主动悬架安全控制技术
- 格式:pdf
- 大小:190.38 KB
- 文档页数:5
浅析汽车底盘主动悬架控制方法汽车底盘主动悬架控制方法是指通过车辆悬架系统中的传感器、执行器和控制单元等设备,实现对悬架系统的主动调节和控制,以提高车辆操控性能、乘坐舒适性和安全性。
随着汽车科技的不断发展,底盘主动悬架控制技术已经成为了现代汽车的标配之一。
本文将从工作原理、控制方式和应用范围等方面逐一进行深入分析,以便读者更好地理解和掌握这一重要的汽车技术。
一、工作原理底盘主动悬架控制系统的工作原理主要通过悬架系统中的传感器实时感知车辆行驶状况和路况,将这些信息传输到控制单元,然后由控制单元根据预设的控制策略来调节悬架系统的工作状态,从而实现对车辆悬架系统的主动控制。
具体来说,底盘主动悬架控制系统通常包括以下几个基本组成部分:1.传感器:一般包括车辆姿态传感器、悬架行程传感器、车速传感器、路面传感器等,用于感知车辆行驶状况和路况。
2.执行器:一般包括气压悬架、电磁悬架、液压悬架等,用于根据控制单元的指令对车辆悬架系统进行动态调节。
3.控制单元:一般包括主控制器和执行控制器等,用于接收传感器的信号、根据预设的控制策略生成控制指令,并将控制指令发送给执行器。
通过这些组成部分的协同工作,底盘主动悬架控制系统可以实现对车辆姿态、悬架刚度、悬架高度等参数的主动调节,从而实现对车辆悬架系统的主动控制。
这样一来,车辆可以根据不同的行驶状况和路况,自动调整悬架系统的工作状态,以提高车辆的操控性能、乘坐舒适性和安全性。
二、控制方式底盘主动悬架控制系统的控制方式主要包括主动悬架控制、半主动悬架控制和预测悬架控制等几种基本方式。
2.半主动悬架控制:半主动悬架控制是指控制单元根据传感器感知到的车辆行驶状况和路况,通过执行器对悬架系统进行动态调节,但是在这种方式下,悬架系统的动态调节范围和速度相对较小,不能完全实现对车辆悬架系统的主动控制。
3.预测悬架控制:预测悬架控制是指控制单元通过对路况和行驶状况进行预测,提前生成控制指令,并将控制指令发送给执行器,以预测性地对悬架系统进行动态调节,从而提高车辆的操控性能和乘坐舒适性。
主动悬架安全控制技术【引言】主动控制悬架可使汽车乘坐舒适性和操纵安全性同时得到改善。
介绍了国内外汽车主动悬架系统的现状及发展,重点介绍了几种常见的控制方法。
简介:悬架系统的主要作用是有效地减缓路面不平而引起的车体振动(乘坐舒适性)以及操纵安全性。
随着汽车性能的不断完善与发展,对悬架也提出了更高的要求。
为了满足现代汽车对悬架提出的各种性能要求,悬架的结构形式一直在不断地更新和完善,尽管这样,传统的被动悬架依然受到许多限制,主要是难于同时改善在不平路面上高速行驶车辆的稳定性和行驶平顺性,即使采用优化设计也只能保证悬架在特定的激励发生变化后,悬架的性能亦随之发生变化。
事实上,被动悬架的潜力在目前已接近极限,为了克服传统的被动悬架对汽车性能改善的限制,近年来,汽车工业中出现的主动悬架成为了一条改善汽车悬架性能的新途径。
主动悬架控制系统是一个闭环控制系统,它能根据系统的运动状态和当前的激励情况,主动做出反应来控制系统的振动,在控制过程中,可以根据外界输入。
与系统状态的变化实时调节控制系统参数,以获得最好的减振效果。
主动悬架通常可分为:有源主动悬架和无源主动悬架两大类。
有源主动悬架一般又简称为主动悬架,主动悬架一般由执行机构和控制决策部分构成。
其基本原理是根据被控系统的动态特性,采用由外部输入能量的控制方法使被控系统实现减振。
主动悬架系统的执行部分一般包括液压执行机构、动力源等,执行机构上装有控制器,它执行决策部分的命令。
一般用力发生器完全地或部分地代替被动悬架中的弹簧和阻尼器。
力的大小由控制规律决定。
决策部分为一车载微机系统,包含各种传装置、测量仪器和信号反馈处理等系统。
微机接收来自传感器的信号,经预定控制程序处理后,由控制器发出命令,决定执行机构所需的动作,从而形成闭环控制。
主动悬架具有如下显著优点:(1)在悬架静扰度较小的前提下,能获得较低的固有频率和动扰度。
(2)悬架的动力学特性,不随汽车的载荷变化而改变。
《基于智能控制的汽车主动悬架控制策略研究》篇一一、引言随着汽车工业的快速发展,人们对汽车行驶的平稳性、安全性和舒适性要求越来越高。
汽车主动悬架系统作为提高汽车行驶性能的关键技术之一,其控制策略的研究显得尤为重要。
传统的被动悬架系统已经无法满足现代汽车的需求,而基于智能控制的主动悬架系统则能够更好地适应复杂的道路环境,提高汽车的行驶性能。
本文旨在研究基于智能控制的汽车主动悬架控制策略,为汽车悬架系统的设计和优化提供理论依据。
二、智能控制技术概述智能控制技术是一种基于人工智能、计算机技术和控制理论的技术,具有自适应、自学习和优化的特点。
在汽车主动悬架系统中,智能控制技术可以实现对车辆行驶状态的实时监测和调整,提高车辆的行驶稳定性和舒适性。
目前,常见的智能控制技术包括模糊控制、神经网络控制、遗传算法控制等。
三、汽车主动悬架系统概述汽车主动悬架系统是一种能够根据道路条件和车辆行驶状态实时调整悬架参数的系统。
与传统的被动悬架系统相比,主动悬架系统具有更好的适应性和控制性,能够更好地提高车辆的行驶性能。
主动悬架系统主要由传感器、控制器和执行器等部分组成,其中控制器是整个系统的核心。
四、基于智能控制的汽车主动悬架控制策略研究4.1 模糊控制策略模糊控制是一种基于模糊逻辑的控制方法,具有较好的鲁棒性和适应性。
在汽车主动悬架系统中,模糊控制可以根据传感器采集的车辆状态信息,通过模糊推理方法对悬架参数进行调整,实现对车辆行驶状态的优化。
研究表模糊控制策略可以有效地提高车辆的平稳性和安全性。
4.2 神经网络控制策略神经网络是一种模拟人脑神经元工作的计算模型,具有自学习和自适应的能力。
在汽车主动悬架系统中,神经网络控制可以通过学习大量的驾驶数据,自动调整悬架参数,实现对车辆行驶状态的优化。
研究表明,神经网络控制策略可以更好地适应不同的道路环境和驾驶需求。
4.3 遗传算法控制策略遗传算法是一种模拟自然进化过程的优化算法,具有全局搜索和优化能力。
汽车底盘悬挂系统的主动与半主动控制技术应用汽车底盘悬挂系统对于汽车的行驶稳定性和舒适性起着至关重要的作用。
而主动和半主动控制技术的应用,则进一步提升了汽车底盘悬挂系统的性能和效果。
本文将就汽车底盘悬挂系统的主动与半主动控制技术应用进行探讨。
一、主动控制技术的应用主动悬挂系统是指能够主动感知和调节车辆悬挂状态的技术。
通过传感器实时监测路况和车辆行驶状态,再通过控制器对悬挂系统进行调节,使车辆在行驶过程中更加稳定和舒适。
主动悬挂系统的应用,可以使车辆在急转弯、爬坡、减速等情况下更加稳定,有效减少了悬挂系统对车身的影响,提高了行驶安全性。
同时,主动悬挂系统也可以根据路面的不同情况主动进行调节,保证乘坐者在不同路况下的舒适性。
二、半主动控制技术的应用半主动悬挂系统是指能够根据司机的行驶习惯和需要主动进行调节的技术。
通过预设的程序和模式,半主动悬挂系统可以智能地根据司机的驾驶习惯和路况变化进行调节,提供更加个性化的驾驶体验。
半主动悬挂系统的应用,可以根据不同的驾驶模式提供不同的悬挂调节效果,使驾驶员更加舒适地应对不同的路况和驾驶需求。
同时,半主动悬挂系统也可以根据车辆的载重情况和行驶速度进行智能调节,保证车辆行驶的稳定性和安全性。
总结汽车底盘悬挂系统的主动与半主动控制技术应用,为汽车的行驶稳定性和舒适性提供了更加完善的解决方案。
主动悬挂系统可以根据路况变化主动调节悬挂系统,提高了行驶的安全性;半主动悬挂系统则可以根据驾驶员的行驶习惯提供个性化的悬挂调节效果,提高了驾驶的舒适性和便利性。
随着科技的不断发展和汽车工业的进步,主动与半主动悬挂控制技术必将在未来的汽车行业中发挥着更加重要的作用。
汽车电子控制主动悬架系统有哪些安全控制方法和技术?通常来讲,主动悬架性能明显优于被动悬架。
特别是随着微型电路技术的发展,使主动悬架的发展前景更为广阔。
主动悬架安全控制技术的理念、功能及方法,对于保证汽车行驶的安全性与舒适性有着非常重要意义。
电子控制主动悬架系统的安全控制要求其带有自诊断功能:自诊断功能大致可以分为三块:①监测系统的工作状况:当系统产生故障,装在仪表板上的车高控制指示灯就被通电闪亮,因而可以提醒驾驶员立即检修;②存储故障码:当系统产生故障时,系统能够将产生的故障以故障码的形式存放在悬架ECU的随机存储器中;③失效保护:当某一个传感器或执行器产生故障时,自诊断系统将以预先设定的参数取代有故障的传感器或执行器工作。
比如,加速度(G)传感器失效时,产生的失效保护就是禁止汽车行驶控制(车身扭转、跳动控制),车速传感器和车身高度传感器故障时,失效保护方法就是禁止汽车稳定性控制(抗侧倾、高度感应控制),禁止汽车姿态控制(抗点头、抗后坐),减振器阻尼力固定在中间状态等。
一般采用的安全控制方法为预见控制方法:对即将出现的情况加以考虑以求进一步来提高系统的控制性能。
通过某种方法提前检测到前方道路的状态和变化,迫使系统采取相应的措施。
根据预见信息的获取及利用方法的不同,可形成两种不同的预见控制系统:①对四轮全进行预见控制;②利用前轮信息对后轮进行预见控制。
预见控制方法可以有效降低系统的能量消耗且大幅度改善系统控制性能,一举两得。
控制技术一般有两大类:①自适应与自校正控制技术:是一个可以自动改变其控制参数以适应于汽车当前的工况的控制系统。
其基本思想就是由系统当前输入的相关信息,从预先计算并存储的参数中选取最合适当前工况的控制参数。
②神经网络控制技术:近年来, 神经网络的控制方法已日益引起人们的极大关注。
神经网络具有自适应学习,并行分布处理和较强的鲁棒性,容错性等特点。
因此适合于对复杂系统进行建模和控制。
《基于智能控制的汽车主动悬架控制策略研究》篇一一、引言随着汽车工业的快速发展,汽车主动悬架系统已经成为现代汽车安全与舒适性的重要组成部分。
通过采用先进的控制策略,主动悬架系统可以有效地提高车辆的行驶稳定性、乘坐舒适性以及操控性能。
本文将重点研究基于智能控制的汽车主动悬架控制策略,旨在为汽车悬架系统的优化设计提供理论依据和技术支持。
二、汽车主动悬架系统概述汽车主动悬架系统是一种具有自适应能力的悬架系统,通过传感器实时监测路面状况和车辆运动状态,采用先进的控制算法对悬架进行实时调整,以实现最佳的行驶性能。
与传统的被动悬架系统相比,主动悬架系统具有更高的灵活性和适应性。
三、智能控制在汽车主动悬架系统中的应用智能控制技术在汽车主动悬架系统中发挥着重要作用。
通过采用先进的控制算法和传感器技术,实现对车辆运动状态的实时监测和调整。
常见的智能控制策略包括模糊控制、神经网络控制、遗传算法等。
这些控制策略可以根据不同的道路条件和驾驶需求,对悬架系统进行实时调整,以实现最佳的行驶性能。
四、基于智能控制的汽车主动悬架控制策略研究(一)控制策略设计本文提出一种基于模糊控制的汽车主动悬架控制策略。
该策略通过建立模糊控制器,实现对车辆运动状态的实时监测和调整。
模糊控制器采用输入输出映射的方法,将传感器采集的信号进行模糊化处理,然后根据预设的规则进行决策,最后输出控制信号对悬架系统进行调整。
(二)仿真分析为了验证所提出的控制策略的有效性,本文采用仿真分析的方法。
通过建立车辆动力学模型和主动悬架系统模型,对所提出的控制策略进行仿真测试。
仿真结果表明,该控制策略可以有效地提高车辆的行驶稳定性、乘坐舒适性以及操控性能。
五、实验验证与结果分析为了进一步验证所提出的控制策略的实用性,本文进行了实验验证。
通过在实车上进行实验测试,对比传统被动悬架系统和所提出的主动悬架控制策略在不同道路条件下的性能表现。
实验结果表明,所提出的基于智能控制的汽车主动悬架控制策略在提高车辆行驶稳定性、乘坐舒适性以及操控性能方面具有显著优势。
主动悬架技术的分析主动悬架技术(Active Suspension System)是一种通过控制车辆悬挂系统来适应路面状况和车辆动态特性的先进技术。
这种技术通过感知路面情况,对悬挂系统进行实时调节,从而提高车辆的乘坐舒适性、稳定性和操控性能。
本文将对主动悬架技术的原理、优势、应用以及发展方向进行分析。
首先,主动悬架技术的原理是通过传感器感知车辆运动状态和路面情况,然后将这些信息发送给控制器。
控制器根据接收到的信息实时计算出最佳悬挂特性,并通过液压、电动或者电磁力等方式对悬挂系统进行调节。
这种实时调节能够使车辆的悬挂系统更好地适应路面情况,保持车身平衡,减少车身摇晃和侧倾,提高乘坐舒适性和操控性能。
相比于传统悬挂系统,主动悬架技术具有以下几个优势。
首先,它能够大幅度提升乘坐舒适性。
传统悬挂系统在通过减震器提供悬挂刚度时,需要在舒适性和操控性之间找到一个平衡点。
而主动悬架技术通过实时调节悬挂特性,可以根据路面状况和车速自动调整刚度,使乘坐更加平稳舒适。
其次,主动悬架技术能够提高车辆的稳定性和操控性能。
主动悬架系统可以根据车速、转向角度、加速度等参数来实时调节悬挂刚度和阻尼,从而减少车身的侧倾和悬挂系统的回弹,提高车辆的稳定性和操控性能。
尤其在高速行驶和急转弯等情况下,能够更好地保持车辆的平衡和稳定。
此外,主动悬架技术还具有适应性强和可调节性好的特点。
悬挂系统可以根据路面状况的变化实时调整刚度和阻尼,因此可以适应各种路况和行车状态。
而且,主动悬架系统通常可以提供多种不同的悬挂模式,驾驶员可以根据自己的需求选择不同的模式,如舒适模式、运动模式等,从而调节悬挂特性,以适应不同的行车场景。
主动悬架技术在汽车行业的应用前景广阔。
目前,该技术已经在一些高端汽车中得到应用,如宝马、奔驰等。
随着技术的发展和成本的降低,预计主动悬架技术将逐渐普及到中低端汽车中。
尤其在城市交通日益拥堵的情况下,乘坐舒适性和操控性能将成为消费者购车的重要考虑因素,从而推动了主动悬架技术的市场需求。
井下车辆主动悬架控制技术研究的开题报告一、研究背景和意义井下车辆是矿井的主要输送工具,它们需要在极其恶劣的井下环境条件下运行,并且需要承受大量的重载、长时间运行、频繁的加速和减速等工况。
而井下道路的路面不平坦,路面状况不良也大大影响车辆的性能和寿命。
因此,对于井下车辆主动悬架控制技术的研究具有重要的现实意义。
主动悬架控制技术可以通过对车辆悬架系统的实时控制,改变悬挂系统的刚度、阻尼、高度等参数,以适应不同的路面条件。
这种技术可以在不降低车辆载荷情况下,大大提高车辆行驶的平稳性和舒适性,同时延长车辆寿命,降低维护成本,提高生产效率。
二、研究内容和目标本次研究将聚焦于井下车辆主动悬架控制技术的研究,包括以下内容:1.主动悬架系统模型建立:建立车辆主动悬架系统的数学模型,包括车辆、干扰源和路面等因素,进行仿真模拟和优化设计。
2.主动悬架控制策略设计:设计车辆主动悬架控制策略,结合路面状况、车速、载荷等多个因素进行控制。
3.实验验证和评估:在井下车辆上进行主动悬架控制系统的实验验证和评估,评估其对行驶平稳性、舒适性以及车辆寿命的影响。
三、研究方法1.文献调研法:对井下车辆主动悬架控制技术相关领域的文献进行深入调研和综述分析,获取相关技术背景和前沿进展,为研究提供参考和依据。
2.理论分析法:根据井下车辆运行环境和工况,建立车辆主动悬架系统模型,分析和优化悬挂系统的控制参数和算法。
3.实验验证法:在井下车辆上进行主动悬架控制系统的实验验证,测试主动悬架系统对车辆行驶的平稳性、舒适性和寿命等指标的影响。
四、研究进度计划第一年:1.进行相关领域文献调研和综述分析;2.建立井下车辆主动悬架系统模型,并进行仿真优化;3.初步设计主动悬架控制策略;第二年:1.设计主动悬架控制系统的硬件组成;2.编写悬架控制系统的控制软件;3.进行实验验证和评估,并对实验结果进行分析和总结;第三年:1.根据实验结果优化悬架控制策略;2.进行深入分析和优化悬挂系统参数和算法;3.进行系统整合和优化;五、预期成果和影响本研究将完成井下车辆主动悬架控制技术的研究,建立完整的悬架系统模型,设计有效的主动悬架控制策略,并在实验中进行验证和评估。
车辆主动悬架系统控制方案设计车辆主动悬架系统是一种利用电子控制和传感器技术来调节车辆悬挂系统的功能。
通过检测车辆的动态状况和路况情况,主动悬架系统能够实时调节悬挂的刚度和阻尼,提升车辆的稳定性和行驶舒适性。
本文将针对车辆主动悬架系统的控制方案进行设计,共分为传感器模块、控制模块和执行模块三个部分。
传感器模块是主动悬架系统的基础,负责采集车辆的动态信息和路况情况。
常用的传感器包括加速度传感器、角度传感器、车速传感器和路况传感器等。
加速度传感器用于检测车辆的加速度和减速度,角度传感器用于检测车辆的倾斜角度,车速传感器用于检测车辆的速度,路况传感器用于检测路面的平整度和颠簸程度。
传感器采集到的数据需要经过滤波和处理后方能使用。
控制模块是主动悬架系统的核心,负责根据传感器模块采集到的数据,进行实时的控制和调节。
控制模块包括控制算法和控制器两部分。
控制算法通常采用PID控制算法,即比例、积分、微分控制算法。
PID控制算法能够根据车辆的动态状况和路况情况,计算出合适的悬挂刚度和阻尼,以提升车辆的稳定性和行驶舒适性。
控制器通常采用微控制器或程序控制器,用于控制悬挂系统的执行器。
执行模块是主动悬架系统的实施部分,负责根据控制模块的指令,实时地调节悬挂的刚度和阻尼。
执行模块包括悬挂系统的执行器和悬挂系统的控制阀。
悬挂系统的执行器通常为液压或电液混合执行器,用于实现悬挂系统的加压或减压。
悬挂系统的控制阀用于控制液压或电液混合执行器的操作,根据控制模块的指令,调节液压或电液混合执行器的工作状态。
在车辆主动悬架系统的控制方案设计中,传感器模块负责采集车辆的动态信息和路况情况,控制模块负责根据传感器模块采集到的数据,进行实时的控制和调节,执行模块负责根据控制模块的指令,实时地调节悬挂的刚度和阻尼。
三个模块之间需要进行信息的传递和交互,以实现整个系统的协调工作。
在实际应用中,车辆主动悬架系统的设计还需要考虑到成本、可靠性和安全性等因素。
汽车底盘悬挂系统的主动与半主动控制方法汽车底盘悬挂系统是整个汽车的重要组成部分,它直接影响着行车的舒适性、稳定性和安全性。
随着科技的不断进步,底盘悬挂系统的控制方式也得到了不断的优化和创新,其中主动与半主动控制方法成为当前研究的热点。
本文将重点介绍汽车底盘悬挂系统的主动与半主动控制方法。
一、主动控制方法主动悬挂系统是指可以主动调节悬挂刚度、高度和阻尼等参数的系统。
主动控制方法通过悬挂系统自身的传感器获取道路情况和车辆状态,再通过电子控制单元(ECU)对悬挂系统进行实时调节,从而保证车辆在不同道路和行驶状态下的稳定性和舒适性。
主动控制方法的优点在于可以根据实际情况主动作出调整,保持车辆在最佳状态下行驶。
例如,当车辆行驶在颠簸路面时,主动悬挂系统会加大阻尼力和提高悬挂高度,从而减小车身的颠簸感;当车辆高速行驶时,主动悬挂系统会降低悬挂高度和减小阻尼力,提高车辆的稳定性。
二、半主动控制方法半主动悬挂系统是指在主动悬挂系统的基础上进行改进,可以根据预设的控制算法主动调节悬挂参数。
与主动悬挂系统相比,半主动悬挂系统需要更少的电子控制单元和传感器,成本较低,但调节效果也相对有限。
半主动控制方法通过预设的控制算法对悬挂系统进行调节,例如将车辆的行驶状态、车速和转向角度等信息输入到控制算法中,再根据算法输出的结果对悬挂系统进行调节。
虽然半主动控制方法的调节精度不如主动控制方法准确,但在提升车辆性能和舒适性方面也有一定的作用。
三、主动与半主动控制方法的比较主动悬挂系统和半主动悬挂系统各有其优缺点。
主动悬挂系统可以实现更精确的调节,适应性更强,但成本相对较高;而半主动悬挂系统成本更低,适用性更广,但调节精度有所不足。
在实际应用中,需要根据车辆的具体情况和需求选择适合的悬挂控制方法。
综上所述,汽车底盘悬挂系统的主动与半主动控制方法在提升车辆性能和舒适性方面发挥着重要作用。
随着科技的不断发展和进步,相信底盘悬挂系统的控制方法会越来越完善,为驾驶员提供更加安全、舒适的行车体验。
主动悬架安全控制技术【引言】主动控制悬架可使汽车乘坐舒适性和操纵安全性同时得到改善。
介绍了国内外汽车主动悬架系统的现状及发展,重点介绍了几种常见的控制方法。
简介:悬架系统的主要作用是有效地减缓路面不平而引起的车体振动(乘坐舒适性)以及操纵安全性。
随着汽车性能的不断完善与发展,对悬架也提出了更高的要求。
为了满足现代汽车对悬架提出的各种性能要求,悬架的结构形式一直在不断地更新和完善,尽管这样,传统的被动悬架依然受到许多限制,主要是难于同时改善在不平路面上高速行驶车辆的稳定性和行驶平顺性,即使采用优化设计也只能保证悬架在特定的激励发生变化后,悬架的性能亦随之发生变化。
事实上,被动悬架的潜力在目前已接近极限,为了克服传统的被动悬架对汽车性能改善的限制,近年来,汽车工业中出现的主动悬架成为了一条改善汽车悬架性能的新途径。
主动悬架控制系统是一个闭环控制系统,它能根据系统的运动状态和当前的激励情况,主动做出反应来控制系统的振动,在控制过程中,可以根据外界输入。
与系统状态的变化实时调节控制系统参数,以获得最好的减振效果。
主动悬架通常可分为:有源主动悬架和无源主动悬架两大类。
有源主动悬架一般又简称为主动悬架,主动悬架一般由执行机构和控制决策部分构成。
其基本原理是根据被控系统的动态特性,采用由外部输入能量的控制方法使被控系统实现减振。
主动悬架系统的执行部分一般包括液压执行机构、动力源等,执行机构上装有控制器,它执行决策部分的命令。
一般用力发生器完全地或部分地代替被动悬架中的弹簧和阻尼器。
力的大小由控制规律决定。
决策部分为一车载微机系统,包含各种传装置、测量仪器和信号反馈处理等系统。
微机接收来自传感器的信号,经预定控制程序处理后,由控制器发出命令,决定执行机构所需的动作,从而形成闭环控制。
主动悬架具有如下显著优点:(1)在悬架静扰度较小的前提下,能获得较低的固有频率和动扰度。
(2)悬架的动力学特性,不随汽车的载荷变化而改变。
`(3)对任何形式的激励均能做出快速的反应,并能根据激励的变化而使悬架变“硬”或变“软"。
无源主动悬架又称为半主动悬架,它由一个弹性元件和一个系数能在较大范围内调节的阻尼器构成。
悬架的减振方式和工作原理与被动悬架相近。
不同的是悬架参数在一定的范围内可以调节,以获得最佳减振性能。
在车辆悬架中,弹性元件除了用于吸收和存储能量外,还得承受车体的静止质量,所以,在无源条件下,改变刚度要比改变阻尼困难得多。
所以目前大部分无源主动悬架实际上仅讨论阻尼的控制。
与有源主动悬架相比,无源主动悬架的最大优点是工作是几乎不消耗动力,因此越来越受到人们的重视。
本文中所述主动悬架均指有源主动悬架。
主动悬架的出现已成为车辆工程理论和实践中的重大改革,它同时改善了车辆的舒适性和安全性。
但是主动悬架的执行机构需要选用高精度的伺服缸(如液压缸、油气缸),需要复杂的传感器和仪器设备,需要较多的外部动力来控制执行机构。
这就决定了主动悬架系统的结构复杂、研制成本较高,而且系统可靠性始终是值得研究提高的一个问题。
但考虑到主动悬架具有的多种其他悬架系统所无法比拟的优点,主动悬架将是今后车辆悬架系统发展的重要方向,因此对主动悬架控制进行研究具有很大的实际意义。
车辆主动悬架的研究在国内外,尤其在国外得到了广泛的开展,许多大学与汽车大公司对主动悬架进行了理论与实践的研究,并取得了很好的效果。
对主动悬架的研究主要从两个方面展开:一是各种可能模型的主动悬架及其控制规律的特性研究与被动悬架相比较。
二是控制规律的设计。
采用不同的控制规律和数学模型,所获得的悬架特性是不一样的,因此采用什么样的模型和控制规律以及与之对应的悬架特性是什么,是主动悬架研究的一个重要方面。
常见控制方法1自适应与自校正控制方法自适应与自校正悬架系统可看作一个可自动改变其控制律参数以适应于车辆当前的工作条件的控制系统。
自适应一般发生在车辆行驶过程中的,具有较慢统计特性变化的干扰,即路面输入干扰。
自校正是指对运行初始的静态干扰,如车身质量的变化。
自适应与自控制方法的基本思想是根据系统当前输入的相关信息,从预先计算并存储的参数中选取当前最合适的控制参数。
其设计关键的选择能准确,可靠地反映输入变化的参考变量。
只要变量选择得当,控制器即可快速,方便地相应改变控制参数以适应当前输入变化。
车辆参数变化可能显著影响系统的输出,这将会使控制器难以区别系统输出的变化是来自于路面输入的变化或是来自于车辆参数的变化,从而选择不到真正合适的控制参数。
考虑车辆参数变化较大的情况,可采用自适应于路面输入和车辆参数的变化的自校正控制系统。
2天棚阻尼器控制方法天棚阻尼器控制理论是由美国的 D.KARNOPP教授提出,在主动控制悬架的控制中被广泛采用。
天棚阻尼器控制设想将系统中的阻尼器移至车体与某固定的天棚之间。
就主动悬架而言,也就是要求有执行机构产生一个与车体的上下振动绝对速度成比例的控制力来衰减车体的振动。
传统的被动悬架可以认为是带阻尼器的双质量振动系统,当考虑到带宽和系统的共振特性时,传统被动悬架性能不能令人满意。
但带天棚阻尼器的汽车悬架,只要合理选择参数,可彻底消除系统共振现象。
3最优控制方法、鲁棒控制方法通过建立系统的状态方程式提出控制目标及加权系数,然后应用控制理论求解出所设目标下的最优控制方案。
较天棚阻尼器控制方法而言,它对系统中更多的变量的影响加以考虑,因而控制效果更好。
而且现代控制方式的应用,主要是在系统的控制软件方面做一些改善,并不增加系统的复杂性。
根据最优控制理论设计出的主动悬架,只对数学模型保证预期的性能。
但是对于实际的车辆系统,存在着各种不满足理想条件下的不确定因素。
首先实际的车辆系统都是非线性的和时变的系统。
其次实际系统是一个复杂的高维系统,建模时忽略了系统的高阶动态环节,如车架,轮胎的高阶模态,传感器,作动器的动态特性等。
所有这些因素的存在,都是实际系统偏离理论模型,从而使实际系统达不到理论所预言的性能。
因此有必要对系统作鲁棒性分析,即在各种模型误差及不确定扰动的情况下,研究系统的稳定性问题,并且研究系统在受到多大的扰动时仍能保持稳定,即系统的鲁棒性。
研究表明:指标的权重系数,状态测量方式,簧上质量和悬架刚度对系统的鲁棒稳定性有重要影响,而作动器和传感器的动态环节对其影响不大。
利用LTR方法可以对LQG系统进行鲁棒稳定性恢复,同时使系统的性能损失减到最低限度。
4预见控制方法天棚阻尼器控制方法和最优控制都是根据当时道路和车辆的状态反馈而决定控制力,而预见控制方法却对即将出现的情况加以考虑以求进一步提高系统的控制性能。
当遇到较大或突变干扰时,由于系统的能量供应峰值和元件响应速度的限制,很可能无法输出所需的控制力而达不到希望的控制效果。
而预见控制方法,由于通过某种方法提前检测到前方道路的状态和变化,使系统有余的采取相应的措施,有可能降低系统的能量消耗且大幅度改善系统控制性能,取得一举两得的效果。
根据预见信息的获取及利用方法的不同,可构成不同的预见控制系统,大致有如下两种:(1)对四轮全进行预见控制。
这种预见控制系统在车的前部设置有特制的预见传感器以测试前方道路的凹凸情况,然后将这些信息传至控制器。
控制器根据这些信息计算出控制指令,并将相应信号送至四个车轮中的每一个悬架机构。
从理论上看,这种系统应取得最为理想的控制效果,但需要设置特殊的传感器。
目前未见有批量实用车上市。
(2)利用前轮信息对后轮进行预见控制。
在这种控制方式中,两个前轮采用的仅为反馈控制,但通过前轮部分各种传感器所获得的信息,都被作为预见信息而送至控制器。
在决定后轮的控制指令时,控制器不仅考虑当时后轮传感器得到的各种信息,而且也根据当时的车速和前后轮间的跨距,并考虑前轮各传感器所获得的信息。
因此,在后轮的执行机构上,实行的是反馈加前向反馈的双作用控制。
这样一来无须增设特制的预见传感器,只须对控制系统软件作些修改,便可对后轮实施预见控制,从而提高后轮的减振效果,同时就整车而言可以减小车体的摆动,因而控制效果得到改善。
5神经网络控制近年来,采用神经网络的控制方法已日益引起人们的重视,神经网络具有自适应学习,并行分布处理和较强的鲁棒性,容错性等特点,因此适合于对复杂系统进行建模和控制。
可以建立一种神经网络自适应控制结构,有两个子神经网络,其中一个神经网络对于系统进行在线辩识。
在对被控对象进行在线辩识的基础上,应用另一个具有控制作用的神经网络,通过对控制网络的权系数进行在线调整,控制器经过学习,对悬架系统进行在线控制,使系统输出逐渐向期望值接近。
通过仿真计算可知,具有神经网络自适应控制的主动悬架能很好地减小汽车振动,提高行驶平顺性和稳定性。
2结论主动控制悬架能根据检测到的环境与车体状况,主动地调整和产生所需的控制力,从而可使乘坐舒适性和操纵安全性同时得到改善。
随着汽车技术的发展,特别是随着新的微型电路技术的发展,主动控制悬架的应用和研究也得到很快的发展。
主动悬架是今后汽车悬架发展的方向。
但由于系统复杂性和额外的能耗以及成本太高,主动悬架在商业上的应用还需要时间。
目前需要解决的技术问题主要有简化系统结构,提高可靠性,适应性和采用新型控制策略等。
随着主动悬架理论的成熟,执行机构,传感器和微处理器等硬件的发展,主动悬架会得到普遍的推广与应用。