核辐射测量方考试必考点
- 格式:docx
- 大小:53.13 KB
- 文档页数:7
核辐射探测期末考试试题# 核辐射探测期末考试试题## 一、选择题(每题2分,共20分)1. 核辐射探测中,β射线的穿透能力比γ射线:- A. 强- B. 弱- C. 相同- D. 不可比较2. 以下哪个设备不用于探测α粒子:- A. 盖革计数器- B. 闪烁计数器- C. 半导体探测器- D. 静电计3. 核辐射探测中,γ射线的电离能力比X射线:- A. 强- B. 弱- C. 相同- D. 不可比较4. 核辐射中,对人体危害最大的是:- A. α射线- B. β射线- C. γ射线- D. 中子5. 核辐射探测器中,用于测量辐射剂量率的是:- A. 个人剂量计- B. 环境监测仪- C. 放射性物质分析仪- D. 核素识别器## 二、填空题(每空1分,共10分)1. 核辐射探测中,________ 是一种测量辐射能量的设备。
2. 核辐射对人体的影响主要取决于辐射的________、________和________。
3. 核辐射探测中,________ 是一种常见的α射线探测器。
4. 核辐射探测中,________ 是一种可以测量β、γ射线的探测器。
5. 核辐射探测的目的是为了保护人类免受________ 的伤害。
## 三、简答题(每题10分,共20分)1. 简述核辐射探测中,探测器的工作原理。
2. 描述在核事故应急响应中,核辐射探测器的作用。
## 四、计算题(每题15分,共30分)1. 假设有一个γ射线源,其活度为1.11 GBq,距离探测器1米。
已知探测器的效率为30%,求探测器在1小时内接收到的γ射线数。
2. 一个β射线源在空气中产生的β粒子的平均能量为1 MeV,探测器的探测效率为40%,若探测器记录到的β粒子数为1000个,求源的活度。
## 五、论述题(20分)论述核辐射探测技术在环境监测和医学领域的应用。
注意:请考生在答题时,注意审题,确保答案的准确性和完整性。
考试时间为120分钟,请合理分配时间。
核技术 核探测复习材料 一、简答题:1.γ射线与物质发生相互作用有哪几种方式?( 5分)答:γ射线与物质发生相互作用(1)光电效应 (2)康普顿效应(得2分)(3)电子对效应(得2分) 2.典型的气体探测器有哪几种?各自输出的最大脉冲幅度有何特点,试用公式表示。
(5分) 答:典型的气体探测器有(1)电离室(得1分)(2)正比计数管(得1分)(3)G-M 计数管(得1分)脉冲幅度:(1)电离室:C e w E v =(得1分)(2)正比计数管:Cew E M v ∙= (得0.5分)(3)G-M 计数管 最大脉冲幅度一样(得0.5分)3.简述闪烁体探测器探测γ射线的基本原理。
(5分)答:γ射线的基本原理通过光电效应 、 康普顿效应和电子对效应产生次级电子(得1分),次级电子是使闪烁体激发(得1分),闪烁体退激发出荧光(得1分),荧光光子达到光电倍增管光阴极通过光电效应产生光电子(得1分),光电子通过光电倍增管各倍增极倍增最后全部被阳极收集到(得1分),这就是烁体探测器探测γ射线的基本原理。
注:按步骤给分。
4.常用半导体探测器分为哪几类?半导体探测器典型优点是什么?(5分)答:常用半导体探测器分为(1) P-N 结型半导体探测器(1分)(2) 锂漂移型半导体探测器;(1分)(3) 高纯锗半导体探测器;(1分)半导体探测器典型优点是(1) 能量分辨率最佳;(1分)(2)射线探测效率较高,可与闪烁探测器相比。
(1分)5.屏蔽β射线时为什么不宜选用重材料?(5分)答:β射线与物质相互作用损失能量除了要考虑电离损失,还要考虑辐射损失(1分),辐射能量损失率222NZm E z dx dE S radrad∝⎪⎭⎫ ⎝⎛-= 与物质的原子Z 2成正比(2分),选用重材料后,辐射能量损失率必然变大,产生更加难以防护的x 射线(2分)。
故不宜选用重材料。
注:按步骤给分。
6.中子按能量可分为哪几类?中子与物质发生相互作用有哪几种方式。
第一章 辐射源1、谈谈你所感兴趣的一种辐射源。
答题要点(略)。
第二章 射线与物质的相互作用8、10MeV 的氘核与10MeV 的电子穿过铅时,它们的辐射损失率之比是多少?20MeV 的电子穿过铅时,辐射损失和电离损失之比是多少?解:已知辐射能量损失率理论表达式为:对于氘核而言,m d =1875.6139MeV ;对于电子而言,m e =0.511MeV ,则10MeV 的氘核与10MeV 的电子穿过铅时,它们的辐射损失率之比为:222222822227.4210d e d e d e e dZ Z Z m Z NE Z NE m m Z m -=≈⨯Ee=20MeV 时,在相对论区,辐射损失和电离损失之比有如下表达式:()()800r e ZE dE dx dE dx -=-则 20MeV 的电子穿过铅时,辐射损失和电离损失之比为:2082 2.05800⨯≈ 11、某一能量的γ射线在铅中的线性吸收系数是0.6cm -1,它的质量吸收系数和原子的吸收截面是多少?这γ射线的能量是多少?按防护要求,源放在容器中,要用多少厚度的铅容器才能使容器外的γ强度减为源强的1/1000? 解:已知μ=0.6cm -1,ρ=11.34g/cm 3,则由μm=μ/ρ得质量吸收系数μm=0.6/11.34cm 2/g=0.0529 cm 2/g由 得原子的吸收截面: 232322070.0529 6.02101.8191018.19m A A N cm bγσμ-⎛⎫==⨯ ⎪⨯⎝⎭≈⨯= 查γ射线与物质相互作用截面和元素的质量衰减系数表可知,在μm=0.0517cm 2/g 时相对应的γ射线的能量为1.5 MeV ,μm=0.0703 cm 2/g 时,222NZ m E z dx dE S radrad ∝⎪⎭⎫ ⎝⎛-=A m N Aγμμσρ==相对应的γ射线的能量为1.0 MeV ,如果以y 轴表示能量,x 轴表示质量吸收系数,则相对应的两个点(x1,y1)、(x2,y2)分别为(0.0517,1.5)、(0.0703,1.0):利用插值与多项式逼近中的拉格朗日逼近:21121221x x x x y y y x x x x --=+--可得μm =0.0529 cm 2/g 时所对应的能量:0.05290.07030.05290.05171.5 1.00.05170.07030.07030.0517174121.5 1.01861861.50.935 1.00.0651.4030.065 1.468y MeV--=⨯+⨯--=⨯+⨯=⨯+⨯=+=(这里用的是两点式逼近,同学们有兴趣的话可以查表多找几个点用多项式逼近计算)由 得01()1000I t I =时铅容器的质量厚度t m 为: ()()()000332111000ln ln 11ln 10ln 100.052933 2.3ln 100.05290.0529130.435/m m m m I I t I I g cm μμμ--⎛⎫⎛⎫ ⎪=-=- ⎪ ⎪⎝⎭ ⎪⎝⎭=-=-⨯==≈ 或由 得: ()000111000ln ln 33ln 10 2.311.50.60.6I I t I I cm μμ⎛⎫⎛⎫ ⎪== ⎪ ⎪⎝⎭ ⎪⎝⎭==⨯=第三章 放射性测量中的统计涨落3、本底计数率是500±20min -1,样品计数率是750±25min -1,求净计数率及误差。
成都理工核辐射测量方法考试大纲**一、基本概念和原理**
1. 核辐射的基本概念
2. 辐射量和剂量的单位和定义
3. 核辐射的相互作用过程
4. 核辐射的探测方法和仪器
**二、放射源的测量**
1. 放射源的活度测量方法
- 公式计算法
- 线性缓降法
- 半衰期法
2. 放射源的辐射场强度测量方法
- 距离平方反比定律
- 堆芯剂量率公式
- 使用计数器测量法
**三、辐射场的测量**
1. 辐射场强度的测量方法
- 剂量率计测量法
- 环境剂量当量监测方法
- 平均能量测量方法
2. 水华封堆测试
- 测试原理和方法
- 结果分析和评价
**四、个人剂量的测量**
1. 个人剂量测量的目的和重要性
2. 个人剂量测量仪器和方法
- 微型电离室剂量计
- 实时辐射监测仪
- 热释电剂量计
- 个人剂量记录器的使用
**五、辐射防护的测量**
1. 辐射源及工作场所的辐射防护要求
2. 辐射防护设施和设备的检测方法 - 辐射防护门窗的密封性检测
- 辐射防护屏蔽材料的厚度测量
- 辐射源和辐射场的标识和警示
以上是成都理工核辐射测量方法考试大纲的主要内容,具体的考试科目和题型可能会根据实际情况有所调整。
请按照大纲进行准备和学习,加深对核辐射测量方法的理解和掌握。
成都理工大学学年第一学期《核辐射测量方法》考试试题参考答案与评分标准一、名词解释 (每名词3分,共18分)1. 探测效率:探测效益率是表征γ射线照射量率与探测器输出脉冲计数之间关系的重要物理参数。
2. 衰变常数:衰变常数是描述放射性核素衰变速度的物理量,指原子核在某一特定状态下,经历核自发跃迁的概率。
3.吸收剂量:电力辐射授予某一点处单位质量物质的能量的期望值。
D=dE/dm,吸收剂量单位为戈瑞(Gy)。
4. 平均电离能:在物质中产生一个离子对所需要的平均能量。
5. 放射性活度:表征放射性核素特征的物理量,单位时间内处于特定能态的一定量的核素发生自发核转变数的期望值。
A=dN/dt。
6.碰撞阻止本领:带电粒子通过物质时,在所经过的单位路程上,由于电离和激发而损失的平均能量。
二、填空题(每空0.5分,共9分)1.α射线与物质相互作用的主要形式是电离和激发。
2.铀系气态核素是222Rn ;其半衰期是3.825d。
3.用γ能谱测定铀、钍、钾含量,一般选择的γ辐射体是214Bi、208Tl和40K;其γ光子的能量分别是1.76MeV 、 2.62MeV和 1.46MeV。
4.β+衰变的实质是母核中的一个质子转变为中子。
5.放射性活度的单位为: Bq;照射量率的单位为:C/kg*s;能注量率的单位为 W/m2。
6.β射线与物质相互作用方式主要有电离与激发、轫致辐射和弹性散射。
三、简要回答下列问题(每题6分,共36分)1.简述NaI(Tl)探测器的特征X射线逃逸以及对谱线的影响。
解答:当γ光子在晶体内发生光电效应时,原子的相应壳层上将留一空位,当外层电子补入时,会有特征X射线或俄歇电子发出(3分)。
若光电效应发生在靠近晶体表面处时,则改特征X 射线有可能逃逸出探测晶体,使入射光子在晶体内沉淀的能量小于光子能量,光子能量与在晶体内沉淀能量即差为特征X射线能量(2分)。
因此,使用Na(Tl)晶体做探测器时,碘原子K层特征射线能量为38keV,在测量的γ谱线上将会出一个能量比入射γ射线能量小28keV的碘特征射线逃逸峰(2分)。
第一章 辐射源1、实验室常用辐射源有哪几类?按产生机制每一类又可细分为哪几种?带电粒子源快电子源: β衰变 内转换 俄歇电子 重带电粒子源: α衰变 自发裂变非带电粒子源电子辐射源:伴随衰变的辐射、湮没辐射、伴随核反应的射线、轫致辐射、特征X 射线 中子源:自发裂变、放射性同位素(α,n )源、光致中子源、加速的带电粒子引起的反应 2、选择辐射源时,常需要考虑的几个因素是什么? 答:能量,活度,半衰期。
3、252Cf 可做哪些辐射源?答:重带点粒子源(α衰变和自发裂变均可)、中子源。
第二章 射线与物质的相互作用电离损失:入射带电粒子与核外电子发生库仑相互作用,以使靶物质原子电离或激发的方式而损失其能量作用机制:入射带电粒子与靶原子的核外电子间的非弹性碰撞。
辐射损失:入射带电粒子与原子核发生库仑相互作用,以辐射光子的方式损失其能量。
作用机制:入射带电粒子与靶原子核间的非弹性碰撞。
能量歧离:单能粒子穿过一定厚度的物质后,将不再是单能的,而发生了能量的离散;这种能量损失的统计分布,称为能量歧离。
引起能量歧离的本质是:能量损失的随机性。
射程:带电粒子沿入射方向所行径的最大距离。
路程:入射粒子在物质中行径的实际轨迹长度。
入射粒子的射程:入射粒子在物质中运动时,不断损失能量,待能量耗尽就停留在物质中,它沿原来入射方向所穿过的最大距离,称为入射粒子在该物质中的射程。
重带电粒子与物质相互作用的特点: 1、主要为电离能量损失2、单位路径上有多次作用——单位路径上会产生许多离子对3、每次碰撞损失能量少4、运动径迹近似为直线5、在所有材料中的射程均很短 电离损失: 辐射损失:快电子与物质相互作用的特点: 1、电离能量损失和辐射能量损失2、单位路径上较少相互作用——单位路径上产生较少的离子对3、每次碰撞损失能量大4、路径不是直线,散射大⎛⎫ ⎪⎝⎭242ion 0dE 4πz e -=NZB dx m v ()()⋅≅rad ion dE/dx E ZdE/dx 800222NZ m E z dx dE rad∝⎪⎭⎫ ⎝⎛-21m S rad ∝E S rad ∝2NZ S rad∝带电粒子在靶物质中的慢化:(a) 电离损失-带电粒子与靶物质原子中核外电子的非弹性碰撞过程。
“核辐射测量方法”思考题一、名词解释1.核素2.半衰期3.碰撞阻止本领4.平均电离能5.粒子注量6.粒子注量率7.能注量8.能注量率9.比释动能10.吸收剂量11.剂量当量12.辐射量13.同位素14.放射性活度15.照射量16.剂量当量指数17.射气系数18.α衰变19.核衰变20.同质异能素21.轨道电子俘获22.半衰期23.平均寿命24.电离能量损耗率25.衰变常数26.伽玛常数27.平衡铀含量28.分辨时间29.轫致辐射30.康普顿边31.康普顿坪32.累计效应33.边缘效应34.和峰效应35.双逃逸峰36.响应函数37.衰变率38.能量分辨率39.探测效率40.峰总比41.峰康比42.能量线性43.入射本征效率44.本征峰效率45.源探测效率46.源峰探测效率47.俄歇电子48.线衰减系数49.光电吸收系数50.质量衰减系数51.光电截面52.原子核基态53.铀镭平衡常数54.放射性活度55.碰撞阻止本领56.离子复合57.光能产额58.绝对闪烁效率59.二、填空1.天然放射性钍系列的起始核素是其半衰期是。
2.天然放射性铀系列的起始核素是其半衰期是。
3.铀系、钍系和锕铀系中的气态核素分别是、和;其半衰期分别是、和。
4.α射线与物质相互作用的主要形式是和。
5.β射线与物质相互作用的主要形式是、和。
6.天然γ射线与物质相互作用的主要形式是、和7.β衰变的三种形式是、和。
8.形成电子对效应的入射光子能量应大于 MeV。
9.用γ能谱测定铀、钍、钾含量,一般选择的γ辐射体是、和;其γ光子的能量分别是、和。
10.β-衰变的实质是母核中的一个转变为。
11.β+衰变的实质是母核中的一个转变为。
12.轨道电子俘获的实质是母核中的一个转变为。
13.半衰期与平均寿命的关系是。
14.半衰期与衰变常数的关系是。
15.α粒子是高速运动的。
16.天然γ射线的最大能量是。
17.天然α射线在空气中的最大射程是。
18.α射线与物质相互作用的主要形式是和。
一、名词解释(每名词3分,共24分)半衰期:放射性核素数目衰减到原来数目一半所需要的时间的期望值。
放射性活度:表征放射性核素特征的物理量,单位时间内处于特定能态的一定量的核素发生自发核转变数的期望值。
A=dN/dt。
射气系数:在某一时间间隔内,岩石或矿石析出的射气量N1与同一时间间隔内该岩石或矿石中由衰变产生的全部射气量N2的比值,即η*= N1/N2×100%。
原子核基态:处于最低能量状态的原子核,这种核的能级状态叫基态。
核衰变:放射性核素的原子核自发的从一个核素的原子核变成另一种核素的原子核,并伴随放出射线的现象。
α衰变:放射性核素的原子核自发的放出α粒子而变成另一种核素的原子核的过程成为α衰变衰变率:放射性核素单位时间内衰变的几率。
轨道电子俘获:原子核俘获了一个轨道电子,使原子核内的质子转变成中子并放出中微子的过程。
衰变常数:衰变常数是描述放射性核素衰变速度的物理量,指原子核在某一特定状态下,经历核自发跃迁的概率。
线衰减系数:射线在物质中穿行单位距离时被吸收的几率。
质量衰减系数:射线穿过单位质量介质时被吸收的几率或衰减的强度,也是线衰减系数除以密度。
铀镭平衡常数:表示矿(岩)石中铀镭质量比值与平衡状态时铀镭质量比值之比。
吸收剂量:电力辐射授予某一点处单位质量物质的能量的期望值。
D=dE/dm,吸收剂量单位为戈瑞(Gy)。
平均电离能:在物质中产生一个离子对所需要的平均能量。
碰撞阻止本领:带电粒子通过物质时,在所经过的单位路程上,由于电离和激发而损失的平均能量。
核素:具有特定质量数,原子序数和核能态,而且其平均寿命长的足以已被观察的一类原子粒子注量:进入单位立体球截面积的粒子数目。
粒子注量率:表示在单位时间内粒子注量的增量能注量:在空间某一点处,射入以该点为中心的小球体内的所有的粒子能量总和除以该球的截面积能注量率:单位时间内进入单位立体球截面积的粒子能量总和比释动能:不带电电离粒子在质量为dm的某一物质内释放出的全部带电粒子的初始动能总和剂量当量:某点处的吸收剂量与辐射权重因子加权求和同位素:具有相同的原子序数,但质量数不同,亦即中子数不同的一组核素照射量:X=dq/dm,以X射线或γ射线产出电离本领而做出的一种量度照射量率:单位质量单位时间内γ射线在空间一体积元中产生的电荷。
名词解释:1. 光电效应:光子被原子吸收后发射轨道电子的现象。
2. 康普顿效应: 光子与轨道电子相互作用使得光子只改变方向而不损失能量。
3. 电子对产生效应: 当 r 光子能量大于 1.02Mev 时,r 光子经过与之相互作用的原子核附件时,与原子核发生电磁相互作用, r 光子消失而产生一个电子和一个正电子。
4. 电子吸附效应:电子在运动过程中与气体分子碰撞时可能被分子俘获,形成负离子,这种现象称为电子吸附效应。
5. 复合:电子和正离子相遇或者负离子和正离子相遇能复合成中性原子或中性分子。
6. 漂移:电子和正离子在电场的作用下分别向正、负电极方向运动,这种定向运动叫做漂移运动。
7. 平均电离能:带电离子在气体中产生一对离子所需的平均能量称为平均电离能。
8. 轫致辐射:快速电子通过物质时,原子核电磁场使电子动量改变并发射出电磁辐射而损失能量,这种电磁辐射就是轫致辐射。
9. 截面:单位面积单位时间粒子与靶核发生相互作用的概率。
10. 活化:原子核吸收中子后,变成同一种元素的另一种核素,这种现象叫做活化。
11. 真符合计数:时间上有关的事件产生的脉冲引起的符合计数称为真符合计数。
12. 偶然符合计数:在时间上没有必然联系的事件产生的脉冲引起的符合计数称为偶然符合计数。
13. 衰变常数:表示某种放射性核素的一个核在单位时间内进行衰变的概率。
14. 碘逃逸峰:当 r 射线在 NaI(Tl) 晶体表面发生光电效应时, 碘的 KaX 射线很容易逃逸出晶体,形成一个碘逃逸峰。
( 28.61KeV )15. 本征效率:探测器记录到的射线数与入射到探测器灵敏体积内的γ 光子数的比。
16. 辐射损失率:电子在物质中通过单位长度路径,由于轫致辐射而损失的能量为辐射损失率。
17. 电离损失率:入射粒子因原子的激发和电离在单位路径上引起的能量损失。
18. 能量分辨率:探测器微分脉冲幅度分布谱中的特征峰半高宽与峰值所对应的脉冲幅度之比:V Fw V2.355E 0探测效率:记录到的脉冲数记录到的脉冲数源源发射的光子数本征入射到探测器灵敏区体积内的光子数19.仪器谱:20.能谱:记录粒子能量和单位能量间隔内计数的谱。
欢迎阅读名词解释:1. 光电效应:光子被原子吸收后发射轨道电子的现象。
2. 康普顿效应:γ光子与轨道电子相互作用使得γ光子只改变方向而不损失能量。
3. 电子对产生效应:当r 光子能量大于1.02Mev 时,r 光子经过与之相互作用的原子核附件时,与原子核发生电磁相互作用,r 光子消失而产生一个电子和一个正电子。
4. 电子吸附效应:电子在运动过程中与气体分子碰撞时可能被分子俘获,形成负离子,这种现象称为电子吸附效应。
5. 复合:电子和正离子相遇或者负离子和正离子相遇能复合成中性原子或中性分子。
6. 漂移:电子和正离子在电场的作用下分别向正、负电极方向运动,这种定向运动叫做漂移运动。
7. 平均电离能:带电离子在气体中产生一对离子所需的平均能量称为平均电离能。
8. 轫致辐射:快速电子通过物质时,原子核电磁场使电子动量改变并发射出电磁辐射而损失能量,这种电磁辐射就是轫致辐射。
9. 截面:单位面积单位时间粒子与靶核发生相互作用的概率。
10. 活化:原子核吸收中子后,变成同一种元素的另一种核素,这种现象叫做活化。
11. 真符合计数:时间上有关的事件产生的脉冲引起的符合计数称为真符合计数。
12. 偶然符合计数:在时间上没有必然联系的事件产生的脉冲引起的符合计数称为偶然符合计数。
13. 衰变常数:表示某种放射性核素的一个核在单位时间内进行衰变的概率。
14. 碘逃逸峰:当r 射线在NaI(Tl)晶体表面发生光电效应时,碘的KaX 射线很容易逃逸出晶体,形成一个碘逃逸峰。
(28.61KeV )15. 本征效率:探测器记录到的射线数与入射到探测器灵敏体积内的γ光子数的比。
16. 辐射损失率:电子在物质中通过单位长度路径,由于轫致辐射而损失的能量为辐射损失率。
17. 电离损失率:入射粒子因原子的激发和电离在单位路径上引起的能量损失。
18. 能量分辨率:探测器微分脉冲幅度分布谱中的特征峰半高宽与峰值所对应的脉冲幅度之比:0355.2E Fw V V =∆=η 探测效率:光子数源发射的记录到的脉冲数源γε= 光子数积内的入射到探测器灵敏区体记录到的脉冲数本征γε= 19. 仪器谱: 20. 能谱:记录粒子能量和单位能量间隔内计数的谱。
核辐射测量原理复习知识要点1. 辐射单位:核辐射的单位有剂量当量(简称剂量)、剂量率和活度。
剂量是衡量辐射对人体或物体的能量沉积的量度,单位为戈瑞(Gray,Gy),也可以用辐(Rad)来表示。
剂量率是单位时间内所接受的辐射剂量,单位为戈瑞每小时(Gy/h)或辐每小时(Rad/h)。
活度是指放射性核素单位时间内发生核变的次数,单位为贝可勒尔(Bq)或居里(Ci)。
2.伽玛射线测量原理:伽玛射线具有高能量、高穿透力和无电荷的特点,它们的测量可以通过闪烁体、场效应管、固态探测器等方法进行。
闪烁体通过吸收伽玛射线后产生光子,可以利用光电倍增管放大光信号进行测量。
场效应管是一种半导体器件,其导电性能受到入射辐射的影响,可以通过测量电流变化来获得伽玛射线的剂量。
固态探测器利用半导体材料的能带结构和电导特性,可以直接将入射辐射转化为电信号进行测量。
3.α粒子测量原理:α粒子具有较大的电离能力和强大的破坏能力,但其穿透能力较差。
α粒子的测量可以采用闪烁体、气体探测器或固态探测器。
闪烁体通过吸收α粒子后产生光子,并通过光电倍增管放大光信号进行测量。
气体探测器利用气体经α粒子电离后导电性能的变化来测量α粒子的剂量,其中,流动计数管和泄漏计数管是常用的气体探测器。
固态探测器利用α粒子与半导体材料之间的相互作用,通过测量电流变化或电荷收集来获得α粒子的剂量。
4.β粒子测量原理:β粒子具有较高的能量和较好的穿透能力,但其电离能力较弱。
β粒子的测量可以采用闪烁体、气体探测器或固态探测器。
闪烁体通过吸收β粒子后产生光子,并通过光电倍增管放大光信号进行测量。
气体探测器利用气体经β粒子电离后导电性能的变化来测量β粒子的剂量,其中,流动计数管和泄漏计数管是常用的气体探测器。
固态探测器利用β粒子与半导体材料之间的相互作用,通过测量电流变化或电荷收集来获得β粒子的剂量。
5.辐射防护:核辐射对人体有害,如不正确处理可能引起辐射病或致癌。
剂量当量:是用适当的修正因数对吸收剂量进行修正,使得修正后的吸收剂量更好地和辐射所引起的有害效应联系起来。
定义为在组织内所关心的一点上的吸收剂量D 、品质因数Q 、修正因子的三项乘积。
这组辐射物理量适用于度量在各种介质中的各种射线。
吸收剂量与照射量的关系:空气辐射场的X 或γ射线,可通过下式将照射量X 换算为吸收剂量D :其中:g 表示发生韧致辐射而逃逸出去的能量(未发生电离产生离子对);W 为平均电离能;e 为电子电量。
2、简要说明放射性物质的常用重量单位及其适用对象,常用的活度单位及其适用对象,常用的含量单位有哪些?放射性物质的重量(常将重量和质量称呼一致)单位常用的有克、千克,适用长寿核素;常用的活度单位有Bq 、Ci ,适用长寿和短寿核素。
固体物质中放射性核素的含量单位有:克/克、克/100克(%)、克/吨(g/t )、ppm ;液体或气体物质中放射性核素的含量单位有:g/L, mg/L ,Bg/L,Bg/m3。
3、说明放射性活度与射线强度的区别。
放射性活度:指单位时间内发生衰变的原子核数目。
射线强度:放射源在单位时间内放出某种射线的个数。
4、放射性核素的活度经过多少个半衰期以后,可以减少至原来的15%、7%、0.1%?根据: ,依次类推。
5、采用两种方法计算距一个活度为1居里的60Co 放射源一米远处的伽玛射线照射量率(注: 60CO 每次衰变放出能量为1.17MeV 和1.33MeV 的光子各一个,在空气中的质量吸收系数为2.66×10-3m2/Kg )。
解法一(查表法):查表知解法二(物理法):6、简述外照射防护的基本原则和基本方法,以及内照射防护的最根本方法。
外照射防护基本原则:尽量减少或避免射线从外部对人体的照射,使之所受照射N Q D H ⋅⋅=W e g D W e g dm dE dm dQ X ⋅-=⋅-==)1()1(2/12ln T =λtT t e A e A t A 2/121ln)0()0()(==-λ2/121ln 3.0ln )0()0(15.02/1T t e A A t T =⇒=118-2111218102109.25)1(10503.2107.31------∙⋅⋅⨯≈⋅⋅⋅⋅⨯⨯⨯⨯=Γ⨯=s kg C m s Bq kg m C Bq R A X 24R E An πψγγ= 118-19123261102109.2585.3310602.11066.2)1(1415926.3410)33.117.1(107.314------∙⋅⋅⨯≈⨯⨯⋅⨯⨯⨯⨯⨯+⨯⨯⨯=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=s kg C eV kg m m eV s We R E An W e X a en aen Cρμπρμψγγ不超过国家规定的剂量限值。
第一章辐射与物质的相互作用与物质相互作用:1.带电粒子与靶原子核的核外电子非弹性碰撞(电离,激发)2.带电粒子与靶原子核的非弹性碰撞(辐射损失)3.带电粒子与靶原子核弹性碰撞(核阻止)4.带电粒子与核外电子弹性碰撞电离损失能量:入射带电粒子与核外电子发生非弹性碰撞使靶物质原子电离或激发而损失的能量(电离:核外层电子客服束缚成为自由电子,原子成为正离子激发:使核外电子由低能级跃迁到高能级而使原子处于激发状态)辐射损失能量:入射带电粒子与原子核发生非弹性碰撞以辐射光子损失能量轫致辐射:入射带电粒子与原子核之间的库仑力作用使带电粒子的速度和方向改变,并伴随发射电磁辐射阻止本领:单位路径上的能量损失S=-dE/dx=S ion+S rad重:S=S ion=(1/4πε0)2(4πz2e4/m0v)2NBBethe公式结论:1.电离能了损失率和入射带电粒子速度有关,质量无关2.和电荷数平方z2正比3.S ion随粒子E/n变化曲线:a段:入射粒子能量E较低时, S ion与z2成正比,曲线上升b段(0.03MeV-3000MeV):相对论项作用不显著, S ion与E成反比,曲线下降c段:能量较高时,相对论修正项起作用, S ion与B成正比,曲线上升4.高Z 和ρ物质阻止本领高布拉格曲线:随穿透距离增大而上升,接近径迹末端,由于拾取电荷而下降。
同样能量的入射带电粒子经过一定距离后,各个粒子损失的能量不会完全相同,是随机性的,发生了能量离散,即能量歧离. 射程歧离:单能离子的射程也是涨落的为何峰值上升?因为部分粒子已经停止运动,相当于通道变窄,剩余粒子能量集中,导致峰值上升.沿x方向,能量降低,离散程度变大,峰值降低.射程R带电粒子沿入射方向所行径的最大距离路程:实际轨迹长度解释各种粒子的轨迹:重带电粒子质量大,其与物质原子的轨道电子相互作用基本不会导致运动方向有偏差,径迹几乎是直线:由于次级电离,曲线会有分叉:质子和α粒子粗细差别:能量提高,径迹变细.电子的径迹不是直线,散射大. 射程R正比于m/z21.v同两种粒子同物质R1/R2=m1/m2*(z2/z1)22.v同一种粒子两物质R a/R b=√A a/√A b *(ρb/ρa)α粒子空气射程R0=0.318Eα1.5R=3.2*10-4√A/ρ*R air比电离:带电粒子在穿透单位距离介质时产生的离子对的平均数δ射线:带电粒子在穿透介质时产生的电子-离子对中的具有足够能量可以进一步电离的电子电子S rad/S ion=EZ/800快电子S rad正比于z2E/m2*NZ2屏蔽电子材料:当要吸收、屏蔽β射线时,不宜选用重材料:当要获得强的X射线时,选用重材料做靶.电子反散射及效应:电子由原入射方向的反方向反射回来,从入射表面射出.对于放射源,反散射可以提高产额:对于探测器,会产生测量偏差. When反散射严重:对于同种材料,入射电子能量越低反散射越严重:对同样能量的入射电子,原子序数越高的材料,反散射越严重光电效应:光子把全部能量转移给某个束缚电子,使其发射出去而光子本身消失的过程.是光子和整个原子的作用结果,主要集中在内层电子,还会有俄歇电子或特征X射线.(为何不与自由电子-因为入射光子有部分能量传递给原子,使其发生反冲,否则能量不守恒)采用高Z材料可提高探测效率,有效阻挡γ射线:γ光子能量越高,光电效应截面σph 越小. 入射光子能量低时,光电子趋于垂直方向发射:入射光子能量高时,光电子趋于向前发射.康普顿效应:γ射线和核外电子非弹性碰撞,入射光子一部分能量传递给电子,使之脱离原子成为反冲电子,光子受到散射,运动方向和速度改变,成为散射光子. 散射角θ=180时即入射光子和电子对心碰撞,散射光子沿入射光子反方向射出,反冲电子沿入射方向射出-反散射.能量高的入射光子有强烈的向前散射趋势,低的向前向后散射概率相当.康普顿坪:单能入射光子所产生反冲电子的能量为连续分布,在能量较低处反冲电子数随能量变化小,呈平台状:康普顿边缘:在最大能量处,电子数目最多,呈尖锐的边界.峰值Ee=hν-200keV电子对效应:当入射光子能量较高,从原子核旁边经过时,在库伦场作用下转换成一个正电子和一个负电子.电子对效应出现条件:hν>2m0c2=1.022MeV 电子和正电子沿入射光子方向的前向角度发射,能力越高,角度越前倾. 湮没辐射:正电子湮没放出光子的过程.实验上观测到511kev的湮没辐射为正电子的产生标志单双逃逸峰:发生电子对效应后,正电子湮没放出的两个511keV的γ光子可能会射出探测器,使得γ射线在探测器中沉积的能量减小.低能高Z光电,中能低Z康普顿,高能高Z电子对.线形衰减系数μ=σγN 质量衰减系数μm=μ/ρ质量厚度x m=ρx平均自由程: 表示光子每经过一次相互作用之前,在物质中所穿行的平均厚度λ=1/μ 宽束N=N0Be-μd窄束I(x)=I0e-μx半减弱厚度:射线在物质中强度减弱一半时的厚度D1/2= λ ln2第二章气体探测器信息载流子:气体(电子离子对w=30eV,F=0.2-0.5)闪烁体(第一打拿极收集到的光电子w=300ev,F=1)半导体(电子空穴对w=3ev,F=0.1 )平均电离能:带电粒子在气体中产生一对离子对所平均消耗的能量电子和离子相对运动速度:电子漂移速度为离子1000倍,约106cm/s雪崩:电子在气体中碰撞电离的过程. 条件:足够强的电场和电离产生的自由电子非自持放电:雪崩只发生一次自持放电:通过光子作用和二次电子发射,雪崩持续发展R0C0<<1/n脉冲(电子T-<<R0C0n<<T+、离子R0C0n>>T+)、R0C0>>1/n累计(电流、脉冲束)1.仅当正离子漂移时外回路才有离子电流i+(t)2.正离子从初始位置漂移到负极过程,流过外回路电荷量不是离子自身的电荷量e,而是在正极感应电荷量q1 电子电流i-(t)同理本征电流i(t)=i+(t)+i-(t) q1+q2=e电离室构成:高压极,收集极,保护极和负载电阻工作气体:充满电离室内部的工作介质,应选用电子吸附系数小的气体.圆柱型电子脉冲原理:利用圆柱形电场的特点来减少Q-对入射粒子位置的依赖关系,达到利用”电子脉冲”来测量能量的目的.能量分辨率η=ΔE/E*100%=Δh/h*100%=2.36ΔE能谱半高宽FWHM=ηE=2.36=2.36σ探测效率:入射到脉冲探测器灵敏体积内辐射粒子被记录下的百分比总输出电荷量Q=N*e=E/W*e脉冲电离室饱和特性曲线:饱和区斜率成因:灵敏体积增加,对复合的抑制,对扩散的抑制饱和电压V1-对应90%饱和区的脉冲幅度放电电压V2工作电压V=V1+(V2-V1)/3 坪特性曲线:描绘电离室计数率和工作电压关系成因:甄别阈不同电压小于V1时在符合区,但不是每个粒子都能形成一个电子离子对.仅少数可达到计数阈值h,V0上升至饱和电压后电子离子对N基本不变分辨时间(死时间):能分辨开两个相继入射粒子间的最小时间间隔时滞:入射粒子的入射时刻和输出脉冲产生的时间差累计电离室工作状态要求输出信号的相对均方涨落V I2≈1/nT<<1 V V2≈1/2R0C0n<<1 饱和特性曲线斜率:灵敏体积增大,复合的抑制,漏电流灵敏度η=输出电流或电压值/射粒子流强度(采用多级平行电极系统可提高) why曲线后部分离:部分电子离子对复合,未达到饱和电压,引起输出电流信号偏小正比计数器是一种非自持放电的气体探测器,利用碰撞电荷讲入射粒子直接产生的电离效应进行放大,使得正比计数器的输出信号幅度比脉冲电离室显著增大输出电荷信号主要由正离子漂移贡献r处场强E(r)=V0/rlnb/a V T=ET*alnb/a 只有V0>V T才工作于正比工作区,否则电离室区气体放大倍数A=n(a)/n(r0)A仅于V0V T有关,与入射粒子位置无关气体放大过程(电子雪崩)当电子到打距极丝一定距离r0后,通过碰撞电离过程电子数目不断增加电子与气体分子碰撞过程中碰撞电离,碰撞激发(气体退激发射子外光子,阴极打出次级电子,次级电子碰撞电离) 光子反馈:次级电子在电场加速下发生碰撞电离A t=A/1-γA 光子反馈很快;加入少量多原子分子气体M可以强烈吸收气体分子退激发出的紫外光子变成M*,后来又分解为小分子(超前离解) 气体放大过程中正离子作用:1.停止电子倍增2.再次触发电子倍增(离子反馈)输出信号:1.电流脉冲形状一定,与入射粒子位置无关,电压脉冲为定前沿脉冲2.响应时间快3.R0C0>>T+时,获得最大输出脉冲幅度ANe/C0分辨时间/死时间τD与脉冲宽度正比,τD内产生的脉冲不会被记录造成计数损失,死时间可扩展. m=n/1-nτD m真实n测量时滞:初始电子由产生处漂移到阳极时间时间分辨本领:正比计数器对时间测量的精度正比计数器坪特性曲线斜率:由于负电性气体、末端与管壁效应等,有部分幅度较小的脉冲随工作电压升高而越来越多地被记录下来GM放电过程:1.初始电离和碰撞电离:电子加速发生碰撞电离形成电子潮-雪崩 2.放电传播(光子反馈):Ar*放出紫外光子打到阴极上打出次级电子 3.正离子鞘向阴极漂移,形成离子电流4.离子反馈:正离子在阴极表面电荷中和缺点GM死时间长,仅计数A t=A/1-γA自持放电:阴极新产生电子向阳极漂移引起新的雪崩,从而在外回路形成第二个脉冲,周而复始.-实现自熄:改变工作高压,增加猝熄气体-有机(阻断光子,离子反馈;工作机制:1.电子加速发生碰撞电离形成电子潮-雪崩过程 2.Ar*放出紫外光子被有机气体分子吸收3. 正离子鞘向阴极漂移实现电荷交换4.有机气体离子在阴极电荷中和),卤素(工作机制:1.电离过程靠Ne的亚稳态原子的中介作用形成电子潮2.Ne*退激发出光子在阴极打出电子,或被Br2吸收打出新点子3.正离子鞘Br+向阴极漂移4.Br+在阴极表面与电子中和超前解离)GM管和正比计数器区别:GM输出信号幅度和能量无关,只能计数,死时间非扩展型死时间校正:m=n(mτD+1)GM坪特性曲线坪斜成因:随工作电压增高,正离子鞘电荷量增加,负电性气体电子释放增加,灵敏体积增大,尖端放电增加死时间t d:电子再次在阳极附近雪崩的时间复原时间t e:从死时间到正离子被阴极收集,输出脉冲恢复正常的时间分辨时间t f:从0到第二个脉冲超过甄别阈的时间GM计数管离子对收集数N与工作电压关系图:1.复合区(电压上升,复合减少,曲线上升)2.饱和区(电荷全被收集)3.正比区N=N0M(碰撞电离产生气体放大,总电荷量正比于原电荷量)4.有限正比区N>>N0(M过大,过渡区)5.盖格区(随电压升高形成自持放电,总电离电荷与原电离无关,几条曲线重合)第三章闪烁体探测器优点:1.探测效率高,可测量不带电粒子,对于中子和γ光子可测得能谱2.时间特性好,可实现ns的时间分辨工作过程:射线沉积能量,电离产生荧光,荧光转换为光电子,光电子倍增,信号流经外回路闪烁体探测器组成:闪烁体,光电倍增管,高压电源,低压电源,分压器和前置放大器分类:无机闪烁体(无机盐晶体,玻璃体,纯晶体),有机闪烁体(有机晶体,有机液体闪烁体,塑料闪烁体)气体闪烁体(氩、氙)无机闪烁体发光机制:入射带电粒子可以产生电子空穴对,也可以产生激子(相互转化) 有机闪烁体发光机制:由分子自身激发和跃迁产生激发和发光气体闪烁体发光机制:入射粒子径迹周围部分气体被激发,返回基态时发射出光子产生电子空穴对需要三倍禁带宽度能量光能产额Y ph=n ph/E=4.3*104/MeV 闪烁效率C ph=E ph/E=13%闪烁光子传输和收集通道:反射层,光学耦合剂,光导反射层:把光子反射到窗:镜面反射和漫反射耦合剂(折射系数较大的透明介质,周围介质折射系数n1,闪烁体n0,全反射的临界角θc=sin-1n1/n0):排除空气,减少由全反射造成的闪烁光子损失光导:具有一定形状的光学透明固体材料,连接闪烁体和光电倍增管,有效地把光传输到光电转换器件上:具有较高折射系数,与闪烁体和光电转换器光学接触好. 光电倍增管PMT:把光信号转换为电信号并放大;由入射窗,光阴极,聚焦电极,电子倍增极(打拿极,次级电子产额δ=发射的次级电子数/入射的初级电子数),阳极和密封玻璃外壳组成.光谱效应:光阴极受到光照射后发射光电子的几率为波长的函数量子效率Q k(λ)=发射电子数/入射光子数光阴极的光照灵敏度S k=i k/F S a=i a/F S a=g c*M*S k第一打拿极的电子收集系数g c=第一打拿极收集到的光电子数/光阴极发出的光电子数PMT的电流放大倍数M=阳极收集到的电子数/第一打拿极收集到的电子数飞行时间(渡越时间)te:一个光电子从光阴极到达阳极的平均时间渡越时间离散Δte为te的分布函数的半宽度闪光照射到光阴极时,阳极输出信号可能不同-原因:1.光阴极的灵敏度在不同位置不同2.光阴极不同位置产生的光电子被第一打拿极收集的效率不同解决:1.改进光阴极均匀性 2.改进光电子收集均匀性 3.利用光导把光电子分散在整个光阴极输出信号:闪烁体发出闪烁光子数n ph=Y ph E 第一打拿极收集到光电子数n e=n ph T 阳极收集到电子数n A=n e M 输出电荷量Q=n A e=Y ph TMe电压脉冲型工作状态R0C0>>τ优:脉冲幅度大缺:脉冲前沿后沿慢电流脉冲型工作状态R0C0<<τ优: 脉冲前沿后沿快缺:脉冲幅度小小尺寸闪烁体:仅吸收次级电子的能量,大尺寸闪烁体:吸收全部次级电子、次级电磁辐射能量中尺寸闪烁体:吸收次级电子能量,可能吸收次级电磁辐射能量;康普顿边沿与全能峰之间连续部分-多次康普顿散射造成-康普顿效应产生的散射光子又发生康普顿效应;单逃逸峰-正电子湮没辐射时产生的两个511keV的湮没光子一个逃逸而另一个被吸收,双逃逸峰-两个光子都逃逸;全能峰-对应γ射线能量的单一能峰第四章半导体探测器本征半导体:理想的纯净半导体,价带填满电子,导带无电子禁带宽度硅300K-1.115ev 0K-1.165ev锗300K-0.665ev 0K-0.746ev 电子空穴密度硅n=p=2*1010/cm3锗n=p=2.4*1013/cm3半导体探测器分类:均匀型,PN结型,PIN结型,高纯锗HPG,化合物半导体,雪崩半导体,位置灵敏半导体半导体探测器的优点:1.非常好的位置分辨率 2.很高的能量分辨率3.很宽的线形范围4.非常快的响应时间Si:适合带电粒子测量,射程短Ge:纯度高,可以做成较大的探测器:可用于γ能谱测量掺有施主杂质的半导体中多数载流子是电子,叫做N型半导体:掺有受主杂质的半导体中多数载流子是空穴,叫P型半导体补偿效应:当p>n,N型转换为P型半导体p=n时完全补偿平均电离能特点:1.近似与入射粒子种类和能量无关,根据电子空穴对可推入射粒子能量 2.入射粒子电离产生的电子与空穴数目相等 3.半导体平均电离能约3eV,远小于气体平均电离能30eV 陷落和复合使载流子减少半导体探测器材料特性:长载流子寿命(保证载流子可被收集),高电阻率(漏电流小,结电容小)PN型半导体:适合测量α粒子这类短射程粒子,不适合测量穿透力强的射线势垒高度V0=eN d W2/2ε宽度W=(2εV0/eN d)1/2=(2εV0ρnμn)1/2PIN半导体:温度升高,Li+漂移变快;Li+形成PN结,Li+与受主杂质中和,实现自动补偿形成I区(完全补偿区,耗尽层,灵敏体积),形成PIN结why半导体PN结可作为灵敏区?1.在PN结区可移动的载流子基本被耗尽,只留下电离了的正负电中心,具有高电阻率 2.PN结上加一定负偏压,耗尽区扩展,可达全耗尽,死层极薄,外加电压几乎全部加到PN结上,形成高电场 3.漏电流小,具有高信噪比高纯锗:一面通过蒸发扩散或加速器离子注入施主杂质形成N区,并形成PN结,另一面蒸金属形成P+作为入射窗,两端引出电极第五章辐射探测中的统计学f(t)=me-mt t=1/m σt2=1/m2第六章核辐射测量方法符合事件:两个或以上在时间上相关的事件真符合:用符合电路选择同时事件反符合:用反符合电路来消除同时事件,当一个测量道没有输入信号时,另一道的信号才能从符合装置输出符合道计数率nc=Aεβεγ偶然符合:在偶然情况下同时达到符合电路的非关联事件引起的符合(偶然计数n rc=2τs n1n2) 电子学分辨时间τe=FWHM/2符合计数n c=n co+n rc 真偶符合比R=n co/n rc=1/2τs A电压工作状态脉冲幅度⎺h=Ne/C0 E=Κ1⎺h+K2=Gx+E0 G0增益E0零截α能量分辨率FWHMs=2.36√FEαW0探测器选择α:金硅面垒半导体探测器、屏栅电离室、带窗正比计数器β:半导体探测器、磁谱仪γ:单晶γ谱仪全能峰E f=Eγ单Es= Eγ-511keV双E d= Eγ-1022keVy(i)=y(I p)exp[-(i-I p)2/2σ2] η=FWHM/I p FWHM=2.36σ峰康比p=全能峰的峰值/康普顿平台的峰值半导体峰总比f p/T=特征峰面积/谱总面积第七章中子探测反应堆周期T:反应堆内中子密度变化e倍所需时间平均每代时间τ:上一代中子的产生到被吸收后又产生新一代中子的平均时间K=堆内一代裂变中子总数/堆内上一代裂变中子总数T=τ/K-1反应堆功率测量系统功能:为反应堆提供工况控制信息(控制方面),为反应堆的安全保护系统提供安全保护信号(安全方面)中子测量方法:核反冲法,核反应法,核裂变法,活化法中子能谱测量方法:核反应法,核反冲法,飞行时间法中子探测器原理:通过中子与核相互作用产生可被探测的次级粒子并记录这些刺激粒子探测过程:1.中子和辐射体发生相互作用产生带电粒子或感生放射性2.在某种探测仪表记录这些带电粒子或放射性中子探测器种类:1.气体探测器(BF3正比计数管,涂硼正比计数管,长计数管,平行板电离室,圆柱形电离室,γ补偿电离室,长中子电离室)2.固体探测器(硫化锌快中子屏,硫化锌慢中子屏,含锂闪烁体,有机闪烁体)堆芯外仪表:核仪表系统(2个源量程测量通道2个中间量程测量通道4个功率量程测量通道),提供信号,提供控制信号,监测功能堆芯内仪表:堆芯裂变电离室,涂硼室,γ温度计.自给能探测器堆芯中子注量率测量系统:驱动装置,组选择器,路选择器,中子探头。
剂量当量:是用适当的修正因数对吸收剂量进行修正,使得修正后的吸收剂量更好地和辐射所引起的有害效应联系起来。
定义为在组织内所关心的一点上的吸收剂量D 、品质因数Q 、修正因子的三项乘积。
这组辐射物理量适用于度量在各种介质中的各种射线。
吸收剂量与照射量的关系:空气辐射场的X 或γ射线,可通过下式将照射量X 换算为吸收剂量D :其中:g 表示发生韧致辐射而逃逸出去的能量(未发生电离产生离子对);W 为平均电离能;e 为电子电量。
2、简要说明放射性物质的常用重量单位及其适用对象,常用的活度单位及其适用对象,常用的含量单位有哪些?放射性物质的重量(常将重量和质量称呼一致)单位常用的有克、千克,适用长寿核素;常用的活度单位有Bq 、Ci ,适用长寿和短寿核素。
固体物质中放射性核素的含量单位有:克/克、克/100克(%)、克/吨(g/t )、ppm ;液体或气体物质中放射性核素的含量单位有:g/L, mg/L ,Bg/L,Bg/m3。
3、说明放射性活度与射线强度的区别。
放射性活度:指单位时间内发生衰变的原子核数目。
射线强度:放射源在单位时间内放出某种射线的个数。
4、放射性核素的活度经过多少个半衰期以后,可以减少至原来的15%、7%、0.1%?根据: ,依次类推。
5、采用两种方法计算距一个活度为1居里的60Co 放射源一米远处的伽玛射线照射量率(注: 60CO 每次衰变放出能量为1.17MeV 和1.33MeV 的光子各一个,在空气中的质量吸收系数为2.66×10-3m2/Kg )。
解法一(查表法):查表知解法二(物理法):6、简述外照射防护的基本原则和基本方法,以及内照射防护的最根本方法。
外照射防护基本原则:尽量减少或避免射线从外部对人体的照射,使之所受照射N Q D H ⋅⋅=W e g D W e g dm dE dm dQ X ⋅-=⋅-==)1()1(2/12ln T =λtT t e A e A t A 2/121ln)0()0()(==-λ2/121ln 3.0ln )0()0(15.02/1T t e A A t T =⇒=118-2111218102109.25)1(10503.2107.31------•⋅⋅⨯≈⋅⋅⋅⋅⨯⨯⨯⨯=Γ⨯=s kg C m s Bq kg m C Bq R A X 24R E An πψγγ= 118-19123261102109.2585.3310602.11066.2)1(1415926.3410)33.117.1(107.314------•⋅⋅⨯≈⨯⨯⋅⨯⨯⨯⨯⨯+⨯⨯⨯=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=s kg C eV kg m m eV s We R E An W e X a en aen Cρμπρμψγγ不超过国家规定的剂量限值。
外照射防护的基本方法(三要素):(1)时间防护:根据累积剂量与受照时间成正比,采取的措施为充分准备,减少受照时间;(2)距离防护:根据剂量率与距离的平方成反比(点源),采取的措施为:远距离操作;任何源不能直接用手操作;注意β射线防护。
(3)屏蔽防护:措施为设置屏蔽体;屏蔽材料和厚度的选择(根据辐射源的类型、射线能量、活度,考虑各种辐射与物质的相互作用的差别)。
内照射防护最根本的防护方法是尽量减少放射性物质进入体内的机会(包括经口摄入、经呼吸道吸入、经皮肤、伤口进入)。
第四章 带电粒子测量方法1、对气体电离探测器,说明电离室的工作原理、并分别说明离子脉冲电离室、电子脉冲电离室、屏栅电离室能够用于测量入射粒子的哪些物理量(如粒子注量率、能注量率)及其原因,它们各有哪些缺点存在?气体探测器利用收集射线在气体中产生的电离电荷来探测入射粒子。
电离室工作在气体电离放电伏安曲线的饱和区。
入射粒子在灵敏体积内引起工作气体分子的电离,产生电子和正离子(离子对) 。
在电场作用下,分别朝着正、负电极漂移,因而电极上的感生电荷随之而变。
当高压电极保持固定电位时,则收集极的电位将随着电子和正离子的漂移而变化。
当离子对全部到达电极,此时的电压脉冲值为。
可见,电压脉冲的个数能够反映入射粒子的个数;电压脉冲的幅度V 饱和能够反映入射粒子的能量E 。
离子脉冲电离室的工作条件为时间常数RC>>收集正离子所需的时间T+,当t<T+时,脉冲是上升阶段,当t=T+时,脉冲达到最大值,随后,按时间常数为RC 的指数规律下降。
因此,离子脉冲电离室可用来测量带电粒子的能量,特别是重带电粒子(如α粒子)。
即可测量入射粒子的能注量率和粒子注量率。
缺点:脉冲延续时间太长(~ms ),当计数率大于102cps 时,脉冲可能发生重叠。
电子脉冲电离室的工作条件为T-(收集电子所需时间)<RC<T+(收集正离子所需时间),在t<=T-时间内,电子电流脉冲Ic(t)在C 上充电至 ,而在t>T-以后就以时间常数RC 放电。
可认为电子已被收集而正离子几乎还没动。
因而,脉冲宽度为RC 的量级(10-4~10-5s ),最大幅度决定于,但与离子对产生的地点有关。
所以,电子脉冲电离室的缺点是不能用于分析带电粒子的能量(不能测量能注量率),可用于测入射粒子的粒子注量率,并可获得更高的计数率。
屏栅电离室克服了电子脉冲电离室的脉冲幅度与电离产生地点有关的缺点,使脉冲高度正比于原始电离电荷,而不再与产生位置有关。
因此可用于测入射粒子的粒子注量率和能注量率。
2、说明正比计数器的工作原理,它可用于测量入射粒子的哪些物理量(如粒子注量率、能注量率)及其原因?正比计数器是一种充气型辐射探测器,工作在气体电离放电伏安特性曲线的正比区。
因为工作电压足够高,在中心丝阳极附近出现了高电场,在离子收集的过程中将出现气体放大现象,即被加速的原电离电子在电离碰撞中逐次倍增(雪崩现象)。
所以最后收集到的离子对总电荷量不再等于射线粒子产生的原始电荷量Q ,收集的总电量变为MQ ,M 称为气体放大倍数(可高达104)。
于是,在收集电极上感生的脉冲幅度 V ∞将是原电离感生的脉冲幅度的M 倍,即C W e E C e N C Q V ⋅⋅=⋅==0饱和-∞V -∞V -∞V 00MV C e N M V ==∞在正比区,M 与射线离子的原始比电离无关,只决定与工作电压,收集的总电量MQ 仍保持着与射线粒子在灵敏体积内产生的总离子对数目成正比。
当选取RC<<T+(正离子收集时间)时,正比室的输出脉冲窄且其幅度正比于电离辐射在工作气体中产生的原电离而与产生位置无关,因此可用于测入射粒子的粒子注量率和能注量率,特别适合测量低电离辐射粒子的能量(如β粒子、软X 射线),且可忍受较高的计数率。
3、说明G-M 计数器的工作原理,它可用于测量入射粒子的哪些物理量(如粒子注量率、能注量率)及其原因?G-M 计数器工作在气体电离放电伏安特性曲线的G-M 区。
在这个区域内,收集的离子对数目根本与射线粒子在工作气体中产生的初始离子对数目无关,即使在工作气体中只产生一对离子对,收集的离子对数目也是很大的,其数值完全由气体探测器本身的特性及相随电子学电路来决定。
因此只能进行粒子注量率的测量(强度测量),不能用来测能注量率。
4、说明闪烁探测器的工作原理,它可用于测量入射粒子的哪些物理量(如粒子注量率、能注量率)及其原因?闪烁探测器以闪烁晶体为探测介质,利用闪烁效应来探测入射粒子,工作原理如下:⑴射线进入闪烁体,与之发生相互作用,闪烁体吸收带电粒子能量而使原子、分子电离和激发;⑵受激原子、分子退激时发射荧光光子;⑶利用反射物和光导将闪烁光子尽可能多地收集到光电倍增管的光阴极上,由于光电效应,光子在光阴极上击出光电子;⑷光电子在光电倍增管中倍增,数量由一个增加到104~109个,电子流在阳极负载上产生电信号;⑸电信号由电子仪器记录和分析。
输出信号幅度V 与入射粒子能量E 的关系: ,因此,通过分辨信号幅度,可分辨射线能量;通过测量脉冲信号数,可测定射线强弱。
即可进行 能注量率和粒子注量率的测量。
5、说明半导体探测器的工作原理,它可用于测量入射粒子的哪些物理量(如粒子注量率、能注量率),与气体探测器和闪烁探测器相比,它的主要优缺点有哪些?固体半导体探测器可看作固体电离室,即“填充”半导体晶体(而不是气体)作介质的电离室。
因此其工作原理与电离室相同(通过电离将入射射线转换成电信号)。
半导体探测器有两个电极,加有一定的偏压。
当入射粒子进入半导体探 测器的灵敏区时,即产生电子-空穴对。
在两极加上电压后,电荷载流子就向两极作漂移运动,收集电极上会感应出电荷,从而在外电路形成信号脉冲。
可用于测入射粒子的粒子注量率和能注量率。
半导体探测器的主要优缺点如下:主要优点:能量分辨率高(优于正比计数器、闪烁计数器)。
例如:金硅面垒探测器对241Am 的5.486MeV 的α射线峰的线宽度达10.8KeV 。
线性范围宽。
在很大能量范围内,探测器的输出幅度与所测射线的能量都精确地成正比。
脉冲上升时间较短,可用于快速测量;窗可以做得很薄,可测量低能X 射线;结构简单,体积小,重量轻,不用很高电压,适合空间环境的严格要求。
主要缺点:受强辐照后性能变坏,输出脉冲幅度小,性能随温度变化较大等。
6、请简述采用FD-3017(或IED-3000R)型测氡仪进行野外土壤氡气测量的工作程序。
答:由于FD-3017(或IED-3000R)型测氡仪不受钍射气的干扰,在野外进行野外入射粒子输出E V土壤氡气测量的工作程序如下:①先用铁锤和六棱钢钎,在测点处土壤层打孔。
然后取出钢钎,插入取样器,周围用土壤封紧以免进入空气。
②用橡皮管连接取样器和仪器,放入探测片(收集片,注意:收集片上有记号的面朝上,光面向下),打开仪器,抽取地下气样,等待一定时间(2min ),使218Po 在带负高压的探测片上沉积。
7、请简述气球法测空气中氡浓度的原理。
原理,实质上是双滤膜法的变种。
它将双滤膜管改为一个球,气体入口和出口为同一通道。
抽气泵开动,充气过程中:入口滤膜只让氡气(纯氡)进入气球,在气球内产生新的子体。
排气过程中,出口滤膜上收集到一部分新生子体,测量出口滤膜上的α活度来计算氡的浓度。
8、请简述采用α径迹测量土壤氡的操作程序。
答:α径迹蚀刻测量应用在地质条件对成矿有利,地面有浮土覆盖的地区。
根据需要布置好测线和测点。
工作方法如下:⑴准备探测装置(探测器及探杯):将α径迹探测片,切成一定形状,一般取0.8cm ×1.5cm ,将探测片固定在探杯(T-702型)内的支架上,并在径迹片和杯上统一编号。
⑵将探测装置埋入地下:在测点挖埋杯探坑,如下图所示。
一般深度40cm ,将探杯倒扣坑中,用塑料袋装土将探杯压紧,盖上填土,在地表插上标志。