第08节气体实验定律(Ⅱ)
- 格式:pptx
- 大小:20.64 MB
- 文档页数:17
第八节气体实验定律(Ⅱ)[学习目标] 1。
知道什么是等容变化,知道查理定律的内容和公式.2。
知道什么是等压变化,知道盖·吕萨克定律的内容和公式.3.了解等容变化的p-T图线和等压变化的V-T图线及其物理意义。
4.会用分子动理论和统计观点解释气体实验定律.一、查理定律[导学探究]打足气的自行车在烈日下曝晒,常常会爆胎,原因是什么?答案车胎在烈日下曝晒,胎内的气体温度升高,气体的压强增大,把车胎胀破.[知识梳理]1.等容变化:一定质量的某种气体,在体积不变时,压强随温度的变化叫做等容变化.2.查理定律(1)内容:一定质量的气体,在体积不变的情况下,压强p与热力学温度T成正比(填“正比”或“反比”).(2)表达式:p=CT或错误!=错误!。
(3)适用条件:气体的质量和体积不变.3.等容线:p-T图象和p-t图象分别如图1甲、乙所示.图14.从图1可以看出:p-T图象(或p-t图象)为一次函数图象,由此我们可以得出一个重要推论:一定质量的气体,从初状态(p、T)开始发生等容变化,其压强的变化量Δp与热力学温度的变化量ΔT 之间的关系为:错误!=错误!.[延伸思考]图1中斜率的不同能够说明什么问题?答案斜率与体积成反比,斜率越大,体积越小.二、盖·吕萨克定律1.等压变化:一定质量的某种气体,在压强不变时,体积随温度的变化叫做等压变化.2.盖·吕萨克定律(1)内容:一定质量的气体,在压强不变的情况下,体积V与热力学温度T成正比.(2)表达式:V=CT或错误!=错误!.(3)适用条件:气体的质量和压强不变.3.等压线:V-T图象和V-t图象分别如图2甲、乙所示.图24.从图2可以看出:V-T图象(或V-t图象)为一次函数图象,由此我们可以得出一个重要推论:一定质量的气体从初状态(V、T)开始发生等压变化,其体积的变化量ΔV与热力学温度的变化量ΔT 之间的关系为错误!=错误!.[延伸思考]图2中斜率的不同能够说明什么问题?答案斜率与压强成反比,斜率越大,压强越小.三、对气体实验定律的微观解释[导学探究]如何从微观角度来解释气体实验定律?答案从决定气体压强的微观因素上来解释,即气体分子的平均动能和气体分子的密集程度.[知识梳理]1.玻意耳定律的微观解释一定质量的某种理想气体,温度不变,分子的平均动能不变.体积减小,分子的密集程度增大,单位时间内撞击单位面积器壁的分子数增多,气体的压强增大.2.查理定律的微观解释一定质量的某种理想气体,体积不变,则分子的密集程度不变,温度升高,分子平均动能增大,分子撞击器壁的作用力变大,所以气体的压强增大.3.盖·吕萨克定律的微观解释一定质量的某种理想气体,温度升高,分子的平均动能增大,撞击器壁的作用力变大,而要使压强不变,则需使影响压强的另一个因素分子的密集程度减小,所以气体的体积增大。
气体实验定律一、气体实验定律1.玻意耳定律(1)内容: 一定质量的气体, 在温度不变的情况下, 它的压强跟体积成反比;或者说压强跟体积的乘积是不变的。
玻意耳定律是实验定律, 不论什么气体, 只要符合压强不太大(和大气压比较)、温度不太低(和室温比较)的条件, 都近似地符合这个定律。
(2)数学表达式: p1V1=p2V2或pV=恒量(3)等温线(P-V图像如图):2.查理定律(1)内容: 体积不变时, 一定质量气体的压强与热力学温度成正比。
查理定律是个实验定律。
不论什么气体, 只要符合压强不太大(和大气压比较)、温度不太低(和室温比较)的条件, 都近似地符合这个定律。
(2)数学表达式:(3)等容线(P-T图像):2.盖·吕萨克定律(1)内容: 压强不变时, 一定质量气体的体积与热力学温度成正比。
盖·吕萨克定律是个实验定律。
不论什么气体, 只要符合压强不太大(和大气压比较)、温度不太低(和室温比较)的条件, 都近似地符合这个定律。
(2)数学表达式:(3)等压线(V-T图像):【典型例题】例 1.一个气泡从水底升到水面时, 它的体积增大为原来的3倍, 设水的密度为ρ=1×103kg/m3, 大气压强p0=1.01×105Pa, 水底与水面的温度差不计, 求水的深度. 取g=10m/s2.例2.要求瓶内氢气在500℃时的压强不超过1atm, 则在20℃下对瓶子充气时, 瓶内压强最多为多少?瓶子的热膨胀不计.例 3.内壁光滑的导热气缸竖直浸放在盛有冰水混合物的水槽中, 用不计质量的活塞封闭压强为1.0×l05Pa、体积为2.0×l0-3m3的理想气体. 现在活塞上方缓缓倒上沙子, 使封闭气体的体积变为原来的一半, 然后将气缸移出水槽, 缓慢加热, 使气体温度变为127℃.(1)求气缸内气体的最终体积;(2)在p-V图上画出整个过程中气缸内气体的状态变化. (大气压强为1.0×l05Pa)【反馈练习】1.两个半球壳拼成的球形容器内部已抽成真空, 球形容器的半径为R, 大气压强为p, 使两个半球壳沿图中箭头方向互相分离, 应施加的力F至少为[]A.4πR2pB.2πR2pC.πR2pD.πR2p2、一个气泡从水面下40m深处升到水面上, 假定水的温度一定, 大气压强为76cmHg, 则气泡升到水面时的体积约为原来的[]A.3倍B.4倍C.5倍D.5.5倍3、密闭容器中装有某种理想气体, 当温度从t1=50℃升到t2=100℃时, 气体的压强从p1变化到p2, 则[]A.p2/p1=2B.p2/p1=1/2C.p2/p1=1D.1<p2/p1<24、一定质量的气体, 处于平衡状态I, 现设法使其温度降低而压强增大, 达到平衡状态II, 则[ ]A.状态I时气体的密度比状态II时的大B.状态I时分子的平均动能比状态lI时的入C.状态I时分子间的平均距离比状态II时的大D.状态I时每个分子的动能都比状态II时的分子的平均动能大5、竖直的玻璃管, 封闭端在上, 开口端在下, 中间有一段水银, 若把玻璃管稍倾斜一些, 但保持温度不变, 则:[ ]A.封闭在管内的气体压强增大B、封闭在管内的气体体积增大C.封闭在管内的气体体积减小D.封闭在管内的气体体积不变6.如图所示, 两端开口的U形玻璃管中, 左右两侧各有一段水银柱, 水银部分封闭着一段空气, 己知右侧水银还有一段水平部分, 则:(1)若向右侧管中再滴入少许水银, 封闭气体的压强将.(2)若向左侧管中再滴入少许水银, 封闭气体的压强将, 右侧水银的水平部分长度变7、(1)下图中甲、乙均匀玻璃管中被水银封闭的气体压强分别为P1.P2.P3, 己知大气压为76cmHg, hl=2cm, h2=3cm, 求P1、P2、P3各为多少?(2)如图设气缸的质量为M, 横截面为S, 活塞的质量为m, 当气缸搁于地上时, 里面气体的压强为____. 当通过活塞手柄提起气缸时, 被封闭的气体的压强为____. (已知大气压强为p0)8、盛有氧气的钢瓶, 在室内(17℃)测得瓶内氧气的压强是9.31×106Pa当把钢瓶搬到温度是-13℃的室外时, 测得瓶内氧气的压强变为8.15×106Pa. 试问钢瓶是否漏气?为什么?9、如图所示, 截面积S=0.01m2的气缸内有一定质量的气体被光滑活塞封闭. 已知外界大气压p0=105Pa, 活塞重G=100N. 现将气缸倒过来竖直放置, 设温度保持不变, 气缸足够长. 求气缸倒转后气体的体积是倒转前的几倍?10、如图所示, 一端封闭横截面积均为S、长为b的细管弯成L形, 放在大气中, 管的竖直部分长度为a, 大气压强为P0, 现在开口端轻轻塞上质量为m, 横截面积也为S的小活塞。
高中物理教材目录(人教版)目录-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN高中物理教材目录(人教版)必修一第一章运动的描述第一节认识运动第二节时间位移第三节记录物体的运动信息第四节物体运动的速度第五节速度变化的快慢加速度第六节用图象描述直线运动本章复习与测试第二章探究匀变速直线运动规律第一节探究自由落体运动第二节自由落体运动规律第三节从自由落体到匀变速直线运动第四节匀变速直线运动与汽车行驶本章复习与测试第三章研究物体间的相互作用第一节探究形变与弹力的关系第二节研究摩擦力第三节力的等效和替换第四节力的合成与分解第五节共点力的平衡条件第六节作用力与反作用力本章复习与测试第四章力与运动第一节伽利略的理想实验与牛顿第一定律第二节影响加速度的因素第三节探究物体运动与受力的关系第四节牛顿第二定律第五节牛顿第二定律的应用第六节超重和失重第七节力学单位本章复习与测试必修二第一章抛体运动第01节什么是抛体运动第02节运动的合成与分解第03节竖直方向的抛体运动第04节平抛物体的运动第05节斜抛物体的运动本章复习与检测第二章圆周运动第01节匀速圆周运动第02节向心力第03节离心现象及其应用本章复习与检测第三章万有引力定律及其应用第01节万有引力定律第02节万有引力定律的应用第03节飞向太空本章复习与检测第四章机械能和能源第01节功第02节动能势能第03节探究外力做功与物体动能变化第04节机械能守恒定律第05节验证机械能守恒定律第06节能量能量转化与守恒定律第07节功率第08节能源的开发与利用本章复习与检测第五章经典力学与物理学的革命第01节经典力学的成就与局限性第02节经典时空观与相对论时空观第03节量子化现象第04节物理学—人类文明进步的阶梯本章复习与检测选修3-1第一章电场第01节认识电场第02节探究静电力第03节电场强度第04节电势和电势差第05节电场强度与电势差的关系第06节示波器的奥秘第07节了解电容器第08节静电与新技术本章复习与测试第二章电路第01节探究决定导线电阻的因素第02节对电阻的进一步研究第03节研究闭合电路第04节认识多用电表第05节电功率第06节走进门电路第07节了解集成电路本章复习与测试第三章磁场第01节我们周围的磁现象第02节认识磁场第03节探究安培力第04节安培力的应用第05节研究洛伦兹力第06节洛伦兹力与现代技术本章复习与测试选修3-2第一章电磁感应第01节电磁感应现象第02节研究产生感应电流的条件第03节探究感应电流的方向第04节法拉第电磁感应定律第05节法拉第电磁感应定律应用(一)第06节法拉第电磁感应定律应用(二)第07节自感现象及其应用第08节涡流现象及其应用本章复习与检测第二章交变电流第三章第01节认识变交电流第四章第02节交变电流的描述第五章第03节表征交变电流的物理量第六章第04节电感器对交变电流的作用第七章第05节电容器对交变电流的作用第八章第06节变压器第九章第07节远距离输电第十章本章复习与检测第三章传感器第01节认识传感器第02节探究传感器的原理第03节传感器的应用第04节用传感器制作自控装置第05节用传感器测磁感应强度本章复习与检测选修3-3第一章分子动理论第01节物体是由大量分子组成的第02节测量分子的大小第03节分子的热运动第04节分子间的相互作用力第05节物体的内能第06节气体分子运动的统计规律本章复习与检测第二章固体、液体和气体第三章第01节晶体的宏观特征第四章第02节晶体的微观结构第五章第03节固体新材料第六章第04节液体的性质液晶第七章第05节液体的表面张力第八章第06节气体状态量第九章第07节气体实验定律(Ⅰ)第十章第08节气体实验定律(Ⅱ)第十一章第09节饱和蒸汽空气的湿度第十二章本章复习与检测第十三章热力学基础第十四章第01节内能功热量第十五章第02节热力学第一定律第十六章第03节能量守恒定律第十七章第04节热力学第二定律第十八章第05节能源与可持续发展第十九章第06节研究性学能源的开发利用第二十章本章复习与测试选修3-4第一章机械振动第01节初识简谐运动第02节简谐运动的力和能量特征第03节简谐运动的公式描述第04节探究单摆的振动周期第05节用单摆测定重力加速度第06节受迫振动共振本章复习与检测第二章机械波第01节机械波的产生和传播第02节机械波的图象第03节惠更斯原理及其应用第04节波的干涉与衍射第05节多普勒效应本章复习与检测第三章电磁振荡与电磁波第四章第01节电磁振荡第02节电磁场与电磁波第03节电磁波的发射、传播和接收第04节电磁波谱第05节电磁波的应用本章复习与检测第四章光第01节光的折射定律第02节测定介质的折射率第03节认识光的全反射现象第04节光的干涉第05节用双缝干涉实验测定光的波长第06节光的衍射和偏振第07节激光本章复习与检测第五章相对论第01节狭义相对论的基本原理第02节时空相对性第03节质能方程与相对论速度合成第04节广义相对论第05节宇宙学简介本章复习与检测。
02分层作业5 气体实验定律(Ⅱ)A组必备知识基础练1.一定质量的气体,在体积不变的情况下,温度由0 ℃升高到10 ℃时,其压强的增加量为Δp1,当它由100 ℃升高到110 ℃时,其压强的增加量为Δp2,则Δp1与Δp2之比是( )A.1∶1B.1∶10C.10∶110D.110∶102.一定质量气体在状态变化前后对应图中A、B两点,则与A、B两状态所对应的分别等于V A、V B的大小关系是( )A.V A=V BB.V A>V BC.V A<V BD.无法确定3.(多选)如图,一内壁光滑、竖直放置的密闭气缸内,有一个质量为m的活塞将气缸内气体分为上、下两部分:气体A和B,原来活塞恰好静止,两部分气体的温度相同,现在将两部分气体同时缓慢升高相同温度,则( )A.活塞将静止不动B.活塞将向上移动C.A气体的压强改变量比B气体的压强改变量大D.A气体的压强改变量与B气体的压强改变量相同4.民间常用“拔火罐”来治疗某些疾病,方法是将点燃的纸片放入—个小罐内,当纸片燃烧完时,迅速将火罐开口端紧压在皮肤上,火罐就会紧紧地“吸”在皮肤上.对其原因下列说法中正确的是( )A.当火罐内的气体温度不变时,体积减小,压强增大B.当火罐内的气体体积不变时,温度降低,压强减小C.当火罐内的气体压强不变时,温度降低,体积减小D.当火罐内的气体质量不变时,压强增大,体积减小5.研究表明,新冠病毒耐寒不耐热,温度在超过56 ℃时,30分钟就可以灭活.如图所示,含有新冠病毒的气体被轻质绝热活塞封闭在粗细均匀的绝热气缸下部a内,气缸顶端有一绝热阀门K,气缸底部接有电热丝E,气缸的总高度h=90 cm.a缸内被封闭气体初始温度t1=27 ℃,活塞与底部的距离h1=60 cm,活塞和气缸间的摩擦不计.若阀门K始终打开,电热丝通电一段时间,稳定后活塞与底部的距离h2=66 cm.关于上述变化过程,下列说法正确的是( )A.b气缸中逸出的气体占原b气缸中气体的16B.a气缸中的气体吸收热量,压强增大C.稳定后,a气缸内的气体温度为50 ℃D.稳定后,保持该温度不变再持续30分钟,a气缸内新冠病毒能够被灭活6.一定质量的气体由状态A经过状态B变为状态C的V-T图像如图甲所示,已知气体在状态A时的压强是1.5×105 Pa.(1)根据图像提供的信息计算图甲中T A对应的温度值.(2)请在图乙坐标系中作出该气体由状态A经过状态B变为状态C的p-T 图像,并在图线相应位置上标出字母A、B、C.如果需要计算才能确定有关坐标值,请写出计算过程.7.某品牌的可加热饭盒如图甲所示,饭盒盖密封性良好且饭盒盖上有一排气口,饭盒内部横截面积为S,质量、厚度均不计的饭盒盖与玻璃饭盒底部之间封闭了一定质量的气体,饭盒盖与玻璃饭盒底部之间的距离为L且饭盒盖固定不动,可以将其看成是一导热性能良好的气缸,如图乙所示.气体的初始温度为T0=300 K,初始压强为大气压强,已知大气压强为p0.现缓慢加热饭盒使其内部气体温度达到360 K.(1)求此时封闭气体的压强.(2)打开排气口,设此过程中饭盒内气体温度不变,放出部分气体,使得饭盒内气体压强与外界大气压强相等,求排出气体与原有气体的质量比.B组关键能力提升练8.若室内生起炉子后温度从7 ℃升高到47 ℃,而室内气压不变,则此时室内的空气质量减少了( )A.11.5%B.12.5%C.14.3%D.16.8%9.如图所示,上端开口的光滑圆柱形气缸竖直放置,活塞将气体封闭在气缸内.设有a、b两卡环,使活塞只能向上滑动.开始时活塞搁在a、b上,现缓慢加热缸内气体,直到活塞刚要离开卡环.能正确反映缸内气体体积压强变化的V-1图像是( )p10.如图所示,一向右开口的气缸放置在水平地面上,活塞可无摩擦移动且不漏气,气缸中间位置有小挡板.初始时,外界大气压为p0,活塞紧压小挡板处,现缓慢升高缸内气体温度,则下列p-T图像能正确反映缸内气体压强变化情况的是( )11.(多选)如图,一两端封闭的玻璃管在竖直平面内倾斜放置,与水平面间的夹角为θ,一段水银柱将管内一定质量气体分割成两部分.在下列各种情况中,能使管中水银柱相对玻璃管向a端移动的情况是( )A.降低环境温度B.在竖直平面内以b点为圆心逆时针缓慢转动玻璃管C.保持θ角不变,使玻璃管减速上升D.以过b端的竖直轴为转动轴转动玻璃管12.(安徽卷)某人驾驶汽车从北京到哈尔滨,在哈尔滨发现汽车的某个轮胎内气体的压强有所下降(假设轮胎内气体的体积不变,且没有漏气,可视为理想气体).于是在哈尔滨给该轮胎充入压强与大气压相同的空气,使其内部气体的压强恢复到出发时的压强(假设充气过程中,轮胎内气体的温度与环境温度相同,且保持不变).已知该轮胎内气体的体积V0=30 L,从北京出发时,该轮胎内气体的温度t1=-3 ℃,压强p1=2.7×105 Pa.哈尔滨的环境温度t2=-23 ℃,大气压强p0取1.0×105 Pa.求:(1)在哈尔滨时,充气前该轮胎内气体的压强.(2)充进该轮胎的空气体积.13.如图,一固定的竖直气缸由一大一小两个同轴圆筒组成,两圆筒中各有一个活塞.已知大活塞的质量为m1=2.50 kg,横截面积为S1=80.0 cm2;小活塞的质量为m2=1.50 kg,横截面积为S2=40.0 cm2;两活塞用刚性轻杆连接,间距为L=40.0 cm;气缸外大气的压强为p0=1.00×105 Pa,温度为T=303 K,两活塞间封闭气体的温度为T1=495 K,初始时大活塞与大圆筒底部相距L2刚开始活塞处于平衡态.现让气缸内气体温度缓慢下降,活塞缓慢下移.忽略两活塞与气缸壁之间的摩擦,重力加速度大小g取10 m/s2,求:(1)刚开始时,气缸中的气体压强;(2)在大活塞与大圆筒底部接触前的瞬间,气缸内封闭气体的温度;(3)缸内封闭的气体与缸外大气达到热平衡时,缸内封闭气体的压强.参考答案分层作业5 气体实验定律(Ⅱ)1.A 等容变化,这四个状态在同一条等容线上,因ΔT相同,所以Δp也相同.2.C 可通过A、B两点分别与原点O相连,得到两条等容线,线上各点所对应的气体体积分别等于V A、V B,由于p A对应的等容线的斜率大,表示它的体积小,故选C.3.BD 假设活塞不动,则两部分气体都发生等容变化.根据Δpp =ΔTT可得Δp=pTΔT,因为两部分气体的温度相同,现在将两部分气体同时缓慢升高相同温度,但下面气体初态压强大,则下面气体增加压强大,故活塞将向上移动,A错误,B正确;初态p A+mgS =p B,最终稳定后,p A'+mgS=p B',所以p A'-p A=p B'-p B,A气体的压强改变量与B气体的压强改变量相同,故C错误,D正确.4.B 纸片燃烧时,罐内气体的温度升高,将罐压在皮肤上后,封闭气体的体积不再改变,温度降低时,由p∝T知封闭气体压强减小,在外界大气压作用下罐紧紧“吸”在皮肤上,B选项正确.5.D 由题意可知,原b气缸的高度h1'=h-h1=30cm,当a气缸稳定后活塞与底部的距离h2=66cm,此时b气缸的高度h2'=h-h2=24cm,设S为活塞的面积,那么b气缸中逸出的气体占原b气缸中气体为ℎ1'S-ℎ2'Sℎ1'S =15,故A错误;由于K始终打开,a气缸中的气体的压强不变,可得V1t1+273=V2t2+273,代值求得t2=57℃,B错误,C错误,D正确.6.答案(1)200 K (2)见解析解析(1)由图甲所示图像可知,A与B的连线所在的直线过原点O,所以A→B是一个等压过程,即p A=p B=1.5×105Pa由图像可知,V A=0.4m3,V B=V C=0.6m3,T B=300K,T C=400K从A到B过程,由盖-吕萨克定律得V AT A =V BT B解得T A=200K.(2)从B到C为等容过程,由查理定律得p BT B =p CT C解得p C=2×105Pa,气体状态变化图像如图所示.7.答案(1)1.2p0(2)16解析(1)加热饭盒时,玻璃饭盒内气体体积不变,由查理定律有p0T0=p1T1解得p1=1.2p0.(2)排气过程中封闭气体做等温变化,设最终体积为V1,则V0=SLp1V0=p0V1解得V1=1.2SL同温度、同压强下同种气体的质量比等于体积比,设排出气体的质量为Δm,气体原来的质量为m0,则Δmm0=V1-V0V1联立解得Δmm0=16.8.B 根据盖-吕萨克定理可知V0T0=VT,室内的空气质量减少了V-V0V=18=12.5%,故选B.9.C 由题可知,气体做等容变化,由查理定律pT=C可知,当气体的体积不变,温度升高时,气体的压强增大,则1p减小.由此可知,A、B、D错误,C正确.10.B 在p-T图像中,开始一段时间内,随着温度的升高,气体发生等容变化,即pT=恒量,图像为一条过坐标原点的直线;当压强增加到内外压强相等时,温度再升高,活塞将向右移动,气体发生等压变化,图像是一条平行于温度轴的直线,因此A、C、D错误,B正确.11.CD 假定两段空气柱的体积不变,即V1、V2不变,初始温度为T,当温度降低ΔT时,空气柱1的压强由p1减至p1',则Δp1=p1-p1',空气柱2的压强由p2减至p2',Δp2=p2-p2',由查理定律得Δp1=p1T ΔT、Δp2=p2TΔT,因为p2=p1+h>p1,所以Δp1<Δp2,即水银柱应向b移动,故A错误;在竖直平面内以b点为轴逆时针缓慢转动玻璃管,使θ角变大,如果将玻璃管竖直的时候,很明显增大了对下部气体的压力,向b端移动,故B错误;玻璃管竖直向上减速运动,加速度向下,把加速度沿管方向分解和垂直方向分解,有沿管向下的加速度,说明上部分气体压强增大,体积应减小,故水银柱向a端移动,故C正确;以竖直轴转动,水银柱做圆周运动,需要向心力,根据牛顿第二定律得上部气体对水银柱的压力要增大,所以水银柱应向a移动.故D 正确.12.答案(1)2.5×105 Pa (2)6 L解析(1)由查理定律可知p1T1=p2T2其中p1=2.7×105Pa,T1=(273-3)K=270K,T2=(273-23)K=250K代入数据解得,在哈尔滨时,充气前该轮胎内气体的压强为p2=2.5×105Pa.(2)由玻意耳定律可知p2V0+p0V=p1V0代入数据解得,充进该轮胎的空气体积为V=6L.13.答案(1)1.1×105 Pa(2)330 K(3)1.01×105 Pa解析(1)由于刚开始活塞处于平衡状态,对大活塞、杆和小活塞整体进行受力分析,由平衡条件可得p0S1+(m1+m2)g+p1S2=p0S2+p1S1代入数据解得此时气缸中的气体压强p1=1.1×105Pa.(2)大活塞与大圆筒底部接触前气体发生等压变化,气体的状态参量V1=L-L2S2+L2S1=40-402×40cm3+402×80cm3=2400cm3T1=495K,V2=S2L=40×40cm3=1600cm3由盖-吕萨克定律得V1T1=V2T2解得T2=330K.(3)大活塞与大圆筒底部接触后到气缸内气体与气缸外气体温度相等过程中气体发生等容变化,大活塞刚刚与大圆筒底部接触时,由平衡条件得p0S1+p2S2+(m1+m2)g=p2S1+p0S2代入数据解得p2=1.1×105PaT2=330K,T3=T=303K由查理定律得p2T2=p3T2解得p3=1.01×105Pa.。