(优选)三维波动方程初值问题
- 格式:ppt
- 大小:1.96 MB
- 文档页数:54
第二章 波动方程一、小结本章主要提供了波动方程初值问题与混合问题的求解方法。
对于不同的方程或同一类方程,由于维数的不同,定解条件的不同,它的定解问题的求解方法往往也是不同的。
1.波动方程的初值问题20(0,)(I)(,0)(),(,0)()tt xx t u a u t x u x x u x x ϕψ⎧-=>-∞<<∞⎪⎨==⎪⎩可用达朗贝尔方法求解,得到解的表达式为11(,)[()()]()22x atx atu x t x at x at d a ϕϕψξξ+-=++-+⎰当21(,),(,)C C ϕψ∈-∞+∞∈-∞+∞,利用上面公式可直接验证问题(I )是适定的。
(2)半无弦自由振动的混合问题20(0,0)(II)(,0)(),(,0)()(0,)0tt xx t u a u t x u x x u x x u t ϕψ⎧-=>>⎪==⎨⎪=⎩可将初始函数(),()0x x x ∞∞=在(-,+)上关于j y 作奇延拓,把问题(II )化为问题(I )。
对于第二边值的混合问题20(0,0)(II)(,0)(),(,0)()(0,)0tt xx t xu a u t x u x x u x x u t ϕψ⎧-=>>⎪'==⎨⎪=⎩可将初始函数(),()0x x x ∞∞=在(-,+)上关于j y 作偶延拓,也可把问题化为问题(I )。
(3)三维齐次波动方程的初值问题2312312312300(0,(,,))(III)(,,),(,,),tt t t t u a u t x x x R u x x x u x x x ϕψ==⎧=∆>∈⎪⎨==⎪⎩用球平均法求解,得到解的表达式(泊松公式)为:1232211(,,,)[]44x xatatat at S S u x x x t dS dS t a t a t ϕψππ∂=+∂⎰⎰⎰⎰ 当32(,),(,)C C ϕψ∈-∞+∞∈-∞+∞,由上式确定的123(,,,)u x x x t 是问题(III)的解。
三维偏微分方程的初值问题一、三维波动方程的初值问题 P924.3 高维波动方程Cauchy 问题22,,,,0(0),(0)u a u x y z t tu u t t t φϕ∂=∆-∞<<∞>∂∂====∂的泊松公式为:用M'表示以M 为球心, at 为半径的动点这就是Poisson 公式,它给出三维无界空间齐次波动方程的初值问题的解。
公式表明,t 时刻 M 点的波函数u(M, t)由以M 为球心,at 为半径的球面 M at S 上u 的初值决定。
同时也显示了初值对M 点的影响是以速度a 从球面M at S 向M 点传播的。
二、热传导方程初值问题P159设L 是关于x, y, z 的常系数线性偏微分算子,称热传导方程初值问题 (,,,),,,,0(0)u Lu f x y z t x y z t tu t φ∂=+-∞<<∞>∂==当f=0时,称为齐次,否则为非齐次.它的解为式中U 为基本解:,,,,0(0)(,,)U LU x y z t tU t x y z δ∂=-∞<<∞>∂==例3 求三维热传导方程Cauchy 问题的基本解,即解定解问题 2,,,,0(0)(,,)U a U x y z t tU t x y z δ∂=∆-∞<<∞>∂==基本解:定理6 三维热传导方程Cauchy 问题2,,,,0(0)u a u x y z t tu t φ∂=∆-∞<<∞>∂==的解为,,,,0(0),(0)u a u x y z t tu u t t t φϕ∂=∆-∞<<∞>∂∂====∂∂。
第三节、二维与三维波动方程 研究波在空间传播问题.归结为求下列三维波动方程的初值问题⎪⎩⎪⎨⎧+∞<<-∞=+∞<<-∞=>+∞<<-∞=∆-==),,(),,(),,(),,()0,,,(0002z y x z y x uz y x z y x u t z y x u a u t t t tt ψϕ一、 球对称情形 在球坐标系⎪⎩⎪⎨⎧===θϕθϕθcos sin sin cos sin r z r y r x 下:2222222sin 1)(sin sin 1)(1ϕθθθθθ∂∂+∂∂∂∂+∂∂∂∂=∆u r u r r u r r r u 若初位移、初速度),,(),,,(z y x z y x ψϕ仅是r 的函数,则解);,,(t z y x u 也仅是r 和t 的函数,此时称定解问题是球对称的....。
且 222222222r ur u r zu y u x u u ∂∂+∂∂=∂∂+∂∂+∂∂=∆这时波动方程可简化为0222222=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂-∂∂r u r u r a t u 进一步有0)()(22222=∂∂-∂∂rru a t ru 所以球对称情形下,三维波动方程边值问题可化为⎪⎪⎪⎩⎪⎪⎪⎨⎧==∂∂==∂∂-∂∂===0|)(|)()(|)(0)()(0022222r t t ru r r tru r r ru r ru a tru ψϕ 由D ’Alembert 公式,⎪⎩⎪⎨⎧⎰≤-+---++⎰>-+--+++=+-+-rat r at atr at r at r d arr r at r at at r at r at r d arr at r at r at r at r t r u 0)(212)()()()(0)(212)()()()(),(ξξξψϕϕξξξψϕϕ二. 一般情况 令ωςηξπςηξπd t u dS t u rt r u M M rS S ⎰⎰=⎰⎰=1),,,(41),,,(41),(2),(t r u —函数),,,(t z y x u 在球面M r S 上的平均值。
数学物理方程复习一.三类方程及定解问题(一)方程1.波动方程(双曲型)Utt = a2Uxx+f; 0<x<l,t>0U(0,t)= Φ1(t);U(l,t)= Φ2(t);U(x,0)= Ψ1(x);Ut (x,0)=Ψ2(x)。
2.热传导方程(抛物型)Ut = a2Uxx+f; 0<x<l,t>0U(0,t)= Φ1(t);U(l,t)= Φ2(t);U(x,0)= Ψ1(x).3.稳态方程(椭圆型)Uxx +Uyy=f; 0<x<a;0<y<b;t>0.U(0,x)= Φ1(x);U(b,x)= Φ2(x);U(y,0)= Ψ1(y);Ut (y,a)=Ψ2(y)。
(二)解题的步骤1.建立数学模型,写出方程及定解条件2.解方程3.解的实定性问题(检验)(三)写方程的定解条件1.微元法:物理定理2.定解条件:初始条件及边界条件(四)解方程的方法1.分离变量法(有界区域内)2.行波法(针对波动方程,无界区域内)3.积分变换法(Fourier变换Laplace变换)Fourier变换:针对整个空间奇:正弦变换偶:余弦变换Laplace变换:针对半空间4.Green函数及基本解法5.Bessel函数及Legendre函数法例一:在弦的横震动问题中,若弦受到一与速度成正比的阻尼,试导出弦阻尼振动方程。
解:建立如图所示的直角坐标系,设位移函数为U(x,t),取任意一小段△x进行受力分析,由题设,单位弦所受阻力为b U t(b为常数),在振动过程中有△x所受纵向力为:(T2COSa2-T1COSa1)横向力为:(T2SINa2-T1SINa1-b U t(x+n△x))(0<n<1). T2,T1为△x弦两端所受的张力,又因为弦做横振动而无纵振动,由牛顿定律有T2COSa2-T1COSa1=0,T2SINa2-T1SINa1-b(x+n△x)U t=p U tt(x+n△x)△x在小的振动下SINa1≈TANa1=Ux(x,t), SINa2≈TANa2=Ux(x+△x,t),COSa2≈COSa1≈1,T=T1=T2.(ρ是密度)即(T/ρ)[ Ux (x+△x,t)- Ux(x,t)]/ △x-(b/ρ) U t(x+n△x,t)即令△x→0时有:U tt+ aU t=a2U xx例二:设扩散物质的源强(即单位时间内单位体积所产生的扩散物质)为F (x,y,z,t),试导出扩散方程。
现在我们讨论在三维无限空间中的波动问题:200(3.1)|()|()tt t t t u a u u M u M ϕψ==⎧=Δ⎪=⎨⎪=⎩,,x y z −∞<<+∞,,,0x y z t −∞<<+∞>(,,).M M x y z =其中M 代表空间中任意一点, 这个定解问题采用求平均法来求解.11(,)(()())()22()().22x at x atx at x at x at x at u x t x at x at d a t t d d t at at ϕϕψξξϕξξψξξ+−++−−=−+++⎛⎞∂=+⎜⎟∂⎝⎠∫∫∫先回忆一维的达朗贝尔公式的变形称为函数在区间[x -at , x +at ]1()2x at x atd at ωξξ+−∫()ωξ上的平均值,这个平均值与x, 半径at 和函数有关,()ωξ1(,)().2x at x atv x t d at ωωξξ+−=∫记作于是达朗贝尔公式的变为()(,)(,)(,).u x t tv x t tv x t tϕψ∂=+∂上述方法称为球平均法.23123(,,)(),x x x C R ω∈设函数现在考虑该函数在球面2222112233:()()()r C x x x rξξξ−+−+−=上的平均值.123(,,),r C ξξξ∈对于采用球坐标:123,1,2,3,sin cos ,sin sin ,cos ,0,02.i i i x r i ξααθϕαθϕαθθπϕπ=+====≤≤≤≤21231122332002123112233100211(,,,)(,,),(3.3)41(,,,)(,,),(3.4)4sin ,sin ,r r v x x x r x r x r x r d r v x x x r x r x r x r d d r d d d d d ππωππωωααασπωααασπσθθϕσθθϕ=+++=+++==∫∫∫∫或者 其中面积单元:记作引理4.2: 对于给定的则由(3.3)或(3.4)确定的函数v 满足PDE 2220(3.5)v v v r r r∂∂−Δ+=∂∂以及初始条件123(,,)x x x ω在球面上的平均值:r C 23123(,,)(),x x x C R ω∈12312321122332200(,,,)(,,,)11(,,)(3.7)44r r rC v x x x r v x x x r x r x r x r d d r r ωππωααασωσππΔ=Δ=Δ+++=Δ∫∫∫∫故由(3.3)有再由复合函数的求导法则应用奥高公式12300(,,),0.(3.6)r r v v x x x r ω==∂==∂证明:由于沿单位球面的积分可以在积分号下求导r C 33212001111,44r k k r k k kkC v d d r x r x ππωωασασππ==∂∂∂==∂∂∂∑∑∫∫∫∫21,(3.8)4rD v d r r ωπ∂=ΔΩ∂∫∫∫其中是由所围成的区域.r D r C 22000sin ,r r D d d d d ππωωρθθϕρΔΩ=Δ∫∫∫∫∫∫∵2200sin ,r r r D C d r d d d r ππωωθθϕωσ∂∴ΔΩ=Δ=Δ∂∫∫∫∫∫∫∫由(3.8)及上式有223211,(3.9)24r rr D C v d d r r r ωωσππ∂−∴=ΔΩ+Δ∂∫∫∫∫∫由(3.7),(3.8)和(3.9)变知函数v 满足方程(3.5).下面验证由(3.3)或(3.4)确定的v 满足初始条件(3.6).由(3.4)知211223312300001(,,)(,,).4r r r v x r x r x r d x x x ππωααασωπ==∴=+++=∫∫又由(3.8),利用积分中值定理知31231232123141(,,)(,,),433(,,).r v r r r r D πωξξξωξξξπξξξ∂=Δ=Δ∂其中是内的某点1231230,(,,)(,,),0(0).v r x x x r rξξξ∂→∴→→∂当时趋于球心引理4.2得证.引理4.3: 设v 是由(3.3)确定的函数,则123123(,,,)(,,,)(3.10)u x x x t tv x x x at =是定解问题2001230()|0,|(,,)tt t t t u a u i u u x x x ω==⎧−Δ=⎪⎨==⎪⎩的解.证明:直接计算,得 Δu = t Δv( x1 , x2 , x3 , at ),ut = v( x1 , x2 , x3 , at ) + atvr ( x1 , x2 , x3 , at ), utt = 2avr ( x1 , x2 , x3 , at ) + a 2tvrr ( x1 , x2 , x3 , at ),其中 vr ( x1 , x2 , x3 , at ) 是导数 vr ( x1 , x2 , x3 , r ) 在r=at的值. 直接验算,得2 utt − a Δu = a t (vrr − Δv + vr ) = 0. at 这正好是方程(3.5)在r=at的情形.2 2关于满足定解条件, 可由表达式(3.10)和(3.6)直接推出.引理4.4: 设 u ( x1 , x2 , x3 , t ) 是定解问题(i)的解,则 ∂ u ( x1 , x2 , x3 , t ) = u ( x1 , x2 , x3 , t ) (3.11) ∂t 是定解问题⎧ utt − a 2 Δu = 0 ⎪ ( ii ) ⎨ ⎪ u |t = 0 = ω ( x1 , x2 , x3 ), ut |t = 0 = 0 ⎩的解.证明:直接计算,得⎞ ∂ 2u ∂ ⎛ ∂ 2u 2 2 − a Δu = ⎜ 2 − a Δu ⎟ = 0, 2 ∂t ∂t ⎝ ∂t ⎠ ∂u u t =0 = = ω ( x1 , x2 , x3 ), ∂t t =0 utt =0∂u = 2 = a 2 Δu ( x1 , x2 , x3 , 0) = 0. ∂t t =02所以引理得证.利用叠加原理, 将Cauchy问题(3.1)写成定解问题⎧ utt − a 2 Δu = 0 ⎪ ( iii ) ⎨ ⎪ u |t = 0 = ϕ ( x1 , x2 , x3 ), ut |t = 0 = 0 ⎩ ⎧ utt − a 2 Δu = 0 ⎪ ( iv ) ⎨ ⎪ u |t = 0 = 0, ut |t = 0 = ψ ( x1 , x2 , x3 ) ⎩的叠加. 设 u1 ( x, y, z , t ), u2 ( x, y, z , t ), 是定解问题(iii)和(iv) 的解,则 u = u1 ( x, y, z , t ) + u2 ( x, y, z , t ) 就是Cauchy问题 (3.1)解.由引理4.3知,只要取 ω = ψ 就可得到定解问题(iv)的解t 2π π ∴ u2 ( x, y , z , t ) = ∫0 ∫0 ψ ( x1 + α1at , x2 + α 2 at , x3 + α 3at ) sin θ dθ dϕ 4π 1 = 2 ∫∫M )ψ dS , dS 是球面面积微元 4π a t Sat (⎞ ∂⎛ 1 ∴ u1 ( x, y, z , t ) = ⎜ ϕ dS ⎟ ⎜ 4π a 2t S ∫∫ ) ⎟ ∂t ⎝ (M at ⎠由引理4.4知,只要取 ω = ϕ 就可得到定解问题(iii)的解所以Cauchy问题(3.1)的解为∂⎛ 1 u( x , y , z , t ) = ⎜ ∂t ⎝ 4πa 2 t1 ⎞ ∫∫Sat ( M ) ϕ dS ⎟ + 4πa 2 t ∫∫Sat ( M )ψ dS (3.12) ⎠可写为:1 ∂ ϕ ( M ′) ψ ( M ′) u( M , t ) = [ ∫∫ dS + ∫∫ dS ] Sat ( M ) 4πa ∂t Sat ( M ) at at上式称为三维波动方程的泊松公式,它给出了三维无界 空间波动方程的初值问题的解.其中 M ′ 表示以 M 为中 心 at 为半径的球面 S at 上的动点.Mϕ ( x1 , x2 , x3 ) ∈ C 3 ,ψ ( x1 , x2 , x3 ) ∈ C 2 , 定理4.9:若函数则由Poisson公式(3.12)确定的函数u(x, y, z, t)就是 Cauchy问题的解.泊松公式的物理意义很明显,它说明定解问题的解 M 在M点t 时刻之值,由以M为中心at 为半径的球面 S 上 at 的初始值而确定. 如图,设初始扰动限于空间某个区域 T0 , d 为 M 点 到 T0 的最近距离, D为M 点与 T0 的最大距离,则:T0dDM1.当 at < d ,即 t < d / a 时, S at 与 T0 不相交, ϕ ( M ′ ) 和 ψ ( M ′) 之值均为零,因而两个积分之值亦均为零, 即 u( M , t ) = 0 .这表示扰动的前锋尚未到达.M2.当 d < at < D ,即 d / a ≤ t ≤ D / a 时, S at 与 T0 相 交, ϕ ( M ′ ) , ψ ( M ′ ) 之值不为零,因而积分之值亦不为零, 即 u( M , t ) ≠ 0 ,这表明扰动正在经过M点. 3.当 at > D ,即 t > D / a , S at 与 T0 也不相交,因而同 样 u( M , t ) = 0 ,这表明扰动的阵尾已经过去了. 这种现象在物理学中称为惠更斯(Huygens) 原理或无后效现象.MM∂u =0 ∂z20001()|(,)|(,)tt xx yy t t t u a u u u x y u x y ϕϕ==⎧=+⎪=⎨⎪=⎩,x y −∞<<+∞,,0x y t −∞<<+∞>要想从泊松公式得到上述问题解的表达式,就应将泊松公式中两个沿球面的积分转化成沿圆域内的积分,下面以为例说明这个转化方法.先将这个积分拆成两部分:M at S 222()()()x y at ξη−+−≤:M at C 11d 4πM at C S a at ϕ∫∫12111111d d d 4π44πM at S S S S S S a at a at a atϕϕϕπ=+∫∫∫∫∫∫其中分别表示球面的上半球面与下半球面.由于被积函数不依赖于变量z ,所以上式右端两个积分是相等的,即12,S S M atS 11111d d 4π2πM at S S S S a at a atϕϕ=∫∫∫∫把右端的曲面积分化成二重积分可得11222212222(,)11d d d 4π2π()()(,)1d d 2π()()M M at at M at S C C at S a at a at a t x y a a t x y ϕϕξηξηξηϕξηξηξη=−−−−=−−−−∫∫∫∫∫∫同理002222(,)11d d d 4π2π()()M M at at S C S a at a a t x y ϕϕξηξηξη=−−−−∫∫∫∫将这两个等式代入三维波动方程的泊松公式,即得问题的解为022*******(,)1(,,)d d 2π()()(,)d d ()()M at M at C C u x y t a t a t x y a t x y ϕξηξηξηϕξηξηξη⎧∂⎪=⎨∂−−−−⎪⎩⎫⎪+⎬−−−−⎪⎭∫∫∫∫当时, ;表示扰动的前锋尚未到达.当时, ;表明扰动正在经过M 点.当时,由于圆域包含了区域,所以d t a <(,,)0u x y t =d D t a a ≤≤(,,)0u x y t ≠D t a >0T :M at C ,这种现象称为有后效, 即在二维情(,,)0u x y t ≠形,局部范围内的初始扰动,具有长期的连续的后效特性,扰动有清晰的“前锋”,而无“阵尾”,这一点与球面波不同.平面上以点(ξ, η)为中心的圆周的方程在空间坐标系内表示母线平行与z 轴的直圆柱面,所以在过(ξ, η)点平行于z 轴的无限长的直线上的初始扰动,在时间t 后的影响是在以该直线为轴, at 为半径的圆柱面内,因此解称为柱面波.222()()x y r ξη−+−=将给定的初始条件与代入三维波动方程的泊松公式,得到所要求的解为:设已知, ,求方程相应柯西问题的解.(,,)x y z x y z ϕ=++(,,)0x y z ψ=(,,)x y z ϕ(,,)x y z ψ2ππ001(,,,)4πu x y z t a t∂=∂∫∫2(sin cos sin sin cos )()sin d d x y z at at at θϕθϕθθϕθ+++++x y z =++2tt u a u =Δ。