点,PA=PD=AD=2.(1)求证:EF⎳平面PBC;(2)在棱PC上是否存在一点G,使GF⊥平面EDF?若存在,指出点G的位置;若不存在,说明理由.面面垂直与动点问题1(2023·全国·高二专题练习)如图,已知四棱锥P -ABCD 的底面是平行四边形,侧面PAB 是等边三角形,BC =2AB ,AC =3AB ,PB ⊥AC .(1)求证:平面PAB ⊥平面ABCD ;(2)设Q 为侧棱PD 上一点,四边形BEQF 是过B ,Q 两点的截面,且AC ∥平面BEQF ,是否存在点Q ,使得平面BEQF ⊥平面PAD ?若存在,求PQ QD的值;若不存在,说明理由. 1.(2023秋·湖南长沙·高二雅礼中学校考开学考试)如图,在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是棱BC ,DC 的中点.(1)求证:D 1E ⊥AB 1;(2)若点M ,N 分别在C 1D ,AF 上,且MN ⊥C 1D ,MN ⊥AF .求证:MN ⎳D 1E ;(3)棱CC 1上是否存在点P ,使平面CD 1E ⊥平面AFP ?若存在,确定点P 的位置,若不存在,说明理由.2.(2023·全国·高二专题练习)如图1,在边长为2的菱形ABCD中,∠BAD=60°,DE⊥AB于点E,将△ADE沿DE折起到△A1DE的位置,使A1D⊥BE,如图2.(1)求证:A1E⊥平面BCDE;(2)在线段BD上是否存在点P,使平面A1EP⊥平面A1BD?若存在,求BPBD的值;若不存在,说明理由.3.(2023·全国·高二专题练习)如图,在正四棱柱ABCD-A1B1C1D1中,AA1=2AB=2,E,F分别为棱AA1,CC1的中点,G为棱DD1上的动点.(1)求证:B,E,D1,F四点共面;(2)是否存在点G,使得平面GEF⊥平面BEF?若存在,求出DG的长度;若不存在,说明理由.4.(2022春·高二单元测试)如图,在矩形ABCD 中,AB =1,BC =2,E 为边AD 上的动点,将△DCE 沿CE 折起,记折起后D 的位置为P ,且P 在平面ABCD 上的射影O 恰好落在折线CE 上.(1)设∠DCE =α,当α为何值时,△PBC 的面积最小?(2)当△PBC 的面积最小时,在线段BC 上是否存在一点F ,使平面PAF ⊥平面POF ,若存在求出BF 的长,若不存在,请说明理由.题型八线线角与动点问题1(2023秋·高二课时练习)如图,在正三棱柱ABC A 1B 1C 1中,所有的棱长均为2,M 是BC 边的中点,则在棱CC 1上是否存在点N ,使得AB 1与MN 所成的夹角为3π4?1.(2023·全国·高二专题练习)如图,在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD是边长为2的正方形,PD=DC,F,G分别是PB,AD的中点.(1)求证:GF⊥平面PCB;(2)在AP上是否存在一点M,使得DM与PC所成角为60°?若存在,求出M点的位置,若不存在,请说明理由.2.(2023·全国·高二假期作业)已知直三棱柱ABC-A1B1C1中,侧面AA1B1B为正方形,AB=BC=2,且AB⊥BC,E,F分别为AC和CC1的中点,D为棱A1B1上的点.(1)证明:BF⊥DE;(2)在棱A1B1上是否存在一点M,使得异面直线MF与AC所成的角为30°?若存在,指出M的位置;若不存在,说明理由.3.(2022秋·辽宁大连·高二大连八中校考阶段练习)如图,C是以AB为直径的圆O上异于A,B的点,平面PAC⊥平面ABC,PA=PC=AC=2,BC=4,E,F分别是PC,PB的中点,记平面AEF与平面ABC的交线为直线l.(1)求证:直线l⊥平面PAC;(2)直线l上是否存在点Q,使直线PQ分别与平面AEF,直线EF所成的角互余?若存在,求出AQ的值;若不存在,请说明理由.题型九线面角与动点问题1(2023秋·广西南宁·高二南宁二中校考开学考试)图①是直角梯形ABCD,AB⎳CD,∠D=90°,四边形ABCE是边长为2的菱形,并且∠BCE=60°,以BE为折痕将△BCE折起,使点C到达C1的位置,且AC1 =6.(1)求证:平面BC1E⊥平面ABED;(2)在棱DC1上是否存在点P,使得点P到平面ABC1的距离为155?若存在,求出直线EP与平面ABC1所成角的正弦值;若不存在,请说明理由.1.(2023秋·高二单元测试)在直角梯形ABCD 中,AD ⎳BC ,BC =2AD =2AB =22,∠ABC =90°,如图①把△ABD 沿BD 翻折,使得平面ABD ⊥平面BCD (如图②).(1)求证:CD ⊥AB ;(2)若点M 为线段BC 的中点,求点M 到平面ACD 的距离;(3)在线段BC 上是否存在点N ,使得AN 与平面ACD 所成的角为60°?若存在,求出BNBC的值;若不存在,请说明理由.2.(2023·全国·高二专题练习)如图,在三棱柱ABC -A 1B 1C 1中,平面ABB 1A 1⊥平面ABC ,AB =BC =2,∠ABC =120°,BB 1=5,且A 1B ⊥AC ,E 是棱AA 1上的一点.(1)求证:A 1B ⊥B 1C 1;(2)是否存在点E ,使得直线CE 与平面BCC 1B 1所成角的正弦值为34256?若存在,求出A 1E EA的值;若不存在,说明理由.3.(2023·全国·高二专题练习)如图所示,等腰梯形ABCD 中,AB ⎳CD ,AD =AB =BC =2,CD =4,E 为CD 中点,AE 与BD 交于点O ,将△ADE 沿AE 折起,使点D 到达点P 的位置(P ∉平面ABCE ).(1)证明:平面POB ⊥平面ABCE ;(2)若PB =6,试判断线段PB 上是否存在一点Q (不含端点),使得直线PC 与平面AEQ 所成角的正弦值为155,若存在,求出PQ OB的值;若不存在,说明理由.4.(2023·全国·高二专题练习)如图,四棱台ABCD -A 1B 1C 1D 1中,上、下底面均是正方形,且侧面是全等的等腰梯形,AB =2A 1B 1=4,E 、F 分别为DC 、BC 的中点,上下底面中心的连线O 1O 垂直于上下底面,且O 1O 与侧棱所在直线所成的角为45°.(1)求证:BD 1∥平面C 1EF ;(2)线段BF 上是否存在点M ,使得直线A 1M 与平面C 1EF 所成的角的正弦值为32222,若存在,求出线段BM 的长;若不存在,请说明理由.5.(2023·全国·高二专题练习)在底面ABCD 为梯形的多面体中.AB ∥CD ,BC ⊥CD ,AB =2CD =22,∠CBD =45°,BC =AE =DE ,且四边形BDEN 为矩形.(1)求证:BD ⊥AE ;(2)线段EN 上是否存在点Q ,使得直线BE 与平面QAD 所成的角为60°?若不存在,请说明理由.若存在,确定点Q 的位置并加以证明.6.(2023·全国·高二专题练习)如图1,在△ABC 中,AB =AC =2,∠BAC =2π3,E 为BC 的中点,F 为AB 上一点,且EF ⊥AB .将△BEF 沿EF 翻折到△B EF 的位置,如图2.(1)当AB =2时,证明:平面B AE ⊥平面ABC ;(2)已知二面角B -EF -A 的大小为π4,棱AC 上是否存在点M ,使得直线B E 与平面B MF 所成角的正弦值为1010?若存在,确定M 的位置;若不存在,请说明理由.面面角与动点问题1(2023·全国·高二专题练习)如图,已知在三棱柱ABC-A1B1C1中,A1B=1,AA1=5,AB=BC=2,∠BAC=30°,平面ABB1A1⊥平面ABC.(1)求AA1与BC所成角的余弦值;(2)在棱AA1上是否存在一点E,使得二面角E-BC-B1的余弦值为-51326?若存在,求出AE AA1的值,若不存在,说明理由.1.(2022秋·高二单元测试)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AD⎳BC,AD⊥CD,且AD=CD=2,BC=22,PA=2.(1)取PC的中点N,求证:DN⎳平面PAB;(2)求直线AC与PD所成角的余弦值.(3)在线段PD上,是否存在一点M,使得平面MAC与平面ACD所成锐二面角的平面角为45°?如果存在,求出BM与平面MAC所成角的大小;如果不存在,请说明理由.2.(2023·全国·高二专题练习)如图所示,在三棱锥P -ABC 中,已知PA ⊥平面ABC ,平面PAB ⊥平面PBC .(1)证明:BC ⊥平面PAB ;(2)若PA =AB =6,BC =3,在线段PC 上(不含端点),是否存在点D ,使得二面角B -AD -C 的余弦值为105,若存在,确定点D 的位置;若不存在,说明理由.3.(2023·全国·高二专题练习)已知在直三棱柱ABC -A 1B 1C 1中,其中AA 1=2AC =4,AB =BC ,F 为BB 1的中点,点E 是CC 1上靠近C 1的四等分点,A 1F 与底面ABC 所成角的余弦值为22.(1)求证:平面AFC ⊥平面A 1EF ;(2)在线段A 1F 上是否存在一点N ,使得平面AFC 与平面NB 1C 1所成的锐二面角的余弦值为277,若存在,确定点N 的位置,若不存在,请说明理由.4.(2023秋·高二单元测试)如图,在三棱柱ABC-A1B1C1中,△AB1C为等边三角形,四边形AA1B1B为菱形,AC⊥BC,AC=4,BC=3.(1)求证:BC⊥平面ACB1;(2)线段CC1上是否存在一点E,使得平面AB1E与平面ABC的夹角的正弦值为154?若存在,求出点E的位置;若不存在,请说明理由.5.(2023·全国·高二专题练习)已知如图1直角梯形ABCD,AB∥CD,∠DAB=90°,AB=4,AD=CD=2,E为AB的中点,沿EC将梯形ABCD折起(如图2),使平面BED⊥平面AECD.(1)证明:BE⊥平面AECD;(2)在线段CD上是否存在点F,使得平面FAB与平面EBC所成的锐二面角的余弦值为23,若存在,求出点F的位置:若不存在,请说明理由.点面、线面距离与动点问题1(2023·全国·高二专题练习)如图,三棱锥P -ABC 的底面是以AC 为底边的等腰直角三角形,且AC =22,各侧棱长均为3.(1)求证:平面PAC ⊥平面ABC ;(2)若点E 为棱PA 的中点,线段CE 上是否存在一点Q ,使得Q 到平面PBC 的距离与Q 到直线AB 的距离之比为14?若存在,求出此时CQ 的长;若不存在,说明理由.1.(2023·全国·高二专题练习)如图,四棱锥P -ABCD 中,底面ABCD 是边长为2的正方形,PB ⊥BC ,PD ⊥CD ,且PA =2,E 为PD 的中点.(1)求证:PA ⊥平面ABCD ;(2)求PC 与平面ACE 所成角的正弦值;(3)在线段BC 上是否存在点F ,使得点E 到平面PAF 的距离为255若存在,确定点F 的位置;若不存在,请说明理由.2.(2023·全国·高二专题练习)已知四棱锥S-ABCD中,底面ABCD为矩形,SA⊥平面ABCD,AD=3AB=3SA=3,点E在棱BC上.(1)若E为BC的中点,求直线SE与平面SCD所成角的正弦值;(2)是否存在一点E,使得点A到平面SDE的距离为355若存在,求出BEEC的值;若不存在,说明理由.3.(2023·全国·高二专题练习)图1是直角梯形ABCD,AB∥CD,∠D=90°,四边形ABCE是边长为4的菱形,并且∠BCE=60°,以BE为折痕将△BCE折起,使点C到达C1的位置,且AC1=26,如图2.(1)求证:平面BC1E⊥平面ABED;(2)在棱DC1上是否存在点P,使得P到平面ABC1的距离为2155?若存在,求出直线EP与平面ABC1所成角的正弦值.4.(2022秋·辽宁鞍山·高二统考期中)如图在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD=2,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD的中点.(1)求证:PO⊥平面ABCD;(2)求二面角C-PD-A的正弦值;(3)线段AD上是否存在Q,使得它到平面PCD的距离为32若存在,求出AQQD的值;若不存在,说明理由.5.(2023·全国·高二专题练习)如图在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD=22,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=4,O为AD的中点.(1)求证:PO⊥平面ABCD;(2)求平面PCD与平面PAD夹角的正弦值;(3)线段AD上是否存在Q,使得它到平面PCD的距离为3?若存在,求出AQQD的值;若不存在,说明理由.点线、线线距离问题1(2023·全国·高二专题练习)已知直三棱柱ABC -A 1B 1C 1中,侧面AA 1B 1B 为正方形.AB =BC =2,E ,F 分别为AC 和CC 1的中点,BF ⊥A 1B 1.(1)求四棱锥E -BB 1C 1F 的体积;(2)是否存在点D 在直线A 1B 1上,使得异面直线BF ,DE 的距离为1?若存在,求出此时线段DE 的长;若不存在,请说明理由.1.(2023春·高二课时练习)如图,在四棱锥P -ABCD 中,底面四边形ABCD 为菱形,E 为棱PD 的中点,O 为边AB 的中点.(1)求证:AE ⎳平面POC ;(2)若侧面PAB ⊥底面ABCD ,且∠ABC =∠PAB =π3,AB =2PA =4;①求PD 与平面POC 所成的角;②在棱PD 上是否存在点F ,使点F 到直线OD 的距离为24221,若存在,求DFDP 的值;若不存在,说明理由.2.(2022秋·高二单元测试)如图所示,在直三棱柱ABC-A1B1C1中,侧面AA1C1C为长方形,AA1=1,AB=BC=2,∠ABC=120°,AM=CM.(1)求证:平面AA1C1C⊥平面C1MB;(2)求直线A1B和平面C1MB所成角的正弦值;(3)在线段A1B上是否存在一点T,使得点T到直线MC1的距离是13T的长,不存在说明3,若存在求A1理由.题型十三面积体积相关问题1(2023·全国·高二假期作业)如图,在△ABC中,O是BC的中点,AB=AC,AO=2OC=2.将△BAO 沿AO折起,使B点移至图中B'点位置.(1)求证:AO⊥平面B OC;(2)当三棱锥B -AOC的体积取最大时,求二面角A-B C-O的余弦值;(3)在(2)的条件下,试问在线段B A上是否存在一点P,使CP与平面B OA所成的角的正弦值为53证明你的结论,并求AP的长.1.(2018春·安徽滁州·高二开学考试)如图,三棱柱ABC-A1B1C1中,底面ABC为正三角形,AA1⊥底面ABC,且AA1=AB=3,D是BC的中点.(1)求证:A1B⎳平面ADC1;(2)求证:平面ADC1⊥平面DCC1;(3)在侧棱CC1上是否存在一点E,使得三棱锥C-ADE的体积是98?若存在,求出CE的长;若不存在,说明理由.2.(2022秋·高二课时练习)在空间直角坐标系中,已知A(3,0,1)和B(1,0,-3),试问:(1)在y轴上是否存在点M,满足MA?=MB(2)在y轴上是否存在点N,使△NAB为等边三角形?若存在,试求出点N的坐标.3.(2022·高二课时练习)如图:圆锥底面半径为1,高为3.(1)求圆锥内接圆柱(一底面在圆锥底面上,另一底面切于圆锥侧面)侧面积的最大值;(2)圆锥内接圆柱的表面积是否存在最大值?若存在,请求出最大值;若不存在,请说明理由.4.(2022秋·全国·高二期中)已知椭圆Γ:x 2a 2+y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1(-1,0),F 2(1,0).经过点F 1且倾斜角为θ0<θ<π2的直线l 与椭圆Γ交于A ,B 两点(其中点A 在x 轴上方),△ABF 2的周长为8.(1)求椭圆Γ的标准方程;(2)如图,将平面xOy 沿x 轴折叠,使y 轴正半轴和x 轴所确定的半平面(平面AF 1F 2)与y 轴负半轴和x 轴所确定的半平面(平面BF 1F 2)互相垂直.①若θ=π3,求异面直线AF 1和BF 2所成角的余弦值;②是否存在θ0<θ<π2 ,使得折叠后△ABF 2的周长为152?若存在,求tan θ的值;若不存在,说明理由.三角形形状问题1(2021·高二单元测试)在直三棱柱ABC-A1B1C1中,|AC|=2,CB=4,M,N分别是C1B1,=CC1CB的中点,如图建立空间直角坐标系.(1)在四边形ABB1A1(包含边界)内找一点P,使△ABP为等边三角形.(2)在线段MN上是否存在一点Q,使△AQB是以AB为斜边的直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.1.(2023·全国·高二假期作业)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,DE⊥平面ABCD,底面ABCD为矩形,点F在棱PD上,且P与E位于平面ABCD的两侧.(1)证明:CE∥平面PAB;(2)若PA=AD=5,AB=2,DE=3,试问在线段PD上是否存在点F,使得△ACF与△ACE的面积相等?若存在,求F到AD的距离;若不存在,说明理由.。
高二数学复习考点知识与题型专题讲解1.4.1用空间向量研究直线、平面的位置关系【考点梳理】考点一:空间中点、直线和平面的向量表示1.空间中点的位置向量如图,在空间中,我们取一定点O作为基点,那么空间中任意一点P就可以用向量OP→来表示.我们把向量OP→称为点P的位置向量.2.空间中直线的向量表示式直线l的方向向量为a,且过点A.如图,取定空间中的任意一点O,可以得到点P在直线l上的充要条件是存在实数t,使OP→=OA→+t a,①把AB→=a代入①式得OP→=OA→+tAB→,②①式和②式都称为空间直线的向量表示式.3.空间中平面的向量表示式平面ABC的向量表示式:空间一点P位于平面ABC内的充要条件是存在实数x,y,使OP→=OA→+xAB→+yAC→.我们称为空间平面ABC的向量表示式.考点二空间中平面的法向量平面的法向量如图,若直线l⊥α,取直线l的方向向量a,我们称a为平面α的法向量;过点A且以a为法向量的平面完全确定,可以表示为集合 {P|a·AP→=0}.考点三:空间中直线、平面的平行1.线线平行的向量表示设u1,u2分别是直线l1,l2的方向向量,则l∥l2⇔u1∥u2⇔∃λ∈R,使得u1=λu2.12.线面平行的向量表示设u是直线l的方向向量,n是平面α的法向量,l⊄α,则l∥α⇔u⊥n⇔u·n=0.面面平行的向量表示设n1,n2分别是平面α,β的法向量,则α∥β⇔n∥n2⇔∃λ∈R,使得n1=λn2 .1考点四:空间中直线、平面的垂直1.线线垂直的向量表示设u1,u2分别是直线l1 , l2的方向向量,则l⊥l2⇔u1⊥u2⇔u1·u2=0.12. 线面垂直的向量表示设u 是直线 l 的方向向量,n 是平面α的法向量, l ⊄α,则l ⊥α⇔u ∥n ⇔∃λ∈R ,使得u =λn .知识点三 面面垂直的向量表示设n 1,n 2 分别是平面α,β的法向量,则α⊥β⇔n 1⊥n 2⇔n 1·n 2=0.【题型归纳】题型一:平面的法向量的求法1.(2021·江西·景德镇一中高二期中(理))已知直线l 过点(1,0,1)P -,平行于向量(211)S =,,,平面π经过直线l 和点(1,2,3)A ,则平面π的一个法向量n 的坐标为( )A .1212⎛⎫- ⎪⎝⎭,,B .1122⎛⎫- ⎪⎝⎭,,C .(1,0,2)-D .(120)-,, 2.(2021·山西·太原市第六十六中学校高二期中)已知平面α经过点(1,1,1)A 和(1,1,)B z -,(1,0,1)n =-是平面α的法向量,则实数z =( )A .3B .1-C .2-D .3-3.(2021·全国·高二课时练习)如图,四棱柱1111ABCD A B C D -的底面ABCD 是正方形,O 为底面中心,1A O ⊥平面ABCD ,1AB AA =1OCB 的法向量(),,n x y z =为( )A .()0,1,1B .()1,1,1-C .()1,0,1-D .()1,1,1--题型二:空间中点、直线和平面的向量表示4.(2021·全国·高二专题练习)已知点P 是平行四边形ABCD 所在的平面外一点,如果()2,1,4AB =--,(4,2,0)AD =,(1,2,1)AP =--.对于结论:①||6AD =;②AP AD ⊥;③AP 是平面ABCD 的法向量;④AP//BD .其中正确的是( ) A .②④B .②③C .①③D .①②5.(2022·全国·高二)已知平面α内有一点A (2,-1,2),它的一个法向量为(3,1,2)n =,则下列点P 中,在平面α内的是( ) A .(1,-1,1)B .(1,3,32)C .(1,-3,32)D .(-1,3,-32)6.(2022·四川·棠湖中学高二)对于空间任意一点O 和不共线的三点A ,B ,C ,且有(,,)OP xOA yOB zOC x y z R =++∈,则2x =,3y =-,2z =是P ,A ,B ,C 四点共面的( ) A .必要不充分条件B .充分不必要条件 C .充要条件D .既不充分又不必要条件7.(2022·福建·高二学业考试)如图,在长方体体1111ABCD A B C D -中,,E F 分别是棱111,BB B C 的中点,以下说法正确的是( )A .1A E 平面11CC D DB .1A E ⊥平面11BCC B C .11A ED F ∥D .11AE DF ⊥8.(2022·山东淄博·高二期末)在空间直角坐标系Oxyz 中,平面α的法向量为()1,1,1n =,直线l 的方向向量为m ,则下列说法正确的是( )A .若11,,122m ⎛⎫=-- ⎪⎝⎭,则//l αB .若()1,0,1m =-,则l α⊥C .平面α与所有坐标轴相交D .原点O 一定不在平面α内9.(2022·安徽宣城·高二期末)如图已知正方体1111ABCD A B C D -,点M 是对角线1AC 上的一点且1AM AC λ=,()0,1λ∈,则( )A .当12λ=时,1AC ⊥平面1A DMB .当12λ=时,//DM 平面11CB D C .当1A DM 为直角三角形时,13λ=D .当1A DM 的面积最小时,13λ=10.(2021·湖北黄冈·高二期中)已知1v 、2v 分别为直线1l 、2l 的方向向量(1l 、2l 不重合),1n ,2n 分别为平面α,β的法向量(α,β不重合),则下列说法中不正确的是( )A .1212v v l l ⇔∥∥;B .111v n l α⊥⇔∥;C .12n n αβ⊥⇔⊥D .12n n αβ⇔∥∥11.(2021·安徽·高二期中)给出以下命题,其中正确的是( ) A .直线l 的方向向量为()1,1,2a =-,直线m 的方向向量为()2,1,1b =-,则l 与m 垂直 B .直线l 的方向向量为()0,1,1a =-,平面α的法向量为()1,1,1n =,则l α⊥ C .平面α、β的法向量分别为()10,1,3=n ,()21,0,2=n ,则αβ∥D .平面α经过三个点()1,0,1A -,()0,1,0B -,()1,2,0C -,向量()1,,n p q =是平面α的法向量,则53p q +=12.(2022·全国·高二课时练习)若空间两直线1l 与2l 的方向向量分别为()123,,a a a a =和()123,,b b b b =,则两直线1l 与2l 垂直的充要条件为( )A .11a b λ=,22a b λ=,33a b λ=(R λ∈)B .存在实数k ,使得a kb =C .1122330a b a b a b ++=D .a b a b ⋅=±⋅题型五:空间向量研究直线、平面的位置综合问题13.(2022·全国·高二课时练习)在棱长为1的正方体1111ABCD A B C D -中,E 为1CC 的中点,P 、Q 是正方体表面上相异两点.若P 、Q 均在平面1111D C B A 上,满足1BP A E ⊥,1BQ A E ⊥.(1)判断PQ 与BD 的位置关系; (2)求1A P 的最小值.14.(2022·福建宁德·高二期中)如图,在四棱锥P ABCD -中,底面ABCD 为直角梯形,其中AD BC ∥.,3,2,AD AB AD AB BC PA ⊥===⊥平面ABCD ,且3PA =,点M 在棱PD 上,点N 为BC 中点.(1)若2DM MP =,证明:直线//MN 平面PAB :(2)线段PD 上是否存在点M ,使NM 与平面PCD 6PM PD 值;若不存在,说明理由15.(2022·江苏·沛县教师发展中心高二期中)如图,在正四棱柱1111ABCD A B C D -中,122AA AB ==,E ,F 分别为棱1AA ,1CC 的中点,G 为棱1DD 上的动点.(1)求证:B ,E ,1D ,F 四点共面;(2)是否存在点G ,使得平面GEF ⊥平面BEF ?若存在,求出DG 的长度;若不存在,说明理由.【双基达标】一、单选题16.(2022·四川省成都市新都一中高二期中(理))在直三棱柱ABC A B C '''-中,底面是以B 为直角项点,边长为1的等腰直角三角形,若在棱CC '上有唯一的一点E 使得A E EB '⊥,那么BB '=( )A .1B .2C .12D .1317.(2022·江苏·滨海县五汛中学高二期中)已知平面α的法向量为(342)n =-,,,(342)AB =--,,,则直线AB 与平面α的位置关系为( )A .AB α∥B .AB α⊥C .AB α⊂D .AB α⊂或AB α∥18.(2022·广东·广州奥林匹克中学高二阶段练习)如图,在正四棱柱1111ABCD A B C D -中,O 是底面ABCD 的中心,,E F 分别是11,BB DD 的中点,则下列结论正确的是( )A .1A O //EFB .1A O EF ⊥C .1A O //平面1EFBD .1A O ⊥平面1EFB 19.(2022·全国·高二)有以下命题: ①一个平面的单位法向量是唯一的②一条直线的方向向量和一个平面的法向量平行,则这条直线和这个平面平行 ③若两个平面的法向量不平行,则这两个平面相交④若一条直线的方向向量垂直于一个平面内两条直线的方向向量,则直线和平面垂直 其中真命题的个数有( ) A .1个B .2个C .3个D .4个20.(2022·全国·高二课时练习)如图,在空间直角坐标系中,有正方体ABCD A B C D ''''-,给出下列结论:①直线DD '的一个方向向量为1(0,0,1)v =;②直线BC '的一个方向向量为2(0,1,1)v =; ③平面ABB A ''的一个法向量为1(0,1,0)n =;④平面B CD '的一个法向量为2(1,1,1)n =.其中正确的个数为( ). A .1B .2C .3D .421.(2022·全国·高二)已知直线1l 经过点1(1,2,3)P -,平行于向量1(1,1,2)s =-,直线2l 经过点2(1,2,0)P -,平行于向量2(0,1,1)s =,求与两直线1l ,2l 都平行的平面α的一个法向量的坐标.22.(2022·全国·高二)如图所示,已知矩形ABCD 和矩形ADEF 所在的平面互相垂直,点M ,N 分别在对角线BD ,AE 上,且13BM BD =,13AN AE =.(1)求证:MN AD ⊥;(2)若1CD DE ==,求MN 的长.【高分突破】一:单选题23.(2022·江苏·盐城市伍佑中学高二阶段练习)若直线l 的一个方向向量为()1,2,1a =--,平面α的一个法向量为()2,4,2b =-,则( )A .l α⊂B .//l αC .l α⊥D .//l α或l α⊂24.(2022·江苏苏州·高二期末)已知平面α的一个法向量为n =(2,-2,4), AB =(-1,1,-2),则AB 所在直线l 与平面α的位置关系为( ) A .l ⊥αB .l α⊂C .l 与α相交但不垂直D .l ∥α25.(2021·全国·高二如图,在三棱锥P ABC -中,PA ⊥平面ABC ,90ABC ∠=,60BAC ∠=,2PA AB ==.以点B 为原点,分别以BC ,BA ,AP 的方向为x ,y ,z 轴的正方向,建立空间直角坐标系,设平面PAB 和平面PBC 的法向量分别为m 和n ,则下面选项中正确的是( ).A .点P 的坐标为()0,0,2-B .()4,0,2PC =- C .n 可能为()0,2,2-D .cos ,0m n >26.(2021·云南·巍山彝族回族自治县第二中学高二)设α,β是不重合的两个平面,α,β的法向量分别为1n ,2n ,l 和m 是不重合的两条直线,l ,m 的方向向量分别为1e ,2e ,那么αβ∥的一个充分条件是( )A .l α⊂,m β⊂,且11e n ⊥,22e n ⊥B .l α⊂,m β⊂,且12e e ∥C .11e n ∥,22e n ∥,且12e e ∥D .11e n ⊥,22e n ⊥,且12e e ∥27.(2021·浙江金华第一中学高二期中)平面四边形ABEF 和四边形CDFE 都是边长为1的正方形,且平面ABEF ⊥CDFE ,点G 为线段AF 的中点,点P ,Q 分别为线段BE 和CE 上的动点(不包括端点).若GQ DP ⊥,则线段PQ 的长度的取值范围为( )A .⎡⎣B .⎣C .⎣D .⎣⎭ 28.(2021·湖北·武汉市第十四中学高二阶段练习)设a ,b 是两条直线,a ,b 分别为直线a ,b 的方向向量,α,β是两个平面,且a α⊥,b β⊥,则“αβ⊥”是“a b ⊥”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件29.(2021·河南·高二阶段练习(理))给出下列命题:①直线l 的方向向量为()1,1,2a =-,直线m 的方向向量为12,1,2⎛⎫=- ⎪⎝⎭b ,则l m ⊥②直线l 的方向向量为()0,1,1a =-,平面α的法向量为()1,1,1n =--,则l α⊥. ③平面,αβ的法向量分别为()()120,1,310,,,2n n ==,则//αβ.④平面α经过三点A (1,0,-1),B (0,1,0),C (-1,2,0),向量()1,,=n u t 是平面α的法向量,则u +t =1.其中真命题的序号是( )A .②③B .①④C .③④D .①②30.(2021·安徽省五河第一中学高二阶段练习)已知点(2A ,1-,2)在平面α内,(3n =,1,2)是平面α的一个法向量,则下列点P 中,在平面α内的是( ) A .(1P ,1-,1)B .P 31,3,2⎛⎫⎪⎝⎭C .31,3,2P ⎛⎫- ⎪⎝⎭D .31,3,4P ⎛⎫-- ⎪⎝⎭31.(2021·北京·汇文中学高二期中)若,αβ表示不同的平面,平面α的一个法向量为1(1,2,1)v =,平面β的一个法向量为2(2,4,2)v =---,则平面α与平面β( )A .平行B .垂直C .相交D .不确定32.(2021·重庆市第十一中学校高二期中)已知直线l 的方向向量是(3,2,1)a =-,平面α的法向量是1,2(,)1n =-,则l 与α的位置关系是( ) A .l α⊥B .//l αC .//l α或l α⊂D .l 与α相交但不垂直 二、多选题(共0分)33.(2022·浙江省长兴中学高二期末)直三棱柱111ABC A B C -中,1,,,,CA CB CA CB CC D E M ⊥==分别为11B C ,11,CC AB 的中点,点N 是棱AC 上一动点,则( )A .对于棱AC 上任意点N ,有1MN BC ⊥B .棱AC 上存在点N ,使得MN ⊥面1BC NC .对于棱AC 上任意点N ,有MN 面1A DED .棱AC 上存在点N ,使得MN DE ∥34.(2022·江苏·涟水县第一中学高二阶段练习)在长方体1111ABCD A B C D -中,1AB AD ==,12AA =,动点P 在体对角线1BD 上(含端点),则下列结论正确的有( )A .顶点B 到平面APC 2.存在点P ,使得1BD ⊥平面APC C .AP PC +30.当P 为1BD 中点时,APC ∠为钝角35.(2022·江苏·连云港高中高二期中)给出下列命题,其中是真命题的是( )A .若直线l 的方向向量()1,1,2a =-,直线m 的方向向量12,1,2⎛⎫=- ⎪⎝⎭b ,则l 与m 垂直B .若直线l 的方向向量()0,1,1a =-,平面α的法向量()1,1,1n =--,则l α⊥C .若平面α,β的法向量分别为()10,1,3=n ,()21,0,2=n ,则αβ⊥D .若存在实数,,x y 使,=+MP xMA yMB 则点,,,P M A B 共面36.(2022·福建宁德·高二期中)如图,在平行六面体1111ABCD A B C D -中,1160DAB DAA BAA ∠∠∠===,1AB AD AA ==,点M ,N 分别是棱1111,D C C B 的中点,则下列说法中正确的有( )A .1MN AC ⊥B .向量1,,AN BC BB 共面 C .1CA ⊥平面1C BDD .若AB =1637.(2022·江苏常州·高二期中)下列命题是真命题的有( ) A .A ,B ,M ,N 是空间四点,若,,BA BM BN 不能构成空间的一个基底,那么A ,B ,M ,N 共面B .直线l 的方向向量为()1,1,2a =-,直线m 的方向向量为12,1,2b ⎛⎫=- ⎪⎝⎭,则l 与m 垂直C .直线l 的方向向量为()0,1,1a =-,平面α的法向量为()1,1,1n =--,则l ⊥αD .平面α经过三点(1,0,1),(0,1,0),(1,2,0),(1,,)A B C n u t --=是平面α的法向量,则1u t += 38.(2022·江苏宿迁·高二期中)给定下列命题,其中正确的命题是( ) A .若n 是平面α的法向量,且向量a 是平面α内的直线l 的方向向量,则0a n ⋅= B .若1n ,2n 分别是不重合的两平面,αβ的法向量,则12//0n n αβ⇔⋅= C .若1n ,2n 分别是不重合的两平面,αβ的法向量,则1212//n n n n αβ⇔⋅=⋅ D .若两个平面的法向量不垂直,则这两个平面一定不垂直39.(2022·江苏常州·高二期中)如图,在边长为a 的正方体1111ABCD A B C D -中,点P 在线段1B C 上运动,则下列结论正确的是( )A .1BD AP ⊥B .AP PB +26+ C .异面直线AP 与1A D 23D .11APB C PD ∠=∠40.(2022·全国·高二课时练习)给定下列命题,其中正确的命题是( ) A .若1n ,2n 分别是平面α,β的法向量,则12n n αβ⇔∥∥ B .若1n ,2n 分别是平面α,β的法向量,则120n n αβ⇔⋅=∥C .若n 是平面α的法向量,且向量a 是平面α内的直线l 的方向向量,则0a n ⋅=D .若两个平面的法向量不垂直,则这两个平面一定不垂直 三、填空题41.(2022·江苏·淮安市淮安区教师发展中心学科研训处高二期中)已知平面,ABC (1,2,3),(4,5,6)AB AC ==,写出平面ABC 的一个法向量n =______.42.(2022·四川省成都市新都一中高二期中(理))若直线l 的一个方向向量为()1,2,1a =-,平面a 的一个法向量为()1,2,1b =--,则直线l 与平面α的位置关系是______. 43.(2022·全国·高二课时练习)已知1v 、2v 分别为不重合的两直线1l 、2l 的方向向量,1n、2n 分别为不重合的两平面α、β的法向量,则下列所有正确结论的序号是___________. ①2121////v v l l ⇔;②2121v l l v ⊥⇔⊥;③12////n n αβ⇔;④12n n αβ⊥⇔⊥.44.(2022·四川成都·高二期中(理))如图,已知棱长为2的正方体A ′B ′C ′D ′-ABCD ,M 是正方形BB ′C ′C 的中心,P 是△A ′C ′D 内(包括边界)的动点,满足PM =PD ,则点P 的轨迹长度为______.45.(2022·全国·高二课时练习)向量,,i j k 分别代表空间直角坐标系与,,x y z 轴同方向的单位向量,若45a i j k =-+,44b mi j k =+-,若a 与b 垂直,则实数m =______. 46.(2022·全国·高二课时练习)放置于空间直角坐标系中的棱长为2的正四面体ABCD 中,H 是底面中心,DH ⊥平面ABC ,写出:(1)直线BC 的一个方向向量___________; (2)点OD 的一个方向向量___________; (3)平面BHD 的一个法向量___________;(4)DBC △的重心坐标___________.47.(2022·上海·格致中学高二期末)已知向量()1,2,a m m =+是直线l 的一个方向向量,向量()1,,2n m =是平面α的一个法向量,若直线l ⊥平面α,则实数m 的值为______. 48.(2021·河北省盐山中学高二阶段练习)已知P 是ABCD 所在的平面外一点,()2,1,4AB =--,()4,2,0AD =,()1,2,1AP =--,给出下列结论:①AP AB ⊥; ②AP AD ⊥;③AP 是平面ABCD 的一个法向量;④AP//BD ,其中正确结论的个数是__________. 四、解答题49.(2022·全国·高二)如图所示,在棱长为1的正方体1111OABC O A B C -,中,E 、F 分别是棱AB 、BC 上的动点,且AE BF x ==,其中01x ≤≤,以O 为原点建立空间直角坐标系O xyz -.(1)求证:11A F C E ⊥;(2)若1A 、E 、F 、1C 四点共面,求证:111112A F AC A E =+.50.(2022·全国·高二)如图,在四棱锥S ABCD -中,底面ABCD 为正方形,侧棱SD ⊥底面ABCD ,E 、F 、G 分别为AB 、SC 、SD 的中点.若AB a ,SD b =.(1)求EF ; (2)求cos ,AG BC ; (3)判断四边形AEFG 的形状.51.(2022·湖南·高二)如图,在长方体1111ABCD A B C D -中,2AB =,6AD =,13AA =,建立适当的空间直角坐标系,求下列平面的一个法向量:(1)平面ABCD ; (2)平面11ACC A ; (3)平面1ACD .52.(2022·全国·高二课时练习)如图,在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥平面ABC D .(1)分别指出平面PAD 、平面PAB 的一个法向量;(2)若AB AD AP ==,试在图中作出平面PDC 的一个法向量; (3)PBD △是否有可能是直角三角形?(4)根据法向量判断平面PBC 与平面PDC 是否有可能垂直.53.(2022·浙江绍兴·高二期末)正四棱柱1111ABCD A B C D -的底面边长为2,侧棱长为4.E 为棱1AA 上的动点,F 为棱1CC 的中点.(1)证明:1EC BD ⊥;(2)若E 为棱1AA 上的中点,求直线BE 到平面11B D F 的距离.【答案详解】1.A 【解析】 【分析】设法向量(),,n x y z =,利用空间向量的数量积即可求解. 【详解】由题意可得()0,2,4AP =--,设经过直线l 和点A 平面的法向量为(),,n x y z =,则24020n AP y z n s x y z ⎧⋅=--=⎨⋅=++=⎩,令1x =,则4,2y z =-= , 所以()1,4,2n =-,所以经过直线l 和点A 平面的法向量为()(),4,2,0t t t t R t -∈≠. 故选:A 2.B 【解析】 【分析】由(1,0,1)n =-是平面α的法向量,可得0AB n ⋅=,即可得出答案. 【详解】解:()2,0,1AB z =--,因为(1,0,1)n =-是平面α的法向量, 所以0AB n ⋅=,即()210z ---=,解得1z =-. 故选:B. 3.C 【解析】 【分析】根据空间直角坐标系写出各向量,利用法向量的性质可得解. 【详解】ABCD 是正方形,且AB1AO OC ∴==,11OA ∴=,()0,1,0A ∴-,()1,0,0B ,()0,1,0C ,()10,0,1A ,()1,1,0AB ∴=,()0,1,0OC =,又()111,1,0A B AB ==,()11,1,1B ∴,()11,1,1OB =,平面1OCB 的法向量为(),,n x y z =,则00y x y z =⎧⎨++=⎩,得0y =,x z =-,结合选项,可得()1,0,1n =-, 故选:C. 4.B 【解析】 【分析】求出||25AD = 0AP AD ⋅=判断②正确;由AP AB ⊥,AP AD ⊥判断③正确;假设存在λ使得λ=AP BD ,由122314λλλ-=⎧⎪=⎨⎪-=⎩无解,判断④不正确.【详解】由(2AB =,1-,4)-,(4AD =,2,0),(1AP =-,2,1)-,知:在①中,||166AD ==≠,故①不正确;在②中,4400AP AD ⋅=-++=,∴⊥AP AD ,AP AD ∴⊥,故②正确;在③中,2240AP AB ⋅=--+=, AP AB ∴⊥,又因为AP AD ⊥,AB AD A ⋂=,知AP 是平面ABCD 的法向量,故③正确;在④中,(2BD AD AB =-=,3,4),假设存在λ使得λ=AP BD ,则122314λλλ-=⎧⎪=⎨⎪-=⎩,无解,故④不正确;综上可得:②③正确. 故选:B . 【点睛】本题考查命题真假的判断,考查空间向量垂直、向量平行等基础知识,考查了平面的法向量以及空间向量的模,考查推理能力与计算能力,属于基础题. 5.B 【解析】 【分析】要判断点P 是否在平面内,只需判断向量PA 与平面的法向量n 是否垂直,即判断PA n 是否为0即可.【详解】对于选项A ,(1,0,1)PA =,则(1,0,1)(3,1,2)50==≠PA n ,故排除A ; 对于选项B ,1(1,-4,)2=PA ,则1(1,4,)(3,1,2)34102=-=-+=PA n对于选项C ,1(1,2,)2=PA ,则1(1,2,)(3,1,2)3+21602==+=≠PA n ,故排除C ;对于选项D ,7(3,-4,)2=PA ,则7(3,4,)(3,1,2)9471202=-=-+=≠PA n ,故排除D ; 故选:B 6.B 【解析】 【分析】利用空间中共面定理:空间任意一点O 和不共线的三点A ,B ,C ,且(),,OP xOA yOB zOC x y z R =++∈,得P ,A ,B ,C 四点共面等价于1x y z ++=,然后分充分性和必要性进行讨论即可. 【详解】解:空间任意一点O 和不共线的三点A ,B ,C ,且(),,OP xOA yOB zOC x y z R =++∈ 则P ,A ,B ,C 四点共面等价于1x y z ++=若2x =,3y =-,2z =,则1x y z ++=,所以P ,A ,B ,C 四点共面 若P ,A ,B ,C 四点共面,则1x y z ++=,不能得到2x =,3y =-,2z = 所以2x =,3y =-,2z =是P ,A ,B ,C 四点共面的充分不必要条件 故选B. 【点睛】本题考查了空间中四点共面定理,充分必要性的判断,属于基础题.7.A 【解析】 【分析】对A :由平面11ABB A 平面11CC D D ,然后根据面面平行的性质定理即可判断;对B :若1A E ⊥平面11BCC B ,则1A E ⊥1BB ,这与1A E 和1BB 不垂直相矛盾,从而即可判断; 对C 、D :以D 为坐标原点,建立空间直角坐标系,由1A E 与1D F 不是共线向量,且2110A E D F b ⋅=>,从而即可判断.【详解】解:对A :由长方体的性质有平面11ABB A 平面11CC D D ,又1A E ⊂平面11ABB A ,所以1A E 平面11CC D D ,故选项A 正确;对B :因为E 为棱1BB 的中点,且111A B BB ⊥,所以1A E 与1BB 不垂直,所以若1A E ⊥平面11BCC B ,则1A E ⊥1BB ,这与1A E 和1BB 不垂直相矛盾,故选项B 错误; 对C 、D :以D 为坐标原点,建立如图所示的空间直角坐标系,设1,,DA a DC b DD c ===,则()1,0,A a c =,,,2c E a b ⎛⎫⎪⎝⎭,()10,0,D c ,,,2a Fbc ⎛⎫ ⎪⎝⎭,所以10,,2cA E b ⎛⎫=- ⎪⎝⎭,1,,02aD F b ⎛⎫= ⎪⎝⎭,因为1A E 与1D F 不是共线向量,且2110A E D F b ⋅=>,所以1A E 与1D F 不平行,且1A E 与1D F 不垂直,故选项C 、D 错误. 故选:A. 8.C 【解析】 【分析】根据空间位置关系的向量方法依次讨论各选项即可得答案. 【详解】解:对于A 选项,111022m n ⋅=--+=,所以m n ⊥,故//l α或l α⊂,故A 选项错误; 对于B 选项,1010m n ⋅=+-=,所以m n ⊥,故//l α或l α⊂,故B 选项错误;对于C 选项,由于法向量的横、纵、竖坐标均不取零,故平面不与坐标轴确定的平面平行,所以平面α与所有坐标轴相交,故正确;对于D 选项,由法向量不能确定平面的具体位置,故不能确定原点O 与平面α关系,故错误. 故选:C 9.D 【解析】 【分析】建立空间直角坐标系,利用空间向量法一一计算可得; 【详解】解:由题可知,如图令正方体的棱长为1,建立空间直角坐标系,则()11,0,0A ,()1,0,1A ,()10,1,0C ,()0,0,1D ,()10,0,0D ,()11,1,0B ,()0,1,1C ,所以()11,1,1AC =--,因为1AM AC λ=,所以()1,,1M λλλ-+-+,所以()1,,1A M λλλ=--+,()1,,DM λλλ=-+-,()11,0,1CB =-,()10,1,1D C =,设平面11CB D 的法向量为(),,n x y z =,则1100CB n x z D C n y z ⎧⋅=-=⎪⎨⋅=+=⎪⎩,令1x =,则1z =,1y =-,所以()1,1,1n =-对于A :若1AC ⊥平面1A DM ,则11AC A M ⊥,则()()11110AC A M λλλ⋅=++-⨯-+=,解得13λ=,故A 错误;对于B :若//DM 平面11CB D ,则DM n ⊥,即10DM n λλλ⋅=-+--=,解得13λ=,故B 错误;当1A DM 为直角三角形时,有1MD MA ⊥,即()()()21110A M DM λλλλλ⋅=--+++--+=,解得23λ=或0λ=(舍去),故C 错误;设M 到1DA 的距离为k ,则22221111323()2236k DM λλλ=-=-+=-+,∴当1A DM 的面积最小时,13λ=,故D 正确.故选:D .10.B 【解析】 【分析】按照方向向量和法向量在线面关系中的应用直接判断即可. 【详解】A 选项:因为1l 、2l 不重合,所以1212v v l l ⇔∥∥,A 正确;B 选项:111v n l α⊥⇔∥或1l α⊂,B 错误;C 选项:12n n αβ⊥⇔⊥,C 正确;D 选项:因为α,β不重合,所以12n n αβ⇔∥∥,D 正确. 故选:B. 11.D 【解析】 【分析】判断直线的方向向量和平面的法向量间的关系,判断线线,线面,面面的位置关系,即可判断选项. 【详解】对于A ,因为21210a b ⋅=--=-≠,所以l 与m 不垂直,A 错误; 对于B ,因为110a n ⋅=-+=,l α⊥不成立,所以B 错误; 对于C ,因为1n 与2n 不平行,所以αβ∥不成立,C 错误;对于D ,()1,1,1AB =--,()1,3,0BC =-,由10n AB p q ⋅=--+=,130n BC p ⋅=-+=,解得13p =,43q =,所以53p q +=,D 正确. 故选:D. 12.C 【解析】 【分析】由空间直线垂直时方向向量0a b ⋅=,即可确定充要条件. 【详解】由空间直线垂直的判定知:1122330a b a b a b a b ⋅=++=. 当1122330a b a b a b ++=时,即0a b ⋅=,两直线1l 与2l 垂直. 而A 、B 、D 说明1l 与2l 平行. 故选:C13.(1)PQ 与BD 的位置关系是平行【解析】 【分析】(1)建立空间直角坐标系,利用空间向量判断PQ 与BD 的位置关系;(2)用含参数的表达式求出1A P ,进而求出最小值. (1)以D 为原点,以射线DA ,DC ,1DD 分别为x ,y ,z 轴的正向建立空间直角坐标系,()11,0,1A ,10,1,2⎛⎫ ⎪⎝⎭E ,()1,1,0B .因为P 、Q 均在平面1111D C B A 上,所以设(),,1P a b ,(),,1Q m n ,则111,1,2A E ⎛⎫=-- ⎪⎝⎭,()1,1,1BP a b =--,()1,1,1BQ m n =--. 因为1BP A E ⊥,1BQ A E ⊥,所以()()()()111110,21110,2BP A E a b BQ A E m n ⎧⋅=--+--=⎪⎪⎨⎪⋅=--+--=⎪⎩解得:1,21.2b a n m ⎧-=⎪⎪⎨⎪-=⎪⎩所以(),,0PQ n b n b =--,()1,1,0BD =--,即()PQ b n BD =-,PQ BD ,所以PQ 与BD 的位置关系是平行.(2)由(1)可知:12b a -=,()11,,0A P a b =-,所以()101A P a a ===≤≤.当14a =时,1A P 有最小值,最小值为. 14.(1)证明见解析(2)不存在,理由见解析【解析】【分析】(1)以点A 为坐标原点,以AB 为x 轴,AD 为y 轴,AP 为z 轴建立空间直角坐标系,用向量法证明;(2)利用向量法计算,判断出点M 不存在.(1)如图所示,以点A 为坐标原点,以AB 为x 轴,AD 为y 轴,AP 为z 轴建立空间直角坐标系,则(0,0,3),(2,0,0),(0,3,0),(2,2,0),(2,1,0)P B D C N若2DM MP =,则(0,1,2)M ,(2,0,2)MN =-因为PA ⊥平面ABCD ,所以AD PA ⊥又因为,AD AB PA AB A ⊥⋂=所以AD ⊥平面PAB平面PAB 的其中一个法向量为(0,3,0)AD =所以0MN AD ⋅=,即AD MN ⊥又因为MN ⊄平面PAB所以//MN 平面PAB(2)不存在符合题意的点M ,理由如下:(0,3,3),(2,1,0),(2,2,0),PD CD DN =-=-=-设平面PCD 的法向量()1111,,n x y z =则111133020PD n y z CD n x y ⎧⋅=-=⎪⎨⋅=-+=⎪⎩ 不妨令11x =,则1(1,2,2)n = 设PM PDλ=,即,[0,1]PM PD λλ=∈(0,3,3)PM λλ=-则0,3,(3)3M λλ- 12(2,13,33),sin cos ,1MN MN n λλθ=--==+==解得53λ=或13λ=-,不满足[0,1]λ∈,故不存在符合题意的点M .15.(1)证明见解析(2)存在,12【解析】【分析】(1)连接1D E ,1D F ,取1BB 的中点为M ,连接1MC ,ME ,根据E 为1AA 的中点, F 为1BB 的中点,分别得到11//D E MC ,1//BF MC ,从而有1//BF D E ,再由平面的基本性质证明;(2)以D 为坐标原点,DA ,DC ,1DD 分别为x 轴,y 轴,z 轴建立空间直角坐标系,假设存在满足题意的点G ,设()0,0,G t ,分别求得平面BEF 的一个法向量()1111,,x n y z =和平面GEF 的一个法向量()2222,,n x y z =,根据平面GEF ⊥平面BEF ,由120n n ⋅=求解.(1)证明:如图所示:连接1D E ,1D F ,取1BB 的中点为M ,连接1MC ,ME ,因为E 为1AA 的中点,所以1111////EM A B C D ,且1111EM A B C D ==,所以四边形11EMC D 为平行四边形,所以11//D E MC ,又因为F 为1BB 的中点,所以1//BM C F ,且1BM C F =,所以四边形1BMC F 为平行四边形,所以1//BF MC ,所以1//BF D E ,所以B ,E ,1D ,F 四点共面;(2)以D 为坐标原点,DA ,DC ,1DD 分别为x 轴,y 轴,z 轴建立空间直角坐标系,假设存在满足题意的点G ,设()0,0,G t ,由已知()1,1,0B ,()1,0,1E ,()0,1,1F , 则()1,1,0EF =-,()0,1,1EB =-,()1,0,1EG t =--,设平面BEF 的一个法向量为()1111,,x n y z =,则1100n EF n EB ⎧⋅=⎪⎨⋅=⎪⎩,即111100x y y z -+=⎧⎨-=⎩, 取11x =,则()11,1,1n =;设平面GEF 的一个法向量为()2222,,n x y z =,则2200n EF n EG ⎧⋅=⎪⎨⋅=⎪⎩,即()1222010x y x t z -+=⎧⎨-+-=⎩, 取21x t =-,则()21,1,1n t t =--;因为平面GEF ⊥平面BEF ,所以120n n ⋅=,所以1110t t -+-+=, 所以12t =.所以存在满足题意的点G ,使得平面GEF ⊥平面BEF ,DG 的长度为12.【解析】【分析】建立空间直角坐标系,设出()0BB m m '=>,根据垂直和唯一的点E 得到方程22210m m λλ-+=由唯一解,根据二次函数根的分布问题求出2m =.【详解】如图,以B 为坐标原点,BA ,BC ,BB '所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,设()0BB m m '=>,则()()0,0,0,1,0,B A m ',()0,1,E m λ,01λ≤≤,则()()1,1,,0,1,A E m m BE m λλ=--'=,则()()2221,1,0,1,10A E BE m m m m m λλλλ⋅=--⋅=-'+=,因为在棱CC '上有唯一的一点E 使得A E EB '⊥,所以22210m m λλ-+=在01λ≤≤上有唯一的解,令()2221f m m λλλ=-+,可知()()011f f ==,故要想在01λ≤≤上有唯一的解,只需42Δ40m m =-=,因为0m >,所以解得:2m =17.B【解析】【分析】求出AB n =-,即n 与AB 平行,从而求出AB α⊥【详解】因为AB n =-,即(342)n =-,,与(342)AB =--,,平行, 所以直线AB 与平面α垂直.故选:B18.B【解析】【分析】建立空间直角坐标系,利用空间位置关系的向量证明,逐项分析、判断作答.【详解】在正四棱柱1111ABCD A B C D -中,以点D 为原点建立如图所示的空间直角坐标系,令12,2(0,0)AB a DD b a b ==>>,O 是底面ABCD 的中心,,E F 分别是11,BB DD 的中点, 则11(,,0),(2,0,2),(2,2,),(2,2,2),(0,0,)O a a A a b E a a b B a a b F b ,1(,,2)OA a a b =-,1(2,2,0),(0,0,)FE a a EB b ==,对于A ,显然1OA 与FE 不共线,即1A O 与EF 不平行,A 不正确;对于B ,因12()2020OA FE a a a a b ⋅=⋅+-⋅+⋅=,则1OA FE ⊥,即1A O EF ⊥,B 正确;对于C ,设平面1EFB 的法向量为(,,)n x y z =,则12200n EF ax ay n EB bz ⎧⋅=+=⎪⎨⋅==⎪⎩,令1x =,得(1,1,0)n =-, 120OA n a ⋅=>,因此1OA 与n 不垂直,即1A O 不平行于平面1EFB ,C 不正确;对于D ,由选项C 知,1OA 与n 不共线,即1A O 不垂直于平面1EFB ,D 不正确.故选:B19.A【解析】【分析】根据平面单位法向量的定义可判断①,根据直线方向向量与平面法向量的关系判断②,根据两平面法向量关系判断③,根据直线与平面垂直的判定定理判断④.【详解】因为一个平面的单位法向量方向不同,所以有2个,故①错误;当一条直线的方向向量和一个平面的法向量平行时,则这条直线和这个平面垂直,故② 错误;因为两个平面的法向量平行时,平面平行,所以法向量不平行,则这两个平面相交,③正确;若一条直线的方向向量垂直于一个平面内两条相交直线的方向向量,则直线和平面垂直,故④ 错误.故选:A20.A【解析】【分析】由直线的方向向量及平面的法向量的定义即可求解.【详解】解:设正方体ABCD A B C D ''''-的边长为1,则()0,0,0D ,()0,0,1D ',()1,1,0B ,()0,1,1C ',()1,1,1B ',()0,1,0C ,对①:因为(0,0,1)DD '=,所以直线DD '的一个方向向量为1(0,0,1)v =正确; 对②:因为()101BC ,,'=-,所以直线BC '的一个方向向量为2(0,1,1)v =不正确; 对③:因为OA ⊥平面ABB A '',又()1,0,0OA =,所以平面ABB A ''的一个法向量为1(0,1,0)n =不正确;对④:因为2(1,1,1)n =,()1,1,1DB '=,()0,1,0DC =,211130DB n ++='⋅=≠,201010DC n ⋅=++=≠,所以平面B CD '的一个法向量为2(1,1,1)n =不正确. 故选:A.21.(3,1,1)-(不唯一)【解析】【分析】由题设,1(1,1,2)s =-、2(0,1,1)s =是直线1l 、2l 的方向向量,设面α的法向量(,,)m x y z =,应用空间向量垂直的坐标表示求法向量即可.【详解】由题设,直线1l 、2l 的方向向量分别为1(1,1,2)s =-、2(0,1,1)s =,而12s s λ≠(R)λ∈, 所以直线1l 、2l 不平行,设与两直线1l ,2l 都平行的平面α的一个法向量(,,)m x y z =,所以21200m x y z m z s s y ⎧=-+=⎪⎨=+=⎪⋅⎩⋅,令1z =-,则(3,1,1)m =-. 故与两直线1l ,2l 都平行的平面α的一个法向量的坐标(3,1,1)-.22.(1)见解析【解析】【分析】(1)根据面面垂直的性质证明AB ⊥平面ADEF ,可得AB AF ⊥,再将MN 用,,AB AD AF 表示,再根据向量数量积的运算律证明0MN AD ⋅=,即可得证;(2)根据(1),根据2MN MN =,将MN 用,,AB AD AF 表示,从而可得出答案.(1)证明:在矩形ABCD 中,AB AD ⊥, 因为平面ABCD ⊥平面ADEF ,且平面ABCD 平面ADEF AD =, AB 平面ABCD , 所以AB ⊥平面ADEF ,又因AF ⊂平面ADEF ,所以AB AF ⊥, MN MB BA AN =++1133DB BA AE =++()()1133AB AD AB AD AF =--++ 2133AB AF =-+, 所以212103333MN AD AB AF AD AB AD AF AD ⎛⎫⋅=-+⋅=-⋅+⋅= ⎪⎝⎭, 所以MN AD ⊥; (2)解:因为1CD DE ==, 所以1AB AF ==,则222214145339993MN AB AF AB AF AB AF ⎛⎫=-+=+-⋅= ⎪,即MN 23.C 【解析】 【分析】推导出//a b ,利用空间向量法可得出线面关系. 【详解】因为()1,2,1a =--,()2,4,2b =-,则2b a =-,即//a b ,因此,l α⊥. 故选:C. 24.A 【解析】 【分析】由向量AB 与平面法向量的关系判断直线与平面的位置关系. 【详解】因为2AB n -=,所以//AB n ,所以AB α⊥. 故选:A . 25.C 【解析】 【分析】根据空间直角坐标系,写出点坐标()0,0,0B ,()0,2,0A ,()23,0,0C ,()0,2,2P ,分别计算即可求值. 【详解】建立空间直角坐标系如图:由题意可得()0,0,0B ,()0,2,0A ,()23,0,0C ,()0,2,2P , 所以()23,2,2PC =--,()0,2,2BP =.设(),,n x y z =,则23220220x y z z y ⎧--=⎪⎨+=⎪⎩,取2z =,可得()0,2,2n =-.因为AB BC ⊥,PA BC ⊥,AB AP A =, 所以BC ⊥平面PAB , 因为BC ⊂平面PBC 所以平面PBC ⊥平面PAB , 所以m n ⊥,所以cos ,0m n =. 综上所述,A ,B ,D 错,C 正确. 故选:C 26.C 【解析】 【分析】利用面面平行的判定定理、向量位置关系及充分条件的定义即可判断. 【详解】对于A ,l α⊂,m β⊂,且11e n ⊥,22e n ⊥,则α与β相交或平行,故A 错误; 对于B ,l α⊂,m β⊂,且12e e ∥,则α与β相交或平行,故B 错误; 对于C ,11e n ∥,22e n ∥,且12e e ∥,则αβ∥,故C 正确;对于D ,11e n ⊥,22e n ⊥,且12e e ∥,则α与β相交或平行,故D 错误. 故选:C. 27.D 【解析】 【分析】以点E 为坐标原点,建立空间直角坐标系,设()()0,001P m m <<,,,()()00,,01Q n n <<,,根据向量垂直的坐标表示求得112n m =-,再由向量的模的计算公式和二次函数的性质可求得范围. 【详解】解:因为平面四边形ABEF 和四边形CDFE 都是边长为1的正方形,且平面ABEF ⊥CDFE ,所以以点E 为坐标原点,建立空间直角坐标系,如下图所示,则()10,1D ,,11,02G ⎛⎫ ⎪⎝⎭,, 设()()0,001P m m <<,,,()()00,,01Q n n <<,, 所以11,2GQ n ⎛⎫=-- ⎪⎝⎭,,()1,1DP m =--,,又GQ DP ⊥,所以0GQ DP ⋅=,即()111,1,11022n m m n ⎛⎫--⋅--=--= ⎪⎝⎭,,, 整理得112n m =-,所以222222155241+1+24455PQ m n m m m m m ⎛⎫⎛⎫=+=+-=-=- ⎪ ⎪⎝⎭⎝⎭,又01m <<,所以25552PQ ≤<, 故选:D.28.C【解析】 【分析】根据题意,结合面面垂直的向量证明方法,即可求解. 【详解】由题意可得a ,b 分别是平面α,β的法向量,所以αβ⊥等价于a b ⊥, 即“αβ⊥”是“a b ⊥”的充要条件. 故选:C. 29.B 【解析】 【分析】依据题意得到:①求数量积a b ⋅,得到a b ⊥,即l m ⊥;②求数量积n a ⋅,可得到a n ⊥,故//l α或l α⊂;③利用1n 与2n 的关系,两者既不平行,也不垂直,故两个平面不平行,是相交关系;④利用法向量的定义得到0,0n AB n AC ⋅=⋅=,解出1u =,0=t ,进而可求解. 【详解】①11211221102a b ⋅=⨯-⨯-⨯=--=,所以a b ⊥,即l m ⊥,所以①正确. ②011(1)(1)0a n ⋅=-⨯+-⋅-=,所以a n ⊥,所以//l α或l α⊂,所以②错误. ③因为1260n n ⋅=≠,且12n xn ≠,所以α与β是相交的.所以③错误.④因为(1n =,u ,)t 是平面α的法向量,A (1,0,-1),B (0,1,0),C (-1,2,0),所以(1,1,1),(2,2,1)AB AC =-=-.所以0,0n AB n AC ⋅=⋅=,即10220u t u t -++=⎧⎨-++=⎩,解得1u =,0=t ,所以1u t +=.所以④正确. 故选:B.30.B 【解析】 【分析】根据题意可得AP n ⊥,依次验证是否满足0n AP ⋅=即可. 【详解】设(P x ,y ,)z ,则(2AP x =-,1y +,2)z -; 由题意知,AP n ⊥,则0n AP ⋅=,3(2)(1)2(2)0x y z ∴-+++-=,化简得329x y z ++=.验证得,在A 中,311214⨯-+⨯=,不满足条件; 在B 中,3313292⨯++⨯=,满足条件;在C 中,3313232⨯-+⨯=,不满足条件; 在D 中,()315313242⎛⎫⨯--+⨯-=- ⎪⎝⎭,不满足条件.故选:B. 31.A 【解析】 【分析】根据两个平面的法向量平行即可判断出平面α与平面β平行. 【详解】对于平面α的一个法向量为1(1,2,1)v =,平面β的一个法向量为2(2,4,2)v =---, 因为1212v v =-,所以12v v 、平行.。
专题--平面向量1.向向量的相关概念、、2.向量的线性运算二.向量的表示方法:1.几何表示法:用带箭头的有向线段表示,如AB ,注意起点在前,终点在后; 2.符号表示法:用一个小写的英文字母来表示,如,,等;3.坐标表示法:在平面内建立直角坐标系,以与x 轴、y 轴方向相同的两个单位向量,为基底,则平面内的任一向量可表示为(),a xi y j x y =+=,称(),x y 为向量的坐标,=(),x y 叫做向量的坐标表示。
如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同。
三.平面向量的基本定理:如果e 1和e 2是同一平面内的两个不共线向量,那么对该平面内的任一向量a ,有且只有一对实数1λ、2λ,使a =1λe 1+2λe 2。
如(1)若(1,1),a b ==(1,1),(1,2)c -=-,则c =______ (答:1322a b -);(2)下列向量组中,能作为平面内所有向量基底的是 A. 12(0,0),(1,2)e e ==- B. 12(1,2),(5,7)e e =-=C. 12(3,5),(6,10)e e ==D. 1213(2,3),(,)24e e =-=- (答:B );(3)已知,AD BE 分别是ABC ∆的边,BC AC 上的中线,且,AD a BE b ==,则BC 可用向量,a b 表示为_____ (答:2433a b +);(4)已知ABC ∆中,点D 在BC 边上,且−→−−→−=DB CD 2,−→−−→−−→−+=AC s AB r CD ,则s r +的值是 (答:0)四.实数与向量的积:实数λ与向量的积是一个向量,记作λ,它的长度和方向规定如下:()()1,2aa λλ=当λ>0时,λ的方向与的方向相同,当λ<0时,λ的方向与的方向相反,当λ=0时,0a λ=,注意:λa ≠0。
五.平面向量的数量积:1.两个向量的夹角:对于非零向量,,作,OA a OB b ==,AOB θ∠=()0θπ≤≤称为向量a ,b 的夹角,当θ=0时,a ,b 同向,当θ=π时,a ,b 反向,当θ=2π时,a ,垂直。
2.平面向量的数量积:如果两个非零向量a ,b ,它们的夹角为θ,我们把数量||||cos a b θ叫做a 与b 的数量积(或内积或点积),记作:•,即•=cos a b θ。
规定:零向量与任一向量的数量积是0,注意数量积是一个实数,不再是一个向量。
如(1)△ABC 中,3||=−→−AB ,4||=−→−AC ,5||=−→−BC ,则=⋅_________ (答:-9); (2)已知11(1,),(0,),,22a b c a kb d a b ==-=+=-,c 与d 的夹角为4π,则k 等于___(答:1); (3)已知2,5,3a b a b ===-,则a b +等于____ 23;(4)已知,a b 是两个非零向量,且a b a b ==-,则与a a b +的夹角为____(答:30)3.在上的投影为||cos b θ,它是一个实数,但不一定大于0。
如已知3||=→a ,5||=→b ,且12=⋅→→b a ,则向量→a 在向量→b 上的投影为______ (答:512) 4.a •b 的几何意义:数量积a •b 等于a 的模||a 与b 在a 上的投影的积。
5.向量数量积的性质:设两个非零向量a ,b ,其夹角为θ,则: ①0a b a b ⊥⇔•=;②当a ,b 同向时,a •b =a b ,特别地,222,a a a a a a =•==;当a 与b 反向时,a •b =-a b ;当θ为锐角时,•>0,且 a b 、不同向,0a b ⋅>是θ为锐角的必要非充分条件;当θ为钝角时,•<0,且 a b 、不反向,0a b ⋅<是θ为钝角的必要非充分条件; ③非零向量,夹角θ的计算公式:cos a b a bθ•=;④||||||a b a b •≤。
如(1)已知)2,(λλ=→a ,)2,3(λ=→b ,如果→a 与→b 的夹角为锐角,则λ的取值范围是______(答:43λ<-或0λ>且13λ≠);(2)已知OFQ ∆的面积为S ,且1=⋅−→−−→−FQ OF ,若2321<<S ,则−→−−→−FQ OF ,夹角θ的取值范围是_________(答:(,)43ππ); 六.向量的运算: 1.几何运算:①向量加法:利用“平行四边形法则”进行,但“平行四边形法则”只适用于不共线的向量,如此之外,向量加法还可利用“三角形法则”:设,AB a BC b ==,那么向量AC 叫做a 与b 的和,即a b AB BC AC +=+=;②向量的减法:用“三角形法则”:设,,AB a AC b a b AB AC CA ==-=-=那么,由减向量的终点指向被减向量的终点。
注意:此处减向量与被减向量的起点相同。
如(1)化简:①AB BC CD ++=___;②AB AD DC --=____;③()()AB CD AC BD ---=_____ (答:①AD ;②CB ;③0);(2)若正方形ABCD 的边长为1,,,AB a BC b AC c ===,则||a b c ++=_____(答:);(3)若O 是ABC 所在平面内一点,且满足2OB OC OB OC OA -=+-,则ABC 的形状为____(答:直角三角形);(4)若D 为ABC ∆的边BC 的中点,ABC ∆所在平面内有一点P ,满足0PA BP CP ++=,设||||AP PD λ=,则λ的值为___ (答:2);(5)若点O 是ABC △的外心,且0OA OB CO ++=,则ABC △的内角C 为____(答:120); 2.坐标运算:设1122(,),(,)a x y b x y ==,则: ①向量的加减法运算:12(a b x x ±=±,12)y y ±。
如已知作用在点(1,1)A 的三个力123(3,4),(2,5),(3,1)F F F ==-=,则合力123F F F F =++的终点坐标是 (答:(9,1))②实数与向量的积:()()1111,,a x y x y λλλλ==。
③若1122(,),(,)A x y B x y ,则()2121,AB x x y y =--,即一个向量的坐标等于表示这个向量的有向线段的终点坐标减去起点坐标。
如 设(2,3),(1,5)A B -,且13AC AB =,3AD AB =,则C 、D 的坐标分别是_____(答:11(1,),(7,9)3-); ④平面向量数量积:1212a b x x y y •=+。
⑤向量的模:222222||,||a x y a a x y =+==+。
如已知,a b 均为单位向量,它们的夹角为60,那么|3|a b +=_____ ; ⑥两点间的距离:若()()1122,,,A x y B x y ,则||AB =。
七.向量的运算律:1.交换律:a b b a +=+,()()a a λμλμ=,a b b a •=•; 2.结合律:()(),a b c a b c a b c a b c ++=++--=-+,()()()a b a b a b λλλ•=•=•; 3.分配律:()(),a a a a b a b λμλμλλλ+=++=+,()a b c a c b c +•=•+•。
如下列命题中:① →→→→→→→⋅-⋅=-⋅c a b a c b a )(;② →→→→→→⋅⋅=⋅⋅c b a c b a )()(;③ 2()a b →→-2||a →=22||||||a b b →→→-⋅+;④ 若0=⋅→→b a ,则0=→a 或0=→b ;⑤若,a bc b ⋅=⋅则a c =;⑥22a a =;⑦2a b b aa⋅=;⑧222()a b a b ⋅=⋅;⑨222()2a b a a b b -=-⋅+。
其中正确的是_____(答:①⑥⑨)提醒:(1)向量运算和实数运算有类似的地方也有区别:对于一个向量等式,可以移项,两边平方、两边同乘以一个实数,两边同时取模,两边同乘以一个向量,但不能两边同除以一个向量,即两边不能约去一个向量,切记两向量不能相除(相约);(2)向量的“乘法”不满足结合律,即)()(•≠•,为什么? 八.向量平行(共线)的充要条件://a b a b λ⇔=22()(||||)a b a b ⇔⋅=1212x y y x ⇔-=0。
如 (1)若向量(,1),(4,)a x b x ==,当x =_____时a 与b 共线且方向相同 (答:2);(2)已知(1,1),(4,)a b x ==,2u a b =+,2v a b =+,且//u v ,则x =______ (答:4);(3)设(,12),(4,5),(10,)PA k PB PC k ===,则k =_____时,A,B,C 共线 (答:-2或11)九.向量垂直的充要条件:0||||a b a b a b a b ⊥⇔⋅=⇔+=- 12120x x y y ⇔+=.特别地()()AB AC AB AC ABACABAC+⊥-。
如(1)已知(1,2),(3,)OA OB m =-=,若OA OB ⊥,则m = (答:32);(2)以原点O 和A(4,2)为两个顶点作等腰直角三角形OAB ,90B ∠=︒,则点B 的坐标是________ (答:(1,3)或(3,-1)); (3)已知(,),n a b =向量n m ⊥,且n m =,则m 的坐标是________ (答:(,)(,)b a b a --或) 十.线段的定比分点:1.定比分点的概念:设点P 是直线P 1P 2上异于P 1、P 2的任意一点,若存在一个实数λ ,使12PP PP λ=,则λ叫做点P 分有向线段12PP 所成的比,P 点叫做有向线段12PP 的以定比为λ的定比分点;2.λ的符号与分点P 的位置之间的关系:当P 点在线段 P 1P 2上时⇔λ>0;当P 点在线段 P 1P 2的延长线上时⇔λ<-1;当P 点在线段P 2P 1的延长线上时10λ⇔-<<;若点P 分有向线段12PP 所成的比为λ,则点P 分有向线段21P P 所成的比为1λ。
如 若点P 分AB 所成的比为34,则A 分BP 所成的比为_______(答:73-)3.线段的定比分点公式:设111(,)P x y 、222(,)P x y ,(,)P x y 分有向线段12PP 所成的比为λ,则121211x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩,λ=x x x x --21=yy y y --21 线段P 1P 2的中点公式121222x x x y y y +⎧=⎪⎪⎨+⎪=⎪⎩。