7格与布尔代数习题
- 格式:pdf
- 大小:298.92 KB
- 文档页数:14
§4.7 格和布尔代数习题4.71.确定具有如图4.4所示哈斯图的偏序集是否为格。
图4.4 习题1的图解图(a)不是格,图(b)是格,图(c)是格。
2.证明每个有限格都有一个最小元素和一个最大元素。
证明:用反证法,假设某有限格中没有最大元素,只有极大元,则这几个极大元之间没有上确界,与格的定义矛盾,从而有限格中都有最大元素。
同理可证明有最小元素。
3.给出一个无限格的例子,使得(1)既没有最小元素也没有最大元素。
(2)有最小元素但没有最大元素。
(3)有最大元素但没有最小元素。
(4)有最小元素也有最大元素。
解:(1)对于偏序集<R,≤>,既没有最小元素也没有最大元素。
(2)对于偏序集<N,≤>,有最小元素0,但没有最大元素。
(3)对于偏序集<Z-,≤>,有最大元素-1,但没有最小元素。
(4)对于偏序集<[1,2],≤>,有最大元素2,有最小元素1。
4.给出一个有限格的例子,其中至少1个元素有多于1个的补元,且至少1个元素没有补元。
解如下哈斯图所示的偏序集是一个格,元素e有补元a和d,元素a有补元e和d,元素d有补元a和e,但元素b和c都没有补元。
1bd5.设是有界格,证明:(1)若≥2,则中不存在以自身为补元的元素。
(2)若≥3,且是链(全序集),则不是有补格。
证明:(1) 用反证法,假设L 中存在一个元素a 以自身为补元,所以a -1=a.据有界格的定义,则a ⨁a =a =1,a ⨂a =a =0显然,二者矛盾。
因此若≥2,则中不存在以自身为补元的元素。
(2) 用反证法,假设L 是有补格,则L 中每个元素都是有补元的。
若a 和b 是补格, 则需要满足a ⨁b =1,a ⨂b =0,但是a,b 间不一定可以比较,也就是说不一定是全序集,与条件矛盾。
6.格是分配格吗?试分析之。
解:不是分配格,例如有三个数,c|a,b 与c,a 都不具有整除关系,但是,但,不满足分配律,所以不是分配格。
一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1、设G 有6个元素的循环群,a 是生成元,则G 的子集( )是子群。
A 、{}aB 、{}e a ,C 、{}3,a eD 、{}3,,a a e 2、下面的代数系统(G ,*)中,( )不是群A 、G 为整数集合,*为加法B 、G 为偶数集合,*为加法C 、G 为有理数集合,*为加法D 、G 为有理数集合,*为乘法3、在自然数集N 上,下列哪种运算是可结合的?( )A 、a*b=a-bB 、a*b=max{a,b}C 、 a*b=a+2bD 、a*b=|a-b|4、设1σ、2σ、3σ是三个置换,其中1σ=(12)(23)(13),2σ=(24)(14),3σ=(1324),则3σ=( ) A 、12σ B 、1σ2σ C 、22σ D 、2σ1σ5、任意一个具有2个或以上元的半群,它( )。
A 、不可能是群B 、不一定是群C 、一定是群D 、 是交换群二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。
错填、不填均无分。
1、凯莱定理说:任一个子群都同一个----------同构。
2、一个有单位元的无零因子-----称为整环。
3、已知群G 中的元素a 的阶等于50,则4a 的阶等于------。
4、a 的阶若是一个有限整数n ,那么G 与-------同构。
5、A={1.2.3} B={2.5.6} 那么A ∩B=-----。
6、若映射ϕ既是单射又是满射,则称ϕ为-----------------。
7、α叫做域F 的一个代数元,如果存在F 的-----n a a a ,,,10 使得010=+++n n a a a αα 。
8、a 是代数系统)0,(A 的元素,对任何A x ∈均成立x a x = ,则称a 为---------。
第一章命题逻辑命题与逻辑联结词1.判断下列语句是否是命题,不是划“×”,是划“√”,且指出它的真值.(1)所有的素数都是奇数. ( ) 其真值( )(2)明天有离散数学课吗 ( ) 其真值( )(3)326+>. ( ) 其真值( )(4)实践出真知. ( ) 其真值( )(5)这朵花真好看呀! ( ) 其真值( )(6)5x=. ( ) 其真值( )(7)太阳系外有宇宙人. ( ) 其真值( )2.将下列命题符号化.(1)如果天下雨,那么我不去图书馆.(2)若地球上没有水和空气,则人类无法生存.(3)我们不能既划船又跑步.(4)大雁北回,春天来了.3.将下列复合命题分解成若干个原子命题,并找出适当的联结词.(1)天下雨,那么我不去图书馆.(2)若地球上没有水和空气,则人类无法生存.命题公式1. 判断下列各式是否是命题公式,不是的划“×”,是的划“√”.(1)(Q R∧S). ( )(2)((R(Q R)(P Q)). ( )(3) (P∨QR)S. ( )(4)((P Q)(Q P)). ( )2.写出五个常用命题联结词的真值表.真值表与等价公式1.指出下列命题的成真赋值与成假赋值.(1)(P∨Q).(2)P(Q P).2.构造真值表,判断下列公式的类型.(1)(P∧Q)∧(P∨Q).(2) P→(P∧┑Q))∨R.3.用等值演算法验证下列各等价式.(1) ((P→Q)∧(Q→R))→(P→R) T.(2)P(Q∧R)(P Q)∧(P R).(3)(P∨Q)∨(P∧Q)P.蕴涵式及其他联结词1.试证明下列各式为重言式.(1)(P Q)∧(Q R)(P R).(2) (P→Q)→Q⇒P∨Q.(3)(P Q)⇒P Q.2.将下列公式化成与之等价且仅含{┑,∨}中联结词的公式.(1) (P∨Q)∧┑P(2) (P→(Q∨┑R))∧(┑P∧Q)3.证明{,∧}是最小全功能联结词组.4.设A、B、C为任意的三个命题公式,试问下面的结论是否正确(1)若A∧C B∧C,则A B.(2)若A B,则A B.(3)若A C B C,则A B.对偶与范式1.试给出下列命题公式的对偶式.(1)T∨(P∧Q).(2)(P∧Q)∧(P∨Q).2.试求下列各公式的主析取范式和主合取范式.(1) (P→(Q∧R))∧(┑P→(┑Q→R)).(2)((P Q)∧Q)∨R.(3)(P(Q∨R))∧(P∨(Q R)).3.试用将公式化为主范式的方法,证明下列各等价式.(1) (┑P∨Q)∧(P→R)⇔P→(Q∧R)(2) ┑(P↔Q)⇔(P∧┑Q)∨(┑P∧Q)推理理论1.试用推理规则,论证下列各式.(1) ┑(P∧┑Q),┑Q∨R,┑R⇒┑P(2) P∨Q,Q→R,P→S,┑S⇒R∧(P∨Q)(3) ┑P∨Q,┑Q∨R,R→S⇒P→S(4) P∨Q,P→R,Q→S⇒R∨S第二章谓词逻辑词的概念与表示1.用谓词表达写出下列命题.(1)高斯是数学家,但不是文学家.(2)小王既是运动员也是大学生.(3)张宁和李强都是三好学生.(4)若是x奇数,则2x不是奇数.命题函数与量词1.用谓词表达式写出下列命题.(1)每个计算机系的学生都学离散数学.(2)直线A平行于直线B当且仅当直线A不相交于直线B.(3)不存在既是奇数又是偶数的自然数.(4)没有运动员不是强壮的.(5)有些有理数是实数但不是整数. (6)所有学生都钦佩某些教师.谓词公式与变元的约束1.利用谓词公式翻译下列命题. (1)没有一个奇数是偶数.(2)一个整数是奇数,如果它的平方是奇数.2. 设个体域为自然数集N ,令P(x):x 是素数;E(x):x 是偶数; O(x):x 是奇数;D(x ,y):x 整除y .将下列各式译成汉语. (1)x(E(x)∧D(x ,6)). (2)x(O(x)y(P(x)D(x ,y))).3.指出下列表达示中的自由变元和约束变元,并指明量词的辖域. (1)()()(,)()()x F x Q x y xP x R x ∀∧→∃∨. (2)x(P(x ,y)∨Q(z))∧y(R(x ,y)zQ(z)).4.设个体域为A={a,b,c},消去公式xP(x)∧xQ(x)中的量词.谓词演算的等价式与蕴含式1.试证下列等价式或蕴涵式,其中A(x),B(x)表示含x自由变量的公式,A,B 表示不含变量x(不论是自由的还是约束的)的公式.(1)(∀x A(x)→B)⇔(∃x(A(x)→B)).(2)(∃x A(x)→B)⇔∀x(A(x)→B).2.试将下列公式化成等价的前束范式.(1)∃x((┑∃yP(x,y))→(∃zQ(z)→R(x))).(2)x(F(x)G(x))(xF(x)xG(x)).谓词演算的推理理论1.证明下列推理.(1)所有有理数都是实数,某些有理数是整数。
代数系统练习题答案1. 以下集合和运算是否构成代数系统?如果构成,说明该系统是否满足结合律、交换律?求出该运算的幺元、零元和所有可逆元素的逆元.1) P关于对称差运算⊕,其中P为幂集.构成代数系统;满足结合律、交换律;幺元φ;无零元;逆元为自身。
2) A={a,b,c},*运算如下表所示:构成代数系统;满足结合律、交换律;无幺元;无逆元;零元b.2. 设集合A={a,b},那么在A上可以定义多少不同的二元运算?在A上可以定义多少不同的具有交换律的二元运算?24个不同的二元运算;23个不同的具有交换律的二元运算3. 设A={1,2},B是A上的等价关系的集合.1) 列出B的元素.元集合上只有2种划分,因此只有2个等价关系,即B={IA,EA}2) 给出代数系统V=的运算表.3) 求出V的幺元、零元和所有可逆元素的逆元.幺元EA、零元IA;只有EA可逆,其逆元为EA.4) 说明V是否为半群、独异点和群?V是为半群、独异点,不是群4. 设A={a,b,c},构造A上的二元运算*,使得a*b=c,c*b=b,且*运算满足幂等律、交换律.1) 给出关于*运算的一个运算表.其中表中?位置可以是a、b、c。
2) *运算是否满足结合律,为什么?不满足结合律;a*=c ≠*b=b5. 设是一个代数系统。
*是R上的一个二元运算,使得对于R中的任意元素a,b都有a*b=a+b+a·b.证明:: 是独异点.6. 如果是半群,且*是可交换的.证明:如果S中有元素a,b,使得a*a=a和b*b=b,则*=a*b.*= a**b结合律= a**b 交换律= *= a*b.7. 设是一个群,则?a,b,c∈S。
试证明:群G中具有消去律,即成立: 如果a·b=a·c ,b·a=c·a 那么b=c.8. 设是群,a∈G .现定义一种新的二元运算⊙:x⊙y=x*a*y,?x,y∈G .证明:也是群 .证明:显然⊙是G上的一个二元运算。