斯特林发动机热交换装置的设计与研究
- 格式:pdf
- 大小:1.23 MB
- 文档页数:10
斯特林热机演示实验实验类型:热学2010年6月【实验目的】――――――――――――――――――――――――――――――――――了解斯特林热机的现象及其原理。
【实验仪器】――――――――――――――――――――――――――――――――――图1 斯特林热机在该装置中有两个活塞:1.动力活塞:这是发动机上方较小的活塞。
它是紧封闭的。
当发动机内的气体膨胀时,动力活塞会向上运动。
2.置换器活塞:这是装置中较大的活塞。
它在气缸中非常自由,因此随着其上下运动,空气很容易在加热式或冷却式气缸之间流动。
置换器活塞通过上下运动来控制是对发动机中的气体进行加热还是冷却。
它有两个位置:当置换器活塞靠近大气缸的上方时,发动机内的大部分气体由热源加热,然后开始膨胀。
发动机内产生的压力会强制动力活塞向上运动。
当置换器活塞靠近大气缸的底部时,发动机内的大部分气体开始冷却收缩。
这会导致压力下降,从而使动力活塞向下运动,对气体进行压缩。
发动机会反复对气体进行加热和冷却,以便从气体的膨胀和收缩中吸取能量。
【实验现象】――――――――――――――――――――――――――――――――――1.在烧杯中装入开水。
2.将斯特林热机置于烧杯上,观察斯特林热机的运转。
【实验原理分析】――――――――――――――――――――――――――――――――――斯特林热机(Stirling Engine),是一种由外部供热使气体在不同温度下作周期性压缩和膨胀的封闭往复式发动机。
它由苏格兰牧师斯特林提出。
斯特林热机在十九世纪初被发明,目前已经发展为上百种不同的机械结构。
斯特林热机是一种高效率的能量转换装置,相对于内燃机燃料在气缸内燃烧的特点,斯特林热机仅采用外部热源,工作气体不直接参与燃烧,因此又被称为外燃机。
只要外部热源温度足够高,无论是使用太阳能、废热、核原料、生物能等在内的任何热源,都可使斯特林热机运转,既安全又清洁,故其在能源工程技术领域的研究兴趣日益增加,极有可能成为未来动力的来源之一。
3kW碟式太阳能斯特林发动机换热系统的研究
邹城;麦志豪;李风;张仁元
【期刊名称】《广东工业大学学报》
【年(卷),期】2013(000)003
【摘要】换热系统是斯特林发动机的关键部件之一.以发电功率达到3 kW、效率大于20%的斯特林机为要求,设计了配套的换热系统,包括吸热器、回热器和冷却器,计算出其理论发电功率为4.2 kW,效率达到28.6%.此外,还做了针对冷却器的实验,结果显示冷却器的换热效率达93.6%,符合设计要求.
【总页数】6页(P112-117)
【作者】邹城;麦志豪;李风;张仁元
【作者单位】广东工业大学材料与能源学院,广东广州510006;广东工业大学材料与能源学院,广东广州510006;广东工业大学材料与能源学院,广东广州510006;广东工业大学材料与能源学院,广东广州510006
【正文语种】中文
【中图分类】U464.9+2
【相关文献】
1.斯特林发动机与碟式太阳能热发电技术的研究进展 [J], 唐大伟;李铁;桂小红
2.碟式斯特林发动机碟架检测装备的设计 [J], 龚俊;李晓盼;翟延华
3.基于碟式太阳能发电的β型斯特林发动机热性能数值计算 [J], 王丽萍;杨晓宏;田瑞;韩磊;朱华
4.碟式太阳能热发电系统中斯特林发动机的研究 [J], 王译旋
5.碟式斯特林太阳能小型直流发电系统的研究 [J], 赵小平
因版权原因,仅展示原文概要,查看原文内容请购买。
空间自由活塞斯特林热电转换装置和热声发电1. 简介空间自由活塞斯特林热电转换装置和热声发电是当前研究的热电领域的一个重要主题。
从简单到复杂,从浅显到深刻地探讨这个主题,有助于我们更好地理解这一新兴技术的工作原理和应用前景。
2. 空间自由活塞斯特林热电转换装置空间自由活塞斯特林热电转换装置利用斯特林循环原理,通过热源和冷源之间的温差来驱动活塞运动,从而实现热能向机械能的转换。
相比传统的热电技术,空间自由活塞斯特林热电转换装置具有更高的热电转换效率和更广泛的适用范围。
它可以利用太阳能、地热能等恒定的热源来进行能量转换,具有较强的可再生能源利用潜力。
3. 热声发电热声发电是一种基于热声效应的新型能量转换技术,通过热源和冷源之间的温差产生声波振动,然后将其转换为电能。
热声发电不需要传统的机械运动部件,因此具有结构简单、可靠性高、维护成本低等优点。
热声发电可以与其他热电技术相结合,形成混合能源系统,提高能量利用效率。
4. 应用前景空间自由活塞斯特林热电转换装置和热声发电技术在航天航空、新能源领域、环境监测等方面具有广阔的应用前景。
在太空探索中,它可以为航天器提供稳定可靠的能源来源;在新能源领域,它可以实现太阳能、风能等不稳定能源向电能的高效转换;在环境监测中,它可以为遥感设备和传感器提供持续、稳定的能量保障。
5. 总结与回顾通过对空间自由活塞斯特林热电转换装置和热声发电技术的探讨,我们可以得出结论,这些新型的热电转换技术具有较高的能量转换效率、广泛的能源适用范围和广阔的应用前景。
未来,随着科学技术的不断发展,这些技术必将在能源利用和环境保护方面发挥重要作用。
6. 个人观点与理解在我看来,空间自由活塞斯特林热电转换装置和热声发电技术代表了热电领域的创新与进步。
它们不仅有望改变传统能源利用模式,还能为人类社会的可持续发展作出重要贡献。
我对这些新兴技术充满期待,并期待它们能够尽快投入实际应用,为我们的生活带来便利和改善。
毕业设计(论文) 题目斯特林发动机模型制作与研究系别动力工程系专业班级热能与动力工程08k3班学生姓名指导教师王庆五二○一二年六月斯特林发动机模型制作与研究摘要随着石油资源的日益短缺,石油价格逐渐上涨,传统的内燃机使用石油资源而引起的环境污染、能源使用极不平衡等社会问题日见突出。
研究能以天然气、沼气、生物质等作为燃料的发动机有关技术,对于促进能源的综合利用、改善当前使用单一石油资源的状况并减少环境污染,创造节约型社会,具有重要的意义。
斯特林发动机作为外燃机具有的燃料多样化、效率高、噪音和污染小等特点,适于利用农村薪材、桔杆和太阳能进行发电。
斯特林发动机得天独厚的优势,以及各种新材料新技术的出现,斯特林发动机必将代替内燃机为21世纪提供主要动力。
斯特林发动机的广泛应用,必将使我国的能源利用效率得到大幅度提高,无沦是对环境保护还是节能减排,都有着非常重要的积极意义,也将会为我国的经济又好义快的发展提供充足动力。
本文通过研究斯特林发动机的性能特性,讲述了斯特林发动机的结构类型与主要分析方法,总结了斯特林发动机的关键技术,阐述了斯特林发动机的特点及主要应用,设计制造了斯特林发动机模型,并对该模型进行了实验分析,得出的结论和模拟性能基本一致。
关键词:斯特林发动机;性能模拟;设计实验Stirling engine model production and studyAbstractThe oil energy is reducing and its price is increasing day by day,theinternal-combustion engine has brought environment pollution and broken zoology balance,the problems are standing out.Researching engine that can combust gas,marsh gas,biology is very signification that it can promote the compositive utilization of energy,change the use of only one oil energy,reduce environment pollution,create the economy society.The Stirling engine as outboard engines with fuel diversification, high efficiency, noise and pollution and other characteristics, suitable for rural fuelwood, straw and solar power generation. The unique advantage of the Stirling engine, as well as a variety of new materials, new technologies emerge, the Stirling engine will replace the internal combustion engine to provide the main driving force for the 21st century. Wide range of applications of the Stirling engine, will make China's energy use efficiency has been greatly improved, no occupied by the enemy of environmental protection or energy saving, have very important positive significance, will also be good for China's economic justice the fast pace of development to provide adequate power.According to the requirements on the development of energy and basing on the theory of stifling engine,the software the simulate stirling engine character is developed,then the configuration-type and analytical method of Stirling cycle were elaborated in the following parts.The key technology that affect the performance was also summarized.Through its character,the stifling engine model is designed and manufactured,and it is tested,the conclusion consistent with the simulation character.Key Words:stirling engine,simulation eharaeter`designing experiment目录摘要 (I)Abstract (II)1 绪论 (1)1.1 斯特林发动机的背景及意义 (1)1.2 斯特林发动机国内外研究动态 (2)1.2.1 国内发展状况 (2)1.2.2 国外发展状况 (2)1.3 本文的主要研究内容 (4)2 斯特林发动机组成及理论分析 (5)2.1 斯特林发动机的组成 (5)2.2 斯特林发动机的工作原理 (6)2.3 斯特林发动机热效率分析 (8)2.4 小结 (8)3 斯特林发动机性能分析 (10)3.1 斯特林发动机实际循环性能分析计算 (10)3.1.1 数学模型的建立 (10)3.2 斯特林发动机性能模拟及影响性能因素 (13)3.2.1 膨胀腔、压缩腔示功图和总示功图 (13)3.2.2温度、压力、转速等因素对斯特林发动机性能影响 (14)3.3 结论 (15)4 斯特林发动机模型设计制作 (16)4.1 斯特林发动机的设计类型 (16)4.2 斯特林发动机设计参数的选择及确定 (16)4.3 斯特林发动机的具体尺寸及制作 (17)4.3.1 斯特林发动机模型外型 (17)4.3.2 制作方法及制作工序 (18)4.3.3 组装次序及注意事项 (22)4.3.4 试运行 (23)4.4 小结 (23)5 斯特林发动机在联合循环及余热利用中的研究 (24)5.1 朗肯—斯特林联合循环 (24)5.2 燃气轮机—斯特林联合循环 (26)5.3 小结 (28)结论 (29)参考文献 (30)致谢 (31)1 绪论在当今世界科学技术的迅速发展,人们在不断完善现有动力机的同时,还在努力探索开发新型的动力机,外燃机就是在这样的背景下设计成功的,随着石油资源的日益短缺,石油价格逐渐上涨,传统的内燃机使用石油资源而引起的环境污染、能源使用极不平衡等社会问题日见突出。
斯特林发动机设计要点斯特林发动机是一种通过热力学循环使用等量的低温热量和高温热量来产生功的内燃机,其设计与建造过程需要遵循一定的要点。
下面将为大家详细介绍斯特林发动机设计的要点。
第一步:确定工作气体。
斯特林发动机的工作气体是一个重要的设计要点。
目前常用的气体有氢气、空气、氦气等,其中氢气的热传导性能较好,利于热交换,因此是一种良好的工作气体。
第二步:确定循环形式。
斯特林发动机有杠杆循环和无杠杆循环两种形式。
杠杆循环因为设备简单易制造,被广泛应用于实际应用中,而无杠杆循环的效率更高一些,但是制造成本较高。
第三步:确定热源。
热源是指供应高温热量的源头,包括燃烧器、太阳能、核能等,其中核能是一种良好的热源,同时燃烧器也是常用的热源。
第四步:确定冷源。
冷源是指提供低温热量的源头,目前常用的冷源有水、氢气等,其中氢气因为有较好的热传导性能,因此被广泛应用于实际应用中。
第五步:设计热交换器。
热交换器是实现热量传递的重要组成部分。
热交换器应该具有较好的热传导性能和强度,同时也需要考虑到制造成本和耐久性等因素。
第六步:设计杠杆机构。
杠杆机构是斯特林发动机中的重要组成部分,它的作用是将活塞运动转化为输出功,需要设计合理的杠杆传动机构,以确保高效稳定的输出功率。
第七步:计算优化。
在设计过程中,需要进行各种参数的计算和优化,包括活塞行程、热交换器面积、杠杆长度等,以确定最佳方案。
总结:以上七个步骤是斯特林发动机设计的主要要点。
在实际应用中,需要根据具体的应用场景进行针对性的设计和调整,以确保斯特林发动机的性能达到最佳水平。
太阳能斯特林发动机调研报告一.太阳能斯特林发动机的研究意义进入21世纪,人类社会面临着严重的能源紧缺和环境污染。
传统能源中的石油和天然气将在未来几十年内耗尽,煤尽管还能用一二百年,但它会对生态和环境带来很多的副作用。
在世界范围内的能源危机中,中国更是首当其冲。
因此研究开发无污染、可再生的新能源与能源转换技术是科技界的当务之急[1]。
从能源管理角度来讲,太阳能是产生动力的可再生和不可耗尽的重要能源之一。
把太阳能转换成机械能的有几种方法。
其中理论上可达到最大效率的是斯特林发动机(或热气机)。
斯特林发动机是一种简单的外燃机。
这是罗伯特·史特灵在1816年(英国、专利号4081)就提出的概念。
和内燃机相比,这种发动机效率高、污染小、噪音低等优点。
可以应用在许多领域内中作为清洁高效的动力机, 对节能减排、保护环境有重要意义。
二.斯特林发动机的原理斯特林发动机是利用高温高压的氢气或氦气作为工质, 通过2个等容过程和2个等温过程可逆循环( 图1) 。
气缸中装有2个对置的活塞, 中间设置1个回热器用于交替的吸热和放热, 活塞和回热器之间为膨胀腔和压缩腔。
膨胀腔始终保持高T max, 压缩腔则始终保持低温T min。
由图1可见, 斯特林循环由以下4个换热过程组成: 1- 2为等温压缩, 热量从工质传递给外部低温热源; 2-3 为等容过程, 热量从回热器传给工质; 3-4为等温膨胀,热量从外部高温热源传递给工质; 4-1 为等容过程, 热量由工质传递给回热器。
斯特林发动机是独特的热机,因为他们理论上的效率几乎等于理论最大效率,称为卡诺循环效率。
斯特灵发动机是通过气体受热膨胀、遇冷压缩而产生动力的。
这是一种外燃发动机,使燃料连续地燃烧,蒸发的膨胀氢气(或氦)作为动力气体使活塞运动,膨胀气体在冷气室冷却,反复地进行这样的循环过程。
燃料在气缸外的燃烧室内连续燃烧,通过加热器传给工质,工质不直接参与燃烧,也不更换。
斯特林发电机的热力学性能研究一、引言斯特林发电机是一种基于斯特林循环原理的热机,具有低噪音、可靠性高、无污染等优点。
它利用外部供热源和冷源使气体在气体内部循环,从而产生机械功。
研究斯特林发电机的热力学性能对于提高其效率、降低成本以及推广应用具有重要意义。
二、斯特林发电机基本原理斯特林发电机是一种基于斯特林循环原理的热机。
其基本原理是将工作气体(氢气、氦气等)在两个不同的温度下进行热机过程,利用热机效应将热量转变为机械能或电能。
其基本循环过程包括四个部分:加热,等容,冷却和等容。
三、斯特林发电机的热力学性能参数1. 热效率热效率是指斯特林发电机在工作过程中所转换的热能与所输入的热能之比。
热效率越高,其能够转换的热能就越多,能量利用效率就越高。
热效率的计算公式为:η = (W/Q) × 100%其中, W为输出的功率,Q为输入的热能。
2. 动力密度动力密度是指单位体积发电机所能输出的最大功率。
动力密度越大,发电机的输出功率就越大,同样的体积内能够输出更多的功率,能够满足更多能源需求。
动力密度的计算公式为:P = W/V其中,W为输出功率,V为发电机的体积。
3. 总效率总效率是指发电机从输入热能到输出电能的能量转换效率。
总效率的计算公式为:ηtotal = (Wout / Qin) × 100%其中,Wout为输出的电能,Qin为输入的热能。
四、斯特林发电机的热力学性能提高措施1. 提高工作流体的温度斯特林发电机的热效率随着工作流体温度的升高而增加。
因此,可以通过提高工作流体的温度来提高热效率。
但同时要注意避免过高的温度导致机械损坏。
2. 减小流体质量发电机的总效率与流体质量成反比,因此减小流体质量可以提高总效率。
但同时,过小的流体质量会导致输出功率不足的问题,需要根据实际情况进行调整。
3. 提高制冷能力斯特林发电机的性能受制冷能力的影响,可以通过适当增加制冷能力来提高发电机的性能。
斯特林热电转换装置原理
斯特林热电转换装置是一种将热能转化为电能的装置。
它基于斯特林循环原理,利用热膨胀和冷收缩的特性来产生能量,从而实现能量转换。
斯特林热电转换装置的工作原理可以分为四个主要步骤:加热、膨胀、冷却、收缩。
在第一步中,加热源向装置提供热能,使其中的工质(通常为氢气或氦气)开始膨胀。
膨胀使气体推动活塞向活塞腔的另一端移动,在这个过程中,活塞的移动反过来推动了转子,从而产生了机械能。
在第二步中,膨胀的气体离开了加热源,进入热交换器。
在热交换器中,气体通过与热源接触的热交换器管道,将热能传递给气体。
这进一步增加了气体的温度和压力。
在第三步中,气体进入冷却器,从而冷却下来。
在这个过程中,气体压力下降,活塞向另一端移动,从而产生了机械能。
在第四步中,气体进入另一个热交换器,将热能转移到冷却介质。
这降低了气体的温度和压力。
气体的压力降低使活塞向原始位置移动,从而完成了一个循环。
斯特林热电转换装置的优点是,它使用的是气体作为工作介质,因此不需要使用传统的液体冷却系统。
这使得它可以在较高温度下运
行,从而提高了效率。
此外,它还可以逆转运转,即将电能转化为热能,从而实现制冷或制热的效果。
总的来说,斯特林热电转换装置的原理是基于斯特林循环的。
通过加热、膨胀、冷却、收缩这四个步骤,将热能转化为机械能,再将机械能转化为电能。
由于使用气体作为工作介质,它具有高效率和逆转运转的优点。
因此,它在实际应用中具有广泛的应用前景,可以应用于发电、制冷等领域。