噪声监测
- 格式:doc
- 大小:55.50 KB
- 文档页数:4
施工现场噪声监测在建筑施工的过程中,噪声是一个不可忽视的问题。
它不仅会对周边居民的生活造成干扰,还可能对施工人员的健康产生不良影响。
因此,对施工现场进行噪声监测是非常重要的一项工作。
施工现场噪声的来源多种多样。
大型机械设备的运转,如起重机、搅拌机、钻孔机等,往往会产生巨大的噪声。
施工过程中的敲打、撞击、切割等操作也会伴随着噪声的产生。
此外,运输车辆的进出、人员的呼喊交流等都可能成为噪声的来源。
为了有效地进行施工现场噪声监测,首先需要明确监测的目的。
一般来说,监测的目的主要包括以下几个方面:一是评估施工噪声对周边环境的影响,以确保符合相关的环保法规和标准;二是为了保护施工人员的听力健康,及时采取防护措施;三是通过监测数据的分析,找到噪声的主要来源,从而采取针对性的降噪措施,提高施工的文明程度。
在选择噪声监测设备时,需要考虑多方面的因素。
精度和准确性是首要的,能够准确地测量出噪声的强度和频率特性。
设备的稳定性和可靠性也至关重要,以确保在长时间的监测过程中能够正常工作。
此外,还需要考虑设备的便携性和操作的简便性,方便监测人员在施工现场进行灵活布置和操作。
监测点的设置是噪声监测中的关键环节。
一般来说,监测点应分布在施工现场的边界、周边敏感区域(如居民楼、学校、医院等)以及施工人员的工作区域。
对于边界监测点,应根据施工场地的大小和形状,合理均匀地布置,以全面反映施工噪声对外界的影响。
对于敏感区域的监测点,应设置在距离噪声源较近、受影响较大的位置。
而施工人员工作区域的监测点,则应选择在典型的工作岗位附近,以评估施工人员所暴露的噪声水平。
监测的时间和频率也需要根据具体情况进行合理安排。
在施工的不同阶段,噪声的产生情况可能会有所不同。
例如,基础施工阶段可能会有大量的土方挖掘和打桩作业,噪声较大;而装修阶段的噪声相对较小。
因此,应根据施工进度和噪声特点,确定重点监测的时间段。
通常,监测时间应涵盖施工的高峰时段和夜间等容易产生扰民的时间段。
声环境监测的内容声环境监测是环境保护工作的重要组成部分,通过对环境噪声、交通噪声、功能区噪声、工业企业厂界噪声、社会生活噪声等声源的监测,可以了解声环境的现状和变化趋势,为环境保护提供科学依据。
本篇文章将详细介绍声环境监测的内容。
1. 城市区域环境噪声监测城市区域环境噪声监测是指对城市内不同区域的环境噪声进行监测。
通过对城市区域环境噪声的监测,可以了解城市不同区域的环境噪声水平,评价城市声环境的质量和变化趋势,为城市规划和环境保护提供依据。
2. 交通噪声监测交通噪声监测是指对城市交通工具产生的噪声进行监测。
通过对交通噪声的监测,可以了解城市交通工具的噪声水平,评价交通噪声对城市声环境的影响,为城市交通规划和环境保护提供依据。
3. 功能区噪声监测功能区噪声监测是指对城市内不同功能区的环境噪声进行监测。
不同功能区对环境噪声的要求不同,通过对不同功能区的环境噪声进行监测,可以了解不同功能区的环境噪声水平,为城市规划和环境保护提供依据。
4. 建设项目环评噪声监测建设项目环评噪声监测是指在建设项目环境影响评价中进行的噪声监测。
通过对建设项目在建设和运营过程中可能产生的噪声进行监测和分析,可以了解建设项目对周围环境的影响,为建设项目环境影响评价提供依据。
5. 工业企业厂界噪声监测工业企业厂界噪声监测是指对工业企业厂界处的环境噪声进行监测。
通过对工业企业厂界处的环境噪声进行监测,可以了解工业企业产生的噪声水平,为工业企业噪声排放的监管和管理提供依据。
6. 社会生活噪声监测社会生活噪声监测是指对社会生活场所产生的噪声进行监测。
通过对社会生活场所产生的噪声进行监测和分析,可以了解社会生活场所的噪声水平和对周围环境的影响,为改善社会生活环境和提高生活质量提供依据。
7. 噪声自动监测系统随着技术的发展,现在已经有越来越多的城市和区域建立了噪声自动监测系统。
这些系统可以实现对城市和区域内的环境噪声进行实时、连续的监测,并将数据传输到中心控制系统进行分析和处理。
噪声监测知识点总结噪声监测的对象主要包括交通噪声、工业噪声、建筑施工噪声、机械设备噪声等。
噪声监测主要通过测量噪声的声压水平、频率分布、持续时间等参数来评估环境中的噪声情况。
通过对噪声监测数据进行分析,可以了解噪声来源、传播途径和影响范围,为噪声控制和管理提供科学依据。
噪声监测技术主要包括噪声传感器、噪声监测仪器和噪声监测系统。
噪声传感器是用于测量环境中噪声水平的传感器,主要包括电容式传感器、压电传感器、声能传感器等。
噪声监测仪器是用于记录和分析噪声监测数据的设备,主要包括噪声计、多通道分析仪、数据采集器等。
噪声监测系统是将多个噪声监测点进行集成管理的系统,可以实现远程监控、数据传输和分析处理等功能。
噪声监测技术的应用主要包括环境噪声监测、工业噪声监测、交通噪声监测等。
在环境噪声监测领域,噪声监测技术可以用于评估城市、社区、工厂等环境中噪声水平,为环境保护和规划提供数据支持。
在工业噪声监测领域,噪声监测技术可以用于评估工厂、厂区、车间等工业场所中的噪声水平,为工业企业提供噪声控制和治理方案。
在交通噪声监测领域,噪声监测技术可以用于评估道路交通、铁路交通、航空交通等不同交通模式产生的噪声水平,为交通管理和规划提供科学依据。
噪声监测技术的发展趋势主要包括智能化、网络化和数据化。
随着物联网技术的发展,智能化的噪声监测设备将成为发展趋势,可以实现自动化监测、远程监控和智能分析。
网络化的噪声监测系统将能够实现多个监测点的集成管理和数据共享,为多维度的噪声监测提供技术支持。
数据化的噪声监测技术将能够实现大数据分析和挖掘,为噪声治理和管理提供决策支持。
在实际应用中,噪声监测技术还存在一些问题和挑战,主要包括设备精度、网络覆盖、数据质量等方面。
为了更好地发挥噪声监测技术的作用,需要加强噪声监测仪器的精度认证和标准化管理,提高噪声监测系统的网络覆盖和数据传输速度,优化噪声监测数据的质量和可信度。
综上所述,噪声监测技术是保护环境、保护健康和改善生活质量的重要手段,具有广泛的应用前景和发展空间。
环境噪声的监测方法环境噪声的监测方法多种多样,可以通过现场测量、远程监测和数学模型等多种手段来进行监测。
环境噪声的监测是指对周围环境中的噪声进行定量化和分析,以便评估其对人类健康和环境的影响。
下面将详细介绍环境噪声监测的各种方法。
首先,现场测量是一种常见的环境噪声监测方法。
现场测量是通过将噪声监测仪器放置在需要监测的区域内进行测量,在不同时间点和不同位置进行实时监测噪声水平。
现场测量需要使用专业的噪声监测设备,如声级计或噪声仪器,这些设备可以实时记录噪声水平,并生成噪声频谱图和各种报告。
其次,远程监测是指使用遥感技术对环境噪声进行监测。
遥感技术可以通过使用传感器和网络连接来实现对环境噪声的远程监测。
传感器可以安装在不同的位置,通过网络连接将数据传输到监测中心,实现对环境噪声的实时监测和分析。
远程监测不仅可以对室内和室外的噪声进行监测,还可以对噪声的来源和传播路径进行探测,为环境噪声管理提供更全面、精准和科学的数据支持。
另外,数学模型是一种对环境噪声进行监测和分析的重要方法。
数学模型可以通过对环境噪声的来源、传播和影响因素进行建模和仿真,评估其对人类健康和环境的影响。
数学模型可以通过计算声波传播的特性、计算噪声来源的分布、分析环境噪声的空间分布和时域变化等方法,来定量评估噪声的水平和影响,为环境噪声管理和决策提供科学依据。
在实际的环境噪声监测中,以上三种方法通常会结合使用,以实现对环境噪声的全面监测和分析。
这些监测方法可以帮助环境管理部门、企业和公众了解环境噪声的分布特征、时空变化和影响程度,为环境保护和噪声治理提供科学依据和技术支持。
除了监测方法,环境噪声的监测还需要以一系列的标准和规范进行。
国际上有ISO 1996-1:2016《环境噪声-部分1: 对于总体和社区的噪声进行采样和测量的指南》等标准,对环境噪声监测的方法、设备、操作和数据处理等方面进行了详细规定。
在国内,也有一系列的国家标准和行业标准对环境噪声的监测进行了具体规范和要求,包括GB/T16157-1996《环境噪声标准》等。
噪声监测报告
随着城市的发展,交通、工业等各种噪声也越来越多,对人们
的健康和环境都带来不利的影响。
因此,噪声监测成为了一项非
常重要的工作,旨在控制和减少噪声污染。
噪声监测是指对环境中各种噪声源的产生、传递、接受和影响
进行监测、分析的过程,包括测量噪声的声级和频谱等参数,并
进行数据统计和分析。
这项工作需要一套完整的仪器设备以及专
业的技术人员进行操作和维护。
测量噪声时需要考虑测量的时间、位置和高度,并在不同时间
段进行测量,以获得准确的数据。
同时,监测仪器需要进行定期
校准以确保测量的准确性。
通过对噪声数据的分析和比较,可以
评估噪声源对周围环境的影响,并进行相应的噪声控制措施。
例如,城市建设中常见的噪声源如交通噪声和建筑工地噪声需
要进行监测和控制。
在交通噪声方面,可以采取建立交通限制区、减少车流密度等措施。
对于建筑工地噪声,则可以采取优化施工
方案、增加隔音设施等措施。
此外,噪声监测还可以为环境保护和改善提供有力的依据。
例如,在环境影响评价中,需要对噪声进行监测和评估,以制定相应的环境管理措施。
同时,噪声监测还可以对环境和人体健康产生的不利影响进行评估,以保障公众的健康和安全。
总之,噪声监测是一项非常重要的工作,需要专业的仪器设备和技术人员进行操作和维护。
通过监测和分析噪声数据,可以对环境中的噪声进行控制和减少,达到保护公众健康和改善环境的目的。
噪声监测数据噪声是指在环境中产生的任何不受欢迎的声音,它可能对人类健康和生活质量产生负面影响。
为了保障公众的健康和环境的安宁,进行噪声监测是必要的。
本文将详细介绍噪声监测数据的标准格式,包括数据的采集方法、处理方式以及分析结果的呈现。
一、数据采集方法1. 测点选择:在进行噪声监测之前,需要选择合适的测点。
测点的选择应该基于噪声源的类型和分布,以及周围环境的特征。
通常选择在噪声源附近、居民区、工业区、交通枢纽等易受噪声干扰的区域进行监测。
2. 仪器设备:使用专业的噪声监测仪器进行数据采集。
噪声监测仪器应具备高精度、宽频带、低失真等特点,以确保采集到准确的噪声数据。
3. 测量时间:噪声监测应该在不同时间段进行,以获取全面的数据。
通常选择白日、夜晚和周末等不同时间段进行监测,以反映不同时间段的噪声水平。
二、数据处理方式1. 数据记录:在进行噪声监测的同时,需要记录相应的环境参数,如温度、湿度、风速等。
这些环境参数可以匡助后续的数据分析和解释。
2. 数据存储:噪声监测数据应该及时存储,并进行备份,以防止数据丢失。
数据存储可以采用电子文件形式,如Excel表格或者数据库等,方便后续的数据分析和报告生成。
三、数据分析和结果呈现1. 数据分析:对噪声监测数据进行分析,可以采用以下方法:- 统计分析:计算噪声数据的平均值、最大值、最小值、标准差等统计指标,以了解噪声水平的整体情况。
- 频谱分析:将噪声数据进行频谱分析,可以得到不同频率段的噪声水平,以了解噪声源的特征。
- 时域分析:对噪声数据进行时域分析,可以得到噪声的时间变化规律,如噪声的周期性和脉冲性等。
2. 结果呈现:将数据分析结果进行图表展示,以直观地表达噪声水平和特征。
可以使用柱状图、折线图、频谱图等形式展示数据分析结果。
同时,可以编写文字说明,对数据分析结果进行解释和总结。
综上所述,噪声监测数据的标准格式包括数据的采集方法、处理方式以及分析结果的呈现。
噪声的监测原理
噪声的监测原理是通过使用专门的设备来测量环境中的噪声水平。
这些设备可以是噪声计或声级计。
噪声计是一种电子设备,它可以测量噪声的强度或声压级。
它使用一个或多个麦克风来接收环境噪声,并将其转换为电信号。
然后,这些电信号经过放大和滤波处理,使它们能够在广泛的频率范围内可靠地测量噪声。
噪声监测的原理是基于声压级的测量。
声压级是用来评估噪声强度的物理量。
它以分贝(dB)为单位表示。
分贝是一种对
数单位,它可以用来比较不同噪声水平的差异。
一般而言,噪声计测量的结果是以每秒测量一次的A加权分贝(dBA)为
基础的。
噪声计还可以进行时间加权和频率加权的调整。
时间加权可以调整噪声计对不同时间内的噪声响应的敏感性。
快速时间加权可以捕捉到噪声的瞬态变化,而慢速时间加权更适合于评估持续较长时间的噪声。
频率加权可以根据人耳对不同频率的灵敏度进行调整,以更准确地反映人类的听觉感知。
在噪声监测中,通常会选择代表性的监测点,将噪声计放置在该点附近进行测量。
随着时间的推移,噪声计会记录并累积噪声水平的变化。
通过对测量数据的分析和处理,我们可以获得噪声水平的趋势、变化和分布情况,从而评估噪声所造成的影响和风险。
噪声监测可以广泛应用于城市环境、工业场所、建筑工地、交通运输系统等各个领域。
它可以帮助我们了解噪声源的特征和分布,评估噪声对人体健康和环境的影响,指导噪声控制和规划,以及制定相应的政策和标准。
噪声监测技术规范在我们的日常生活和工作中,噪声无处不在。
从繁忙的交通道路到工厂车间,从建筑工地到娱乐场所,噪声对我们的身心健康、工作效率以及生活质量都可能产生负面影响。
因此,准确、科学地进行噪声监测至关重要。
这不仅有助于我们了解噪声的状况,还能为制定有效的噪声控制措施提供依据。
接下来,让我们详细了解一下噪声监测的技术规范。
一、噪声监测的目的和意义噪声监测的主要目的是获取特定区域或场所的噪声水平数据,以评估噪声对环境和人类的影响。
通过监测,我们可以:1、确定噪声是否超过法定标准,保障公众的健康和安宁。
2、为环境管理和决策提供科学依据,例如规划新的建设项目或制定噪声控制策略。
3、评估噪声控制措施的效果,以便不断改进和优化。
二、噪声监测的基本要求1、监测仪器的选择应根据监测的目的、范围和精度要求,选择合适的噪声监测仪器。
常见的噪声监测仪器包括声级计、噪声频谱分析仪等。
这些仪器应经过计量检定,并在有效期内使用。
2、监测点位的设置监测点位的设置要具有代表性,能够反映监测区域的噪声状况。
例如,对于一个工厂,应在厂界四周、敏感建筑物附近等位置设置监测点;对于交通道路,应在道路沿线的敏感区域,如学校、医院、居民区附近设置监测点。
3、监测时间和频率监测时间和频率应根据噪声的特点和监测目的来确定。
一般来说,对于稳态噪声,可以测量较短的时间;对于非稳态噪声,需要测量较长的时间。
监测频率可以是定期的,也可以是不定期的,以满足不同的监测需求。
三、噪声监测的方法1、等效连续 A 声级测量法等效连续 A 声级(Leq)是目前最常用的噪声评价指标之一。
它是在规定的时间内,某一连续稳态噪声的能量与一段时间内非稳态噪声的能量相等时,该非稳态噪声的等效声级。
测量时,将声级计设置为A 计权网络,测量一段时间内的噪声,仪器会自动计算出等效连续 A声级。
2、最大声级测量法最大声级(Lmax)是指在测量时段内,噪声的最大瞬时值。
测量时,同样使用 A 计权网络,记录噪声的最大值。
噪声监测原理
噪声监测是指通过测量环境中的声音水平来评估噪声的程度。
噪声监测通常用于评估工厂、工地、道路交通、社区和居民区等地方的噪声污染情况。
噪声监测的原理是基于声音传播和声学原理。
首先,需要在监测区域内安装噪声传感器。
这些传感器通常是由微型麦克风和电子转换仪器组成,用于转换声音信号为电信号。
当噪声传感器接收到环境中的声音时,麦克风将声音转换为电信号。
然后,通过放大和处理电信号,将其转换为数字信号。
接下来,这些数字信号将通过数据处理系统进行分析和解释。
数据处理系统可以计算出噪声的频率、振幅和持续时间等参数。
它还可以将这些参数与噪声标准进行对比,以确定噪声是否超过了规定的限值。
为了确保监测的准确性,通常会在监测区域内设置多个噪声传感器,以获得更全面和细致的数据。
这些传感器将共同工作,以提供更可靠的噪声监测结果。
通过噪声监测,相关部门和组织可以评估噪声污染的程度,并采取必要的措施来减少噪声对人类健康和环境的影响。
这些措施可以包括采取隔声措施、调整机器设备的工作时间、改善交通管理和规划等。
总而言之,噪声监测的原理基于声音传播和声学原理,通过安
装噪声传感器并对接收到的声音进行处理和分析,以评估噪声水平并制定相应的控制措施。
噪声监测数据引言概述:噪声监测数据是指通过专门的监测设备对环境中的噪声进行定量测量和记录所得到的数据。
这些数据对于评估噪声污染的程度、制定相应的控制措施以及保护人们的健康和环境至关重要。
本文将从五个大点来阐述噪声监测数据的重要性和应用。
正文内容:1. 噪声监测数据的获取方式1.1 噪声监测设备的种类1.2 监测点的选择和布置1.3 监测时间和频率的确定1.4 数据采集和记录方法1.5 数据处理和分析技术2. 噪声监测数据的重要性2.1 评估噪声污染的程度2.2 制定噪声控制措施2.3 保护人们的健康2.4 保护环境和生态系统2.5 监测效果的评估和改进3. 噪声监测数据的应用领域3.1 城市规划和建设3.2 工业噪声控制3.3 交通噪声管理3.4 娱乐场所和公共场所管理3.5 环境保护和生态修复4. 噪声监测数据的质量要求4.1 监测设备的准确性和可靠性4.2 监测点的代表性和合理性4.3 数据采集和记录的规范性4.4 数据处理和分析的科学性4.5 数据报告和共享的透明性5. 噪声监测数据的未来发展趋势5.1 自动化监测技术的应用5.2 大数据和人工智能的应用5.3 多维度噪声监测和评估5.4 噪声监测与其他环境监测的融合5.5 数据共享和开放平台的建设总结:综上所述,噪声监测数据在评估噪声污染、制定控制措施、保护人们健康和环境等方面起着重要作用。
通过合理获取噪声监测数据,可以更好地了解噪声污染的程度,制定相应的控制措施,保护人们的健康和环境。
同时,噪声监测数据的质量要求也十分重要,需要确保监测设备的准确性和可靠性,数据采集和处理的规范性,以及数据报告和共享的透明性。
未来,随着技术的发展,噪声监测数据将会越来越智能化、自动化,并与其他环境监测数据进行融合,为我们提供更全面、准确的噪声信息。
实验一校园噪声监测
一.实验目的
1.掌握噪声的监测方法。
2.熟悉声级计的使用。
3.掌握对非稳态的无规则噪声监测数据的处理方法。
二.测量条件
1.使用仪器是声级计。
天气条件要求在无雨雪的时间,声级计应保持传声器膜片清洁,风力在三级以上必须加风罩(以避免风噪声干扰),五级以上大风应停止测量。
手持仪器测量,传声器要求距离地面1.2m。
2.测点选在噪声敏感建筑物外1m,传声器对准声源方向,附近没有别的障碍物或反射体,避免围观人群的干扰。
测量同时要记录周围声学环境,包括主要噪声源或交通噪声干扰。
三.实验步骤
1.选定测点:如:校园内学生宿舍楼、图书馆、教学楼、餐厅、中心广场、校园交通道路等,可选择不同时间段,每组测量的测点数等于组员人数,记录测量时间和地点。
2.各组轮流使用一台声级计测量各测点,一个组内每个组员记录不同测点或不同时间段的测量结果,填入噪声测量记录表中。
按组收齐实验报告。
3.读数方式用慢档,每隔5s读一个A声级瞬时值,连续读取100个数据,同时记录天气情况和主要噪声来源,并记录人流量(人/分)。
四.数据处理
1.将各测点测量的数据从大到小排列。
从数据上找出L10、L50、L90。
2.求出各测点的等效声级L eq和噪声污染级L NP。
年月日时分至时分
星期测量人
天气情况仪器
地点计权网络A档
噪声来源人流量(人/分)
快慢档慢档取样间隔5秒
取样总个数100个从大到小排列
L10= dB(A)L50= dB(A)L90= dB(A)
L eq= dB(A)L NP= dB(A)
五.注意事项
1.每次测量前均应仔细校准声级计。
声级计使用的电池电压不足时应更换。
2.环境噪声是随时间而起伏的无规律噪声,因此测量结果一般用统计值或等效声级来表示,本实验用等效声级表示。
3.目前大多数声级计具有数据自动整理功能,作为练习,希望能记录数据后手工计算。
思考题:
1.L10、L50、L90各相当于噪声的什么值?L eq、L NP与它们有何关系?(请写出关系式)
2.将校园的声环境质量与国家相应标准比较得出结论;通过对本组测得的所有地点和时间段的结果进行讨论,分析校园声环境质量现状;提出改善校园声环境质量的建议及措施。
附:城市环境噪声测量方法
一.城市环境噪声测量方法
(一)城市区域环境噪声监测
布点:将要普查测量的城市分成等距离网格(例如500m×500m),测量点设在每个网格中心,若中心点的位置不宜测量(如房顶、污沟、禁区等),可移到旁边能够测量的位置。
网格数不应少于100个。
测量:测量时一般应选在无雨、无雪时(特殊情况除外),声级计应加风罩以避免风噪声干扰,同时也可保持传声器清洁。
四级以上大风应停止测量。
声级计可以手持或固定在三角架上。
传声器离地面高1.2米。
放在车内的,要求传声器伸出车外一定距离,尽量避免车体反射的影响,与地面距离仍保持1.2米左右。
如固定在车顶上要加以注明,手持声级计应使人体与传声器距离0.5米以上。
测量的量是一定时间间隔(通常为5秒)的A声级瞬时值,动态特性选择慢响应。
测量时间:分为白天(6:00-22:00)和夜间(22:00-6:00)两部分。
白天测量一般选在8:00-12:00时或14:00-18:00时,夜间一般选在22:00-5:00时,随地区和季节不同,上述时间可稍作更改。
测点选择:测点选在受影响者的居住或工作建筑物外1米,传声器高于地面1.2m以上的噪声影响敏感处。
传声器对准声源方向,附近应没有别的障碍物或反射体,无法避免时应背向反射体,应避免围观人群的干扰。
测点附近有什么固定声源或交通噪声干扰时,应加以说明。
按上述规定在每一个测量点,连续读取100个数据(当噪声涨落较大时应取200个数据)代表该点的噪声分布,白天和夜间分别测量,测量的同时要判断和记录周围声学环境,如主要噪声来源等。
数据处理:由于环境噪声是随时间而起伏的非稳态噪声,因此测量数据一般用统计噪声级或等效连续A声级表示,即把测定数据代入有关公式,计算L10、L50、L90、L eq的算术平均值(L)和最大值及标准偏差(σ),确定城市区域环境噪声污染情况。
评价方法:1)数据平均法:将全部网点测得的连续等效A声级做算术平均运算,所得到的算术平均值就代表某一区域或全市的总噪声水平。
2)图示法:即用区域噪声污染图表示。
为了便于绘图,将全市各测点的测量结果以5dB 为一等级,划分为若干等级(如56-60,61-65,66-70…分别为一个等级),然后用不同的颜色或阴影线表示每一等级,绘制在城市区域的网格上,用于表示城市区域的噪声污染分布。
(二)城市交通噪声监测
布点:在每两个交通路口之间的交通线上选择一个测点,测点设在马路边的人行道上,离马路20cm,距路口的距离应大于50m。
长度小于100m的路段,测点选在路段中间。
这样的点可代表两个路口之间的该段道路的交通噪声。
测量:测量时应选在无雨、无雪的天气进行。
测量时间同城市区域环境噪声要求一样,一般在白天正常工作时间内进行测量。
每隔5秒记一个瞬时A声级(慢响应),连续记录200个数据。
测量的同时记录车流量(辆/h)。
数据处理:测量结果一般用统计噪声级和等效连续A声级来表示。
将每个测点所测得的200个数据按从大到小顺序排列,第20个数据即为L10,第100个数据即为L50,第180个数据即为L90。
经验证明城市交通噪声测量值基本符合正态分布,因此,可直接用近似公式计算等效连续A声级和标准偏差值。
L eq≈L50+d2/60,d =L10-L90
L10、L50和L90是测量的200个数据按由大到小排列后,第20、第100和第180个数对应的声级值。
评价方法:1)数据平均法:若要对全市的交通干线的噪声进行比较和评价,必须把全市各干线测点对应的L10、L50、L90、L eq的各自平均值、最大值和准标偏差列出。
2)图示法:即用噪声污染图表示。
当用噪声污染图表示时,评价量为L eq或L10,按5dB一等级,以不同颜色或不同阴影线划出每段马路的噪声值,即得到全市交通噪声污染分布图。