第五章矩阵的特征值与特征向量习题
- 格式:doc
- 大小:392.50 KB
- 文档页数:3
第五章 特征值和特征向量一、特征值与特征向量定义1:设A 是n 阶矩阵,λ为一个数,若存在非零向量α,使λαα=A ,则称数λ为矩阵A 的特征值,非零向量α为矩阵A 的对应于特征值λ的特征向量。
定义2:()E A f λλ-=,称为矩阵A 的特征多项式,)(λf =0E A λ-=,称为矩阵A 的特征方程,特征方程的根称为矩阵A 的特征根 矩阵E A λ-称为矩阵A 的特征矩阵齐次方程组(0)=-X E A λ称为矩阵A 的特征方程组。
性质1:对等式λαα=A 作恒等变形,得(0)=-αλE A ,于是特征向量α是齐次方程组(0)=-X E A λ的非零解向量,由齐次线性方程组有非零解的充要条件知其系数行列式为零,即0=-E A λ,说明A 的特征值λ为0E A λ-=的根。
由此得到对特征向量和特征值的另一种认识:(1)λ是A 的特征值⇔0=-E A λ,即(λE -A )不可逆.(2)α是属于λ的特征向量⇔α是齐次方程组(0)=-X E A λ的非零解.计算特征值和特征向量的具体步骤为: (1)计算A 的特征多项式,()E A f λλ-=(2)求特征方程)(λf =0E A λ-=的全部根,他们就是A 的全部特征值;(3)然后对每个特征值λ,求齐次方程组(0)=-X E A λ的非零解,即属于λ的特征向量.性质2:n 阶矩阵A 的相异特征值m λλλ 21,所对应的特征向量21,ξξ……ξ线性无关性质3:设λ1,λ2,…,λn 是A 的全体特征值,则从特征多项式的结构可得到:(1)λ1+λ2+…+λ n =tr(A )( A 的迹数,即主对角线上元素之和). (2)λ1λ2…λn =|A |.性质4:如果λ是A 的特征值,则(1)f(λ)是A 的多项式f(A )的特征值.(2)如果A 可逆,则1/λ是A -1的特征值; |A |/λ是A *的特征值. 即: 如果A 的特征值是λ1,λ2,…,λn ,则 (1)f(A )的特征值是f(λ1),f(λ2),…,f(λn ).(2)如果A 可逆,则A -1的特征值是1/λ1,1/λ2,…,1/λn ; 因为A AA =*,A *的特征值是|A |/λ1,|A |/λ2,…,|A |/λn .性质5:如果α是A 的特征向量,特征值为λ,即λαα=A 则(1)α也是A 的任何多项式f(A )的特征向量,特征值为f(λ);(2)如果A 可逆,则α也是A -1的特征向量,特征值为1/λ;α也是A *的特征向量,特征值为|A |/λ 。
第五章 矩阵的特征值与特征向量§1矩阵的特征值与特征向量一、矩阵的特征值与特征向量定义1:设A 是n 阶方阵,如果有数λ和n 维非零列向量x 使得x Ax λ=,则称数λ为A 的特征值,非零向量x 称为A 的对于特征值λ的特征向量.由x Ax λ=得0)(=-x E A λ,此方程有非零解的充分必要条件是系数行列式0=-E A λ,此式称为A 的特征方程,其左端是关于λ的n 次多项式,记作)(λf ,称为方阵A 特征多项式.设n 阶方阵)(ij a A =的特征值为n λλλ,,,21 ,由特征方程的根与系数之间的关系,易知:nn n a a a i +++=+++ 221121)(λλλA ii n =λλλ 21)(例1 设3阶矩阵A 的特征值为2,3,λ.若行列式482-=A ,求λ. 解:482-=A 64823-=∴-=∴A Aλ⨯⨯=32A 又 1-=∴λ例2 设3阶矩阵A 的特征值互不相同,若行列式0=A , 求矩阵A 的秩.解:因为0=A 所以A 的特征值中有一个为0,其余的均不为零.所以A 与)0,,(21λλdiag 相似.所以A 的秩为2.定理1对应于方阵A 的特征值λ的特征向量t ξξξ,,,21 ,t ξξξ,,,21 的任意非零线性组合仍是A 对应于特征值λ的特征向量.证明 设存在一组不全为零的数t k k k ,,,21 且存在一个非零的线性组合为t t k k k ξξξ+++ 2211,因为t ξξξ,,,21 为对应于方阵A 的特征值λ的特征向量。
则有),,2,1(1t i k Ak i i i ==ξλξ所以)()(22112211t t t t k k k k k k A ξξξλξξξ+++=+++ 所以t t k k k ξξξ+++ 2211是A 对应于特征值λ的特征向量. 求n 阶方阵A 的特征值与特征向量的方法:第一步:写出矩阵A 的特征多项式,即写出行列式E A λ-.第二步:解出特征方程0=-E A λ的根n λλλ,,,21 就是矩阵A 的特征值.第三步:解齐次线性方程组0)(=-x E A i λ,它的非零解都是特征值i λ的特征向量.例3 求矩阵⎪⎪⎪⎭⎫ ⎝⎛--=201034011A 的特征值和特征向量.解 A 的特征多项式为2)1)(2(201034011λλλλλλ--=-----=-E A 所以,A 的特征值为1,2321===λλλ. 当21=λ时,解方程组0)2(=-x E A .由⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--=-000010001~2010340112E A ,得基础解系⎪⎪⎪⎭⎫ ⎝⎛=1001p ,所以特征值21=λ的全部特征向量为11p k ,其中1k 为任意非零数.当132==λλ时,解方程组0)(=-x E A .由⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--=-000210101~101024012E A ,得基础解系⎪⎪⎪⎭⎫ ⎝⎛--=1212p ,所以特征值132==λλ的全部特征向量为22p k ,其中2k 为任意非零数. 二、特征值与特征向量的性质与定理性质1 n 阶方阵A 可逆的充分必要条件是矩阵A 的所有特征值均非零. 此性质读者可利用A n =λλλ 21可证明.定理 2 若21,λλ是n 阶方阵A 的两互不相等的特征值,对应的特征向量分别为21,p p ,则21,p p 线性无关.证明 假设设有一组数21,x x 使得02211=+p x p x (1)成立. 以2λ乘等式(1)两端,得0222121=+p x p x λλ (2) 以矩阵A 左乘式(1)两端,得0222111=+p x p x λλ (3) (3)式减(2)式得0)(1211=-p x λλ 因为21,λλ不相等,01≠p ,所以01=x .因此(1)式变成022=p x . 因为02≠p ,所以只有02=x . 这就证明了21,p p 线性无关.性质2 设)(A f 是方阵A 的特征多项式,若λ是A 的特征值.对应于λ的特征向量为ξ,则)(λf 是)(A f 的特征值,而ξ是)(A f 的对应于)(λf 的特征向量,而且若O A f =)(,则A 的特征值λ满足0)(=λf ,但要注意,反过来0)(=λf 的根未必都是A 的特征值.例4 若λ是可逆方阵A 的特征值,ξ是A 的对应于特征值λ的特征向量,证明:1-λ是1-A 的特征值,ξ是1-A 对应于特征值1-λ的特征向量,证明 λ 是可逆方阵A 的特征值,ξ是A 的对应于特征值λ的特征向量λξξ=∴A ξξλ11--=∴Aξξλ11--=∴A A A ξξλ*1A A =∴-1-∴λ是1-A 的特征值,ξ是1-A 对应于特征值1-λ的特征向量, 1-λA 是*A 的特征值,ξ是*A 对应于特征值1-λA 的特征向量.例5 设3阶矩阵A 的特征值1,2,2,求E A --14.解:A 的特征值为1,2,2,,所以1-A 的特征值为1,12,12, 所以E A--14的特征值为4113⨯-=,41211⨯-=,41211⨯-=所以311341=⨯⨯=--E A .例6 若21,λλ是n 阶方阵A 的两互不相等的特征值,对应的特征向量分别为21,p p ,证明21p p +一定不是A 的特征向量.证明 假设21p p +是矩阵A 的特征向量,对应的特征值为.λ根据特征值定义可知:)()(2121p p p p A +=+λ …………………(1) 21,λλ 又是n 阶方阵A 的特征值,对应的特征向量分别为21,p p .,111p Ap λ=∴ 222p Ap λ= (2)将(2)带入(1)式整理得:0)()(2211=-+-p p λλλλ因为21,λλ是n 阶方阵A 的两互不相等的特征值,对应的特征向量分别为21,p p 线性无关.所以21λλλ==.与21,λλ是n 阶方阵A 的两互不相等的特征值矛盾. 所以假设不成立.例7 若A 为正交矩阵,则1±=A ,证明,当1-=A 时,A 必有特征值1-;当1=A 时,且A 为奇数阶时,则A 必有特征值1.证明 当1-=A 时.TT T A E A A E A AA A E A +=+=+=+)(A E A E T +-=+-=,所以 .0=+A E `所以1-是A 的一个特征值反证法:因为正交阵特征值的行列式的值为1,且复特征值成对出现,所以若1不是A 的特征值,那么A 的特征值只有-1,以及成对出现的复特征值。
《线性代数》单元自测题答案第五章 方阵的特征值与特征向量一、 填空题:1.0; 2.36-; 3.6,111⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭; 4.4-; 5.ξ1-p . 二、 单选题:1.B ; 2.A ; 3.D ; 4.D ; 5.D .三、计算题1.解:因A 的特征多项式22)1)(1()1)(1(0101010-+=--=---=-λλλλλλλλA E 所以A 的特征值为11-=λ,132==λλ当11-=λ时,解方程组0)(=--X A E ,即⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-----000101020101321x x x得基础解系⎪⎪⎪⎭⎫ ⎝⎛-=1011ξ,则属于11-=λ的全体特征向量为11ξk )0(1≠k 。
当132==λλ时,解方程组0)(=-X A E ,即⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--000101000101321x x x得基础解系⎪⎪⎪⎭⎫ ⎝⎛=0102ξ,⎪⎪⎪⎭⎫ ⎝⎛=1013ξ,则属于132==λλ的全体特征向量为3322ξξk k + (2k ,3k 不同时为0)。
2. 解 因A 的特征多项式)1()1()1)(1(32401022322-+=-+=+--+--=-λλλλλλλλA E所以A 的特征值为,121-==λλ13=λ.对于121-==λλ,解方程组0)(=--X A E ,即⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛----000224000224321x x x 得基础解系 ⎪⎪⎪⎭⎫ ⎝⎛-=0211ξ,⎪⎪⎪⎭⎫ ⎝⎛=2012ξ,由于二重特征根121-==λλ的代数重数等于几何重数,故知A 可对角化.对于13=λ,解方程组0)(=-X A E ,即⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛----000424020222321x x x 得基础解系⎪⎪⎪⎭⎫ ⎝⎛=1013ξ,取()⎪⎪⎪⎭⎫ ⎝⎛-==120002111321ξξξP ,则有⎪⎪⎪⎭⎫ ⎝⎛--=Λ=-1000100011AP P .因此P 为所求的相似变换矩阵,Λ即为所求的对角矩阵.3.解:(1)由已知得4,,5-y 是A 的特征根,于是有 05242424254=----=--x A E , 解得4=x . 从而有 )4()5(1242424212+-=---=-λλλλλλA E ,故可得5=y .(2)当521==λλ时,解0)5(=-X A E ,得基础解系()()T T 101,02121-=-=ξξ.当43-=λ时,解0)4(=--X A E ,得基础解系()T 2123=ξ. 取()⎪⎪⎪⎭⎫ ⎝⎛--==210102211,,321ξξξP , 则Λ=-AP P 1。
第五章课后习题及解答1. 求下列矩阵的特征值和特征向量:(1) ;1332⎪⎪⎭⎫⎝⎛-- 解:,07313322=--=--=-λλλλλA I2373,237321-=+=λλ ,001336371237121371⎪⎪⎭⎫ ⎝⎛→→⎪⎪⎭⎫⎝⎛=-++- A I λ 所以,0)(1=-x A I λ的基础解系为:.)371,6(T-因此,A 的属于1λ的所有特征向量为:).0()371,6(11≠-k k T,001336371237123712⎪⎪⎭⎫ ⎝⎛→→⎪⎪⎭⎫⎝⎛-=---+ A I λ 所以,0)(2=-x A I λ的基础解系为:.)371,6(T+因此,A 的属于2λ的所有特征向量为:).0()371,6(22≠+k k T(2) ;211102113⎪⎪⎪⎭⎫ ⎝⎛--解:2)2)(1(21112113--==------=-λλλλλλ A I所以,特征值为:11=λ(单根),22=λ(二重根)⎪⎪⎪⎭⎫ ⎝⎛-→→⎪⎪⎪⎭⎫ ⎝⎛------=-0001100011111121121 A I λ所以,0)(1=-x A I λ的基础解系为:.)1,1,0(T因此,A 的属于1λ的所有特征向量为:).0()1,1,0(11≠k k T⎪⎪⎪⎭⎫ ⎝⎛-→→⎪⎪⎪⎭⎫ ⎝⎛-----=-0001000110111221112 A I λ所以,0)(2=-x A I λ的基础解系为:.)0,1,1(T因此,A 的属于2λ的所有特征向量为:).0()0,1,1(22≠k k T(3) ;311111002⎪⎪⎪⎭⎫ ⎝⎛-解:3)2(31111102-==------=-λλλλλ A I所以,特征值为:21=λ(三重根)⎪⎪⎪⎭⎫⎝⎛-→→⎪⎪⎪⎭⎫ ⎝⎛----=-0000001111111110001 A I λ所以,0)(1=-x A I λ的基础解系为:.)1,0,1(,)0,1,1(TT -因此,A 的属于1λ的所有特征向量为:TT k k )1,0,1()0,1,1(21-+(21,k k 为不全为零的任 意常数)。
第五章:特征值与特征向量填空题1.1,n A A n 设阶矩阵的元素全为则的个特征值是.123,0n n λλλλ===== 答案:()2.n A kA k λα已知阶矩阵的一个非零特征值为,对应的特征向量为,则:为常数的一个特征值为,对应的特征向量为.,k λα答案:()3.m n A A m λα已知阶矩阵的一个非零特征值为,对应的特征向量为,则:为正整数的一个特征值为,对应的特征向量为.,m λα答案:14.n A A A λα-已知阶矩阵的一个非零特征值为,对应的特征向量为,则:可逆时,的一个特征值为,对应的特征向量为.1,αλ答案:5.n A A A λα*已知阶矩阵的一个非零特征值为,对应的特征向量为,则:可逆时,的一个特征值为,对应的特征向量为.,A αλ答案:16..n A P P AP λα-已知阶矩阵的一个非零特征值为,对应的特征向量为,则:可逆时,的一个特征值为,对应的特征向量为.1P λα-答案:,()()110110117.,m m m m m m m m n A P f x c x c x c x c f x c A c A c A c λα----=++++=++++ 已知阶矩阵的一个非零特征值为,对应的特征向量为,则:可逆时,则矩阵多项式的一个特征值为,对应的特征向量为.(),f λα答案:8.T n A A λα已知阶矩阵的一个非零特征值为,对应的特征向量为,则:的一个特征值为.λ答案:9.n A A E λα+已知阶矩阵的一个非零特征值为,对应的特征向量为,则:的一个,特征值为,对应的特征向量为.1,λλ+答案:()210.,A n A A A E n A A E λ**≠+设为阶矩阵,0为的伴随矩阵,为阶单位矩阵.若有特征值,则必有特征值.21,A αλ⎛⎫+ ⎪⎝⎭答案:11.30,20,30,3A A E A E A E A E +=+=+=+=设为阶矩阵,已知则.答案:620012.0020002A B A B λ⎡⎤⎢⎥=+==⎢⎥⎢⎥⎣⎦设,,则矩阵有一个特征值.答案:2111121313.31,2,3,ij ij A A A A a A A A -++=设是阶矩阵,已知是中元素的代数余子式,则.1答案:2015.A n E n A A E λ+设是阶方阵,是阶单位阵,若有特征值,则必有特征值.01λ+答案:[]123123123116.31,1,2,,,,=2,4,A P P AP λλλξξξξξξ-==-=-=设是阶矩阵,有特征值其对应特征向量分别为记,-3则.121-⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦答案:()1211117.246,2335A x A x λλ-⎡⎤⎢⎥====⎢⎥⎢⎥--⎣⎦设,有特征值二重,则.2-答案:[]18.1,0,1T T n A n E A αααα=-=-=设,矩阵,为正整数,则.()22n a a -答案:()1122333319.,ij A a A a a a ⨯==++=设为3阶矩阵,其特征值为1,2,3,则.6,6答案:220.1,2,3,1,A A -+=若4阶方阵的特征值为则.答案:[]12221.212,=1,1__________.221T A k k α⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦设矩阵向量,是它的一个特征向量,则12-答案:或1111122.4__________.2345A B A B E --=已知阶矩阵与相似,矩阵的特征值为,,,,则行列式答案:241111111123._____________.11111111A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦的非零特征值是4答案:12311024.3=-1==1,=1______.1A A λλλλξ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦设阶对称矩阵的特征值,属于的特征向量,则100001010⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦答案:25.42,3,4,5_______________.A B B E -=已知阶矩阵与相似,其特征值为,则行列式24答案:()26.0____________.n A r A =若阶方阵有一个特征值为,且为单根,则1n -答案:3227.332,1-23,8___________.A B A A B E *=--=设阶矩阵有个特征值,,则0答案:()131028.410,262A A *-⎡⎤⎢⎥=--⎢⎥⎢⎥⎣⎦设则的特征多项式的一次因式分解式为____________.()2112λλ⎛⎫-- ⎪⎝⎭答案:。
第五章 矩阵的特征值与特征向量 习题1. 试用施密特法把下列向量组正交化:(1)⎪⎪⎪⎭⎫ ⎝⎛=931421111) , ,(321a a a ;(2)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=011101110111) , ,(321a a a . 2. 设x 为n 维列向量, x T x =1, 令H =E -2xx T , 证明H 是对称的正交阵. 3. 求下列矩阵的特征值和特征向量:(1)⎪⎪⎪⎭⎫ ⎝⎛----201335212; (2)⎪⎪⎪⎭⎫ ⎝⎛633312321.4. 设A 为n 阶矩阵, 证明A T 与A 的特征值相同.5. 设λ≠0是m 阶矩阵A m ⨯n B n ⨯m 的特征值, 证明λ也是n 阶矩阵BA 的特征值.6. 已知3阶矩阵A 的特征值为1, 2, 3, 求|A 3-5A 2+7A |.7. 已知3阶矩阵A 的特征值为1, 2, -3, 求|A *+3A +2E |.8. 设矩阵⎪⎪⎪⎭⎫ ⎝⎛=50413102x A 可相似对角化, 求x .9. 已知p =(1, 1, -1)T 是矩阵⎪⎪⎪⎭⎫ ⎝⎛---=2135212b a A 的一个特征向量.(1)求参数a , b 及特征向量p 所对应的特征值;(2)问A 能不能相似对角化?并说明理由.10. 试求一个正交的相似变换矩阵, 将对称阵⎪⎪⎪⎭⎫ ⎝⎛----020212022化为对角阵.11. 设矩阵⎪⎪⎪⎭⎫ ⎝⎛------=12422421x A 与⎪⎪⎪⎭⎫ ⎝⎛-=Λy 45相似, 求x , y ; 并求一个正交阵P , 使P -1AP =Λ.12. 设3阶方阵A 的特征值为λ1=2, λ2=-2, λ3=1; 对应的特征向量依次为p 1=(0, 1, 1)T , p 2=(1, 1, 1)T , p 3=(1, 1, 0)T , 求A .13. 设3阶对称矩阵A 的特征值λ1=6, λ2=3, λ3=3, 与特征值λ1=6对应的特征向量为p 1=(1, 1, 1)T , 求A .14. 设⎪⎪⎪⎭⎫ ⎝⎛-=340430241A , 求A 100.。
线性代数
第五章矩阵的特征值与特征向量习题1试用施密特法把下列向量组正交化
111
(1)(a1,a2,a3)124
139
111
(2)(a1,a2,a3) 0
1
1
1
1 110
2设x为n维列向量x
T x1令HE2xx T证明H是对称的正交阵
3求下列矩阵的特征值和特征向量:
212
(1)533;
102
123
(2)213.
336
T与A的特征值相同4设A为n阶矩阵证明A
5设0是m阶矩阵AmnB nm的特征值证明也是n阶矩阵BA的特征值.
6已知3阶矩阵A的特征值为123求|A
35A27A|
7已知3阶矩阵A的特征值为123求|A*3A2E|
201
8设矩阵A31x可相似对角化求x
405
212
T是矩阵
9已知p(111)
A5a3的一个特征向量
1b2
1
线性代数
(1)求参数ab及特征向量p所对应的特征值
(2)问A能不能相似对角化?并说明理由
220 10试求一个正交的相似变换矩阵,将对称阵212化为对角阵.
020
1245
11设矩阵A2x2与4相似求xy并求一个
421y
正交阵P使P 1AP
12设3阶方阵A的特征值为122231对应的特征向量依次为
p1(011)T p2(111)T p3(110)T求A.
13设3阶对称矩阵A的特征值162333与特征值16对应的特
T
征向量为p1(111)
求A.
142
14设
100
A034求A
043
2。