电子设备热设计基础
- 格式:ppt
- 大小:3.66 MB
- 文档页数:50
电子设备热设计准则1、概述1.1 热设计的目的采用适当可靠的方法控制产品内部所有电子元器件的温度,使其在所处的工作环境条件下不超过稳定运行要求的最高温度,以保证产品正常运行的安全性,长期运行的可靠性。
热设计的重点是通过器件的选择、电路设计(包括容差与漂移设计和降额设计等)及结构设计(主要是加快散热)来减少温度变化对产品性能的影响,使产品能在较宽的温度范围内可靠地工作。
1.减少设备(线路)内部产生的热量,应该是电路设计的一项指标;2.减少热阻,是电子设备结构设计的目的之一;3.保证电气性能稳定,热设计使元件不在高温条件下工作,以避免参数漂移,保持电气性能稳定;4.改善电子设备的可靠性;5.延长使用寿命。
1.2、热设计的主要内容电子设备冷却方法的选择要考虑的因素是:电子元器件(设备)的热耗散密度(即热耗散量与设备组装外壳体积之比)、元器件工作状态、设备的复杂积蓄、设备用途、使用环境条件(如海拔高度、气温等)以及经济性等。
①、元器件的热设计。
主要是减小元器件的发热量,合理地散发元器件的热量,避免热量蓄积和过热,降低元器件的温升,是设计考虑的一项主要指标。
②、印制板的热设计。
有效地把印制板上的热引导到外部。
减少热阻,是结构设计的目的之一。
③、机箱的热设计。
保证设备承受外部各种环境、机械应力的前提下,充分保证对流换热、传导、辐射,最大限度地的把设备产生的热散发出去。
⑴、热量的传递只要存在温差就有热量的传递。
热量的传递有三种基本方式:传热、对流和辐射。
它们可以单独出现,也可能两种或三种形式同时出现。
热量传递的两个基本规律:热量从高温区流向低温区;高温区发出的热量等于低温区吸收的热量。
⑵、热设计需考虑的问题系统热设计应与电路和结构设计同步进行;尽量减少电路发热量;减少发热元件的数量;选择耐热性和热稳定性好的元器件;在结构设计时应合理地选择冷却方法;进行传热通道的最佳设计;尽量减少热阻,热阻是热量传递路径上的阻力。
九、热电制冷器(1.25H)
1. 热电制冷的基本原理
2. 制冷器冷端净吸热的计算
3. 最大抽吸热制冷器设计方法
4. 最佳性能系数制冷器设计方法
5. 多极制冷器的性能
6. 热电制冷器的结构设计
十、热管散热器的设计(1.25H)
1. 热管的类型及其工作原理
2. 热管的传热性能
3. 热管设计
十一、电子设备的热性能评价及改进(0.5H)
1. 评价的目的与内容
2. 热性能草测
3. 热性能检查项目
4. 热性能测量
5. 确定热性能缺陷
6. 热性能改进的制约条件
7. 改进费用与寿命周期费用的权衡
8. 热设计改进示例
十二、计算机辅助热分析技术(1.5H)
1. 计算流体动力学的工作步骤
2. 计算流体动力学的分支
3. 流体流动的基本特征
4. CFD求解过程及软件结构
5. 常用的CFD商用软件
6. 三维湍流模型
7. 边界条件的应用
8. CFD应用实例
十三、热设计实例(4H)
1. 现代电子器件冷却方法动态
2. 电子设备热分析软件应用研究
3. 典型密封式电子设备热设计
4. 功率器件热设计及散热器的优化设计
5. 表面贴装元器件的热设计
6. 某3G移动基站机柜的热仿真及优化
7. 电子设备热管散热器技术现状及进展
8. 吹风冷却时风扇出风口与散热器间距离对模块散热的影响
9. 实验评估热设计软件
10. IGBT大功率器件的热设计
11. 电源模块的热设计及分析
十四、自由交流及讨论(0.5H)。
电子设备热设计方法浅析摘要:元器件的工作温度是影响电子产品使用寿命和可靠性的重要因素。
本文主要针对电子设备的热设计方法进行分析,阐述了热设计在产品研发过程中的必要性,提出了一些散热设计的思路和结构方案,希望可以为今后的设计工作提供参考。
关键词:电子设备;可靠性;散热设计;结构方案前言在电子产品的开发过程中,设计过程是其重要的环节之一。
这个过程中的安全性、稳定性等方面直接保证了产品的正常工作。
随着高功率集成芯片的快速发展,其单位面积的发热量急剧增加,导致电子设备的工作温度迅速增高,从而使设备更容易频繁的发生故障。
正确的热设计是电子产品可靠性保证的主要方法之一。
因此,对电子设备的散热设计进行研究变得至关重要。
1、热设计概念电子设备热设计系指对电子设备的热耗散单元以及整机或系统采用合适的冷却技术和散热结构设计,对其温升进行控制,从而保证电子设备或系统的正常工作和可靠性。
热设计按级别一般分为三类,电子机箱机柜的系统级热设计;电子模块、PCB板级的热设计;元器件芯片级别的热设计。
通常,对于工作环境相对固定的电子设备,其热应力主要来自两方面:设备或系统工作过程中,功率元器件耗散的热量,即由电能转换为热能;设备或系统周围的工作环境,通过导热、对流或辐射将热量传递给电子设备。
所以,热设计的总原则就是自热源至耗散空间(环境)之间提供一条尽可能低的热阻通路,使热量迅速的传递出去。
2、常用散热技术2.1自然散热2.1.1自然散热中的传导在大部分的情况下,元器件的热量主要利用接触面以热传导的形式散发。
界面热阻的理论计算公式如下:式中:θTIM——热界面材料有效综合热阻;KTIM——热界面材料的导热系数;T——热界面材料的厚度;Rc——热界面材料与接触表面的接触热阻。
在设计中要遵循以下基本原则:1)要尽量减少传热路径上的分界面,缩短传热路径;2)增大热传导面积,增加与发热器件的接触面积,保证接触面光滑平整;3)使用合适的导热界面材料,保证足够的接触压力,减少接触热阻。
电子行业电子设备热设计基础引言在电子行业中,电子设备的热设计是非常重要的。
随着电子设备的不断发展,其功能越来越强大,性能越来越高,工作时产生的热量也越来越大。
如果电子设备的热量不能有效地散出去,会导致设备过热,影响设备的性能甚至损坏设备。
因此,合理的热设计对于电子设备的可靠性和稳定性至关重要。
本文将介绍电子行业电子设备热设计的基础知识,包括热传导、热辐射、热对流等方面的内容,帮助读者了解电子设备热设计的重要性并掌握一些基本的设计原则和方法。
热传导热传导是指热能通过物质的传导方式传递的过程。
在电子设备中,常见的热传导方式有三种:导热、对流和辐射。
导热导热是通过物质内部的分子或电子的碰撞传递热能的过程。
导热的速度和效率取决于物质的热导率和传热面的接触情况。
为了提高导热效率,我们可以采用导热材料,如铜、铝等,作为散热板或散热片,将其与电子元件紧密接触以增大接触面积。
对流对流是指热量通过流体(如空气)的对流传递的过程。
当电子设备工作时产生的热量无法直接通过导热方式散出去时,就需要依靠对流来进行热散热。
在设计电子设备时,我们需要合理设置散热孔和散热风扇等设备,以增加热量与周围空气的接触面积,提高对流散热效率。
辐射辐射是指热能以电磁辐射的形式传递的过程。
热辐射是无需传递介质的热传递方式,在电子设备中发挥重要作用。
通过合理设置散热片、散热器等辐射表面,可以增大辐射能量的发射和吸收。
此外,还可以利用红外线热成像等技术来监测电子设备中的热辐射情况,及时发现问题并采取相应的措施。
设计原则和方法在进行电子设备热设计时,需要遵循一些基本的设计原则和方法,以确保设备的稳定运行和长寿命。
合理布局在电子设备的布局设计中,需要考虑到热量的产生和散热的位置。
将产热元件和散热结构合理布置,减少热量在设备内部的积聚,有利于热量的迅速散出,提高散热效率。
优化散热结构为了提高散热效果,可以采用散热片、散热器等散热结构来增大热量与周围环境的接触面积。
目录摘要: (2)第1章电子产品热设计概述: (2)第1.1节电子产品热设计理论基础 (2)1.1.1 热传导: (2)1.1.2 热对流 (2)1.1.3 热辐射 (2)第1.2节热设计的基本要求 (3)第1.3节热设计中术语的定义 (3)第1.4节电子设备的热环境 (3)第1.5节热设计的详细步骤 (4)第2章电子产品热设计分析 (5)第2.1节主要电子元器件热设计 (5)2.1.1 电阻器 (5)2.1.2 变压器 (5)第2.2节模块的热设计 (5)电子产品热设计实例一:IBM “芯片帽”芯片散热系统 (6)第2.3节整机散热设计 (7)第2.4节机壳的热设计 (8)第2.5节冷却方式设计: (9)2.5.1 自然冷却设计 (9)2.5.2 强迫风冷设计 (9)电子产品热设计实例二:大型计算机散热设计: (10)第3章散热器的热设计 (10)第3.1节散热器的选择与使用 (10)第3.2节散热器选用原则 (11)第3.3节散热器结构设计基本准则 (11)电子产品热设计实例三:高亮度LED封装散热设计 (11)第4章电子产品热设计存在的问题与分析: (15)总结 (15)参考文献 (15)电子产品热设计摘要:电子产品工作时,其输出功率只占产品输入功率的一部分,其损失的功率都以热能形式散发出去,尤其是功耗较大的元器件,如:变压器、大功耗电阻等,实际上它们是一个热源,使产品的温度升高。
因此,热设计是保证电子产品能安全可靠工作的重要条件之一,是制约产品小型化的关键问题。
另外,电子产品的温度与环境温度有关,环境温度越高,电子产品的温度也越高。
由于电子产品中的元器件都有一定的温度范围,如果超过其温度极限,就将引起产品工作状态的改变,缩短其使用寿命,甚至损坏,使电子产品无法稳定可靠地工作。
第1章电子产品热设计概述:电子产品的热设计就是根据热力学的基本原理,采取各种散热手段,使产品的工作温度不超过其极限温度,保证电子产品在预定的环境条件下稳定可靠地工作。
电子设备的温度管理与热设计考虑随着科技的不断进步和电子设备的广泛应用,我们对电子设备的温度管理和热设计也变得越来越重要。
在使用电子设备的过程中,我们经常会遇到设备过热、性能下降、甚至损坏的问题。
因此,合理的温度管理和热设计是确保电子设备正常运行的关键因素之一。
本文将详细介绍电子设备的温度管理和热设计考虑的步骤和要点。
一、温度管理的步骤1. 确定温度要求:不同的电子设备在工作温度和环境温度方面有不同的要求。
不同的温度要求需要采取不同的温度管理措施。
因此,首先需要明确设备的温度要求。
2. 测量和监控温度:使用温度传感器或红外热测技术,对设备的温度进行测量和监控。
通过监控设备温度,可以及时发现设备过热的问题,并采取相应的措施。
3. 提高散热效果:可以通过提高设备的散热效果来降低设备的温度。
有效的散热方法包括使用散热片、散热风扇、散热管等散热装置,以提高设备的散热效果。
4. 控制设备负载:过高的设备负载是导致设备过热的主要原因之一。
因此,合理控制设备负载,避免超负荷运行,有助于降低设备温度。
5. 设备布局和空气流通:合理的设备布局和空气流通是降低设备温度的重要因素。
确保设备之间的间距足够,以便空气流通和散热。
二、热设计的考虑要点1. 材料选择:在进行热设计时,材料的选择是至关重要的。
应选择具有良好导热性能的材料,以便将热量有效地传输和扩散到周围环境中。
2. 散热装置的设计:合理的散热装置设计可以增加设备的散热效果。
散热装置的设计应考虑到设备的散热需求和空间限制等因素。
3. 系统风扇的设计:在一些高性能的电子设备中,系统风扇是必不可少的部件之一。
系统风扇的设计应考虑到散热需求和噪音控制等因素。
4. 电路布局和排线:在进行热设计时,电路布局和排线的合理设计可以降低电路的温度,并避免干扰和电磁辐射的问题。
5. 热模拟和仿真:在进行热设计时,可以使用热模拟和仿真软件进行模拟和分析,以评估设备的热性能,并进行相应的优化。
电子设备热设计概述【摘要】热设计在电子设备设计中具有重要作用,散热效果的好坏直接影响设备的性能指标和使用寿命。
如何提高产品的散热性能成为迫切需要解决的问题。
本文就热量传递方式、冷却方式的选择以及电子设备热设计方法等方面进行了简要概述。
【关键词】热设计;热量传递;散热0.引言现代电子设备结构越来越小,性能要求越来越高,不但支持多任务功能,而且具有更好的便携功能,由此会产生更多的系统热量,更大的热流密度。
大量的系统热量在设备中聚集,会严重影响设备的性能指标及使用寿命。
在电子产品中,高温对电子产品的影响包括,绝缘性能退化,元器件损坏,材料的热老化,低熔点焊缝开裂及焊点脱落,从而导致整个产品的性能下降以至完全失效。
因此在许多现代化产品的设计,特别是可靠性设计中,热设计已占有越来越重要的地位。
1.热设计概述1.1 热设计概述热设计是整个系统设计的一部分,它往往与结构设计、内部布局、电磁兼容要求等设计耦合在一起,必须综合考虑才能使整个产品达到优异的性能。
根据相关标准和规范,通过对产品各组成部分的热分析,确定所需散热措施,以调节所有机械部件、电子器件和其它一切与热有关的零部件的温度,使其本身及其所处的工作环境的温度都不超过标准和规范所规定的温度范围。
对于电子产品,最高和最低允许温度的计算应以元器件的耐热性能和应力分析为基础,并且与产品的可靠性要求以及分配给每一个元器件的失效率相一致。
通过热设计在满足性能要求的前提下尽可能减少设备内部产生的热量,减少热阻,选择合理的冷却方式,保证设备在散热方面的可靠性。
1.2 热量传递方式热量传递有三种方式:传导、对流和辐射。
传导:两个良好接触的物体之间的能量交换或一个物体内由于温度梯度引起的内部能量交换。
对流:流动的流体(气体或液体)与固体表面接触,造成流体从固体表面将热带走的热传递方式。
根据引起流动的原因可以分为自然对流和强制对流。
辐射:物体通过电磁波来传递热量的方式称为热辐射。
电子产品有效的功率输出要比电路工作所需输入的功率小得多。
多余的功率大部分转化为热而耗散。
当前电子产品大多追求缩小尺寸、增加元器件密度,这种情况导致了热量的集中,因此需要采用合理的热设计手段,进行有效的散热,以便产品在规定的温度极限内工作。
热设计技术就是指利用热的传递条件,通过冷却措施控制电子产品内部所有元器件的温度,使其在产品所在的工作条件下,以不超过规定的最高温度稳定工作的设计技术。
一、电子产品热设计的目的电子产品在工作时会产生不同程度的热能,尤其是一些功耗较大的元器件,如变压器、大功率晶体管、电力电子器件、大规模集成电路、功率损耗大的电阻等,实际上它们是一个热源,会使产品的温度升高。
在温度发生变化时,几乎所有的材料都会出现膨胀或收缩现象,这种膨胀或收缩会引起零件间的配合、密封及内部的应力问题。
温度不均引起的局部应力集中是有害的,金属结构在加热或冷却循环作用下会产生应力,从而导致金属因疲劳而毁坏。
另外,对于电子产品而言,元器件都有一定的工作温度范围,如果超过其温度极限,会引起电子产品工作状态的改变,缩短使用寿命,甚至损坏,导致电子产品不能稳定、可靠地工作。
电子产品热设计的主要目的就是通过合理的散热设计,降低产品的工作温度,控制电子产品内部所有元器件的温度,使其在所处的工作环境温度下,以不超过规定的最高允许温度正常工作,避免高温导致故障,从而提高产品的可靠性。
二、电子产品散热系统简介热传递的三种基本方式是传导、对流和辐射,对应的散热方式为:传导散热、对流散热和辐射散热。
典型的散热系统介绍如下:(1)自然冷却系统自然冷却系统是指电子产品所产生的热量通过传导、对流、辐射三种方式自然地散发到周围的空气中(环境温度略微升高),再通过空调等其他设备降低环境温度,达到散热的目的。
此类散热系统的设计原则是:尽可能减少传递热阻,增加产品中的对流风道和换热面积,增大产品外表的辐射面积。
自然冷却是最简单、最经济的冷却方法"旦散热量不大,一般用于热流密度不大的产品中。