软件技术基础:第五章 二叉树和树
- 格式:ppt
- 大小:1015.00 KB
- 文档页数:67
•1、树的基本概念树(tree)是一种简单的非线性结构。
在树结构中,每一个结点只有一个前件,称为父结点,没有前件的结点只有一个,称为树的根结点。
每一个结点可以有多个后件,它们称为该结点的子结点。
没有后件的结点称为叶子结点。
在树结构中,一个结点所拥有的后件个数称为该结点的度。
叶子结点的度为 0。
在树中,所有结点中的最大的度称为树的度。
• 2、二叉树及其基本性质(1)二叉树的定义二叉树是一种很有用的非线性结构,具有以下两个特点:①非空二叉树只有一个根结点;②每一个结点最多有两棵子树,且分别称为该结点的左子树和右子树。
由以上特点可以看出,在二叉树中,每一个结点的度最大为2,即所有子树(左子树或右子树)也均为二叉树,而树结构中的每一个结点的度可以是任意的。
另外,二叉树中的每个结点的子树被明显地分为左子树和右子树。
在二叉树中,一个结点可以只有左子树而没有右子树,也可以只有右子树而没有左子树。
当一个结点既没有左子树也没有右子树时,该结点即为叶子结点。
(2)二叉树的基本性质二叉树具有以下几个性质:性质1:在二叉树的第k层上,最多有2k-1(k≥1)个结点;性质2:深度为m的二叉树最多有2m-1个结点;性质3:在任意一棵二叉树中,度为0的结点(即叶子结点)总是比度为2的结点多一个。
性质4:具有n个结点的二叉树,其深度至少为[log2n]+1,其中[log2n]表示取log2n的整数部分。
在二叉树的遍历中,无论是前序遍历,中序遍历还是后序遍历,二叉树的叶子结点的先后顺序都是不变的。
3、满二叉树与完全二叉树满二叉树是指这样的一种二叉树:除最后一层外,每一层上的所有结点都有两个子结点。
在满二叉树中,每一层上的结点数都达到最大值,即在满二叉树的第k层上有2k-1个结点,且深度为m的满二叉树有2m-1个结点。
完全二叉树是指这样的二叉树:除最后一层外,每一层上的结点数均达到最大值;在最后一层上只缺少右边的若干结点。
对于完全二叉树来说,叶子结点只可能在层次最大的两层上出现:对于任何一个结点,若其右分支下的子孙结点的最大层次为p,则其左分支下的子孙结点的最大层次或为p,或为p+1。
数据结构树和二叉树知识点总结
1.树的概念:树是一种非线性的数据结构,由节点和边构成,每个节点只能有一个父节点,但可以有多个子节点。
2. 二叉树的概念:二叉树是一种特殊的树结构,每个节点最多只有两个子节点,一个是左子节点,一个是右子节点。
3. 二叉树的遍历:二叉树的遍历分为前序遍历、中序遍历和后序遍历三种方式。
前序遍历是先访问根节点,再访问左子树,最后访问右子树;中序遍历是先访问左子树,再访问根节点,最后访问右子树;后序遍历是先访问左子树,再访问右子树,最后访问根节点。
4. 二叉搜索树:二叉搜索树是一种特殊的二叉树,它满足左子树中所有节点的值均小于根节点的值,右子树中所有节点的值均大于根节点的值。
因此,二叉搜索树的中序遍历是一个有序序列。
5. 平衡二叉树:平衡二叉树是一种特殊的二叉搜索树,它的左子树和右子树的高度差不超过1。
平衡二叉树的插入和删除操作可以保证树的平衡性,从而提高树的查询效率。
6. 堆:堆是一种特殊的树结构,它分为最大堆和最小堆两种。
最大堆的每个节点的值都大于等于其子节点的值,最小堆的每个节点的值都小于等于其子节点的值。
堆常用于排序和优先队列。
7. Trie树:Trie树是一种特殊的树结构,它用于字符串的匹配和检索。
Trie树的每个节点代表一个字符串的前缀,从根节点到叶子节点的路径组成一个完整的字符串。
以上是数据结构树和二叉树的一些基本知识点总结,对于深入学
习数据结构和算法有很大的帮助。
二叉树知识点总结二叉树是一种常见的数据结构,它由节点和边组成,每个节点最多有两个子节点。
以下是关于二叉树的知识点总结。
1. 二叉树的基本概念二叉树是一种树形结构,它由节点和边组成。
每个节点最多有两个子节点,分别称为左子节点和右子节点。
如果一个节点没有子节点,则称其为叶子节点。
二叉树可以为空。
2. 二叉树的遍历方式遍历是指按照一定顺序访问二叉树中的所有节点。
常见的遍历方式有前序遍历、中序遍历和后序遍历。
前序遍历:先访问当前节点,然后递归访问左子树和右子树。
中序遍历:先递归访问左子树,然后访问当前节点,最后递归访问右子树。
后序遍历:先递归访问左子树和右子树,最后访问当前节点。
3. 二叉搜索树二叉搜索树(Binary Search Tree)也称为有序二叉树或排序二叉树。
它是一种特殊的二叉树,在满足以下条件的情况下被称为“搜索”:对于任意节点,其左子树中的所有节点的值都小于该节点的值。
对于任意节点,其右子树中的所有节点的值都大于该节点的值。
左右子树也分别为二叉搜索树。
二叉搜索树支持快速查找、插入和删除操作。
它还有一些变种,如平衡二叉搜索树(AVL Tree)和红黑树(Red-Black Tree)等。
4. 二叉堆二叉堆是一种特殊的完全二叉树,它分为最大堆和最小堆两种类型。
最大堆满足父节点的值大于等于其子节点的值,最小堆满足父节点的值小于等于其子节点的值。
在最大堆中,根节点是整个堆中最大的元素;在最小堆中,根节点是整个堆中最小的元素。
二叉堆常用来实现优先队列(Priority Queue),即按照一定优先级顺序处理元素。
5. 二叉树常见问题5.1 判断是否为平衡二叉树平衡二叉树(Balanced Binary Tree)是指任意节点左右子树高度差不超过1的二叉搜索树。
判断一个二叉搜索树是否为平衡二叉树可以通过递归遍历每个节点,计算其左右子树的高度差。
5.2 判断是否为完全二叉树完全二叉树(Complete Binary Tree)是指除了最后一层外,其他层都是满的,并且最后一层的节点都靠左排列的二叉树。
二叉树知识点总结二叉树是数据结构中常见且重要的一种形式,它可以用于解决许多实际问题,并在算法和编程中扮演着重要的角色。
本文将对二叉树的基本概念、性质以及常见的应用进行总结。
一、基本概念和性质1. 二叉树的定义:二叉树是一种特殊的树形结构,每个节点最多有两个子节点,分别称为左子节点和右子节点。
左子节点小于等于父节点,右子节点大于等于父节点。
2. 二叉树的特点:二叉树具有递归性质,即每个子节点都可以视为一棵二叉树。
同时,二叉树的遍历方式有前序遍历、中序遍历、后序遍历和层次遍历等。
3. 二叉树的性质:a. 二叉树的第i层至多有2^(i-1)个节点;b. 深度为k的二叉树至多有2^k - 1个节点;c. 对于任意一棵二叉树,若其叶节点数为n0,度为2的节点数为n2,则n0 = n2 + 1;d. 具有n个节点的完全二叉树的深度为(log2 n) + 1。
二、二叉树的应用1. 二叉搜索树:二叉搜索树(BST)是一种特殊的二叉树,它满足左子节点小于父节点,右子节点大于父节点的条件。
BST的特性使得查找、插入和删除操作的时间复杂度为O(log n),因此在数据库、图形处理等领域经常被使用。
2. 平衡二叉树:由于BST的特性,如果数据插入的顺序不合理,可能导致树的高度过高,使得操作效率降低。
为了解决这个问题,人们提出了平衡二叉树(AVL)的概念。
AVL树通过旋转操作保持树的平衡,使得左右子树的高度差不超过1,从而保证了操作的效率。
3. 红黑树:红黑树是一种自平衡的二叉查找树,它在AVL树的基础上做了一些调整。
红黑树的特点是节点可以为红色或黑色,并且满足以下规则:根节点为黑色,叶节点为黑色且为空,红色节点的两个子节点都是黑色。
红黑树在C++标准库(STL)中的map和set等容器中得到了广泛应用。
4. 堆:堆是一种完全二叉树,它可以分为大顶堆和小顶堆。
大顶堆中,父节点的值大于或等于两个子节点的值,小顶堆则相反。
堆在排序算法中有广泛应用,如堆排序、优先队列等。
常见基本数据结构——树,⼆叉树,⼆叉查找树,AVL树常见数据结构——树处理⼤量的数据时,链表的线性时间太慢了,不宜使⽤。
在树的数据结构中,其⼤部分的运⾏时间平均为O(logN)。
并且通过对树结构的修改,我们能够保证它的最坏情形下上述的时间界。
树的定义有很多种⽅式。
定义树的⾃然的⽅式是递归的⽅式。
⼀棵树是⼀些节点的集合,这个集合可以是空集,若⾮空集,则⼀棵树是由根节点r以及0个或多个⾮空⼦树T1,T2,T3,......,Tk组成,这些⼦树中每⼀棵的根都有来⾃根r的⼀条有向的边所连接。
从递归的定义中,我们发现⼀棵树是N个节点和N-1条边组成的,每⼀个节点都有⼀条边连接⽗节点,但是根节点除外。
具有相同⽗亲的节点为兄弟,类似的⽅法可以定义祖⽗和孙⼦的关系。
从节点n1到nk的路径定义为节点n1,n2,...,nk的⼀个序列,并且ni是ni+1的⽗亲。
这个路径的长是路径上的边数,即k-1。
每个节点到⾃⼰有⼀条长为0的路径。
⼀棵树从根到叶⼦节点恰好存在⼀条路径。
对于任意的节点ni,ni的深度为从根到ni的唯⼀路径长。
ni的⾼是从ni到⼀⽚叶⼦的最长路径的长。
因此,所有的树叶的⾼度都是0,⼀棵树的⾼等于它的根节点的⾼。
⼀棵树的深度总是等于它最深叶⼦的深度;该深度等于这棵树的⾼度。
树的实现实现树的⼀种⽅法可以是在每⼀个节点除数据外还要有⼀些指针,使得该节点的每⼀个⼉⼦都有⼀个指针指向它。
但是由于每个节点的⼉⼦树可以变化很⼤⽽且事先不知道,故在各个节点建⽴⼦节点的链接是不可⾏的,这样将会浪费⼤量的空间。
实际的做法很简单:将每个节点的所有⼉⼦都放在树节点的链表中。
下⾯是典型的声明:typedef struct TreeNode *PtrToNodestruct TreeNode{ ElementType Element; PtrToNode FirstChild; PtrToNode NextSibling}下⾯是⼉⼦兄弟表⽰法的图⽰:树的遍历及应⽤⼀个常见的使⽤是操作系统中的⽬录结构。
二叉树的基本概念一、引言二叉树是计算机科学中最基础的数据结构之一,它是由节点和边组成的树形结构,其中每个节点最多有两个子节点。
在计算机科学中,二叉树被广泛应用于搜索、排序、编译器等领域。
本文将详细介绍二叉树的基本概念。
二、定义二叉树是一种特殊的树形结构,其中每个节点最多有两个子节点。
通常将左子节点称为左子树,右子节点称为右子树。
三、基本术语1. 根节点:二叉树的顶层节点称为根节点。
2. 叶子节点:没有任何子节点的节点称为叶子节点。
3. 父节点和子节点:一个父亲可以有多个儿子,但是一个儿子只能有一个父亲。
4. 兄弟:具有相同父亲的两个或多个儿子称为兄弟。
5. 深度:从根到某个节点所经过的边数称为该节点的深度。
6. 高度:从某个节点到其所有后代中深度最大者加一(即包括该结点)称为该结点所在的二叉树的高度。
四、分类1. 满二叉树:一棵深度为k且有2^k-1个节点的二叉树称为满二叉树。
2. 完全二叉树:对于一棵深度为k的,有n个节点的二叉树,当且仅当其每一个节点都与深度为k的满二叉树中编号从1至n的节点一一对应时,称之为完全二叉树。
3. 平衡二叉树:平衡二叉树也称为AVL树,是一种自平衡的排序二叉搜索树。
它具有以下性质:左右子树高度差不超过1,并且左右子树也是平衡二叉树。
五、遍历遍历是指按照某种顺序访问每个节点。
常见的遍历方式有三种:1. 前序遍历(Pre-order):先访问当前节点,再依次遍历左子树和右子树。
2. 中序遍历(In-order):先依次遍历左子树,再访问当前节点,最后遍历右子树。
3. 后序遍历(Post-order):先依次遍历左子树和右子树,最后访问当前节点。
六、应用1. 搜索算法:在搜索算法中,二叉树被广泛应用于二分查找。
2. 排序算法:在排序算法中,二叉树被广泛应用于堆排序和快速排序。
3. 编译器:在编译器中,二叉树被广泛应用于语法分析和代码生成。
七、总结本文介绍了二叉树的基本概念、术语、分类、遍历以及应用。
树、⼆叉树、满⼆叉树、完全⼆叉树概念分清⾃由树⾃由树是⼀个连通的,⽆回路的⽆向图。
令G=(V,E)为⼀个⽆向图。
下⾯的表述是等价的。
1) G是⾃由树。
2) G中任意两个顶点由唯⼀⼀条简单路径得到。
3) G是连通的,但从E中去掉任何边后得到的图都是⾮连通的。
4) G是⽆回路的,且|E|=|V|-1。
5) G是连通的,且|E|=|V|-1。
6) G是⽆回路的,但添加任何边到E中得到的图包含回路。
⼆叉树在计算机科学中,⼆叉树是每个节点最多有两个⼦树的树结构。
通常⼦树被称作“左⼦树”(left subtree)和“右⼦树”(right subtree)。
⼆叉树的每个结点⾄多只有⼆棵⼦树(不存在度⼤于2的结点),⼆叉树的⼦树有左右之分,次序不能颠倒。
⼆叉树的第i层⾄多有2^(i-1)个结点;深度为k的⼆叉树⾄多有2^k-1个结点;(等⽐数列1+2+4+…+2^(k-1) = 2^k-1)。
对任何⼀棵⼆叉树T,如果其终端结点数为n0,度为2的结点数为n2,则n0 = n2 + 1。
树和⼆叉树的三个主要差别:1) 树的结点个数⾄少为1,⽽⼆叉树的结点个数可以为0;2) 树中结点的最⼤度数没有限制,⽽⼆叉树结点的最⼤度数为2;3) 树的结点⽆左、右之分,⽽⼆叉树的结点有左、右之分。
满⼆叉树⼀棵深度为k,且有2^k-1个节点的树是满⼆叉树。
另⼀种定义:除了叶结点外每⼀个结点都有左右⼦叶且叶⼦结点都处在最底层的⼆叉树。
这两种定义是等价的。
从树的外形来看,满⼆叉树是严格三⾓形的,⼤家记住下⾯的图,它就是满⼆叉树的标准形态:所有内部节点都有两个⼦节点,最底⼀层是叶⼦节点。
性质:1) 如果⼀颗树深度为h,最⼤层数为k,且深度与最⼤层数相同,即k=h;2) 它的叶⼦数是: 2^(h-1)3) 第k层的结点数是: 2^(k-1)4) 总结点数是: 2^k-1 (2的k次⽅减⼀)5) 总节点数⼀定是奇数。
6) 树⾼:h=log2(n+1)。