人教版高数选修4-5第1讲:不等式的性质与绝对值不等式(学生版)
- 格式:docx
- 大小:6.58 MB
- 文档页数:6
第一讲 不等式和绝对值不等式§1.1.1不等式的基本性质学习目标1. 理解并掌握不等式的性质,能灵活运用实数的性质; 2 .掌握比较两个实数大小的一般步骤学习重难点学习重点:不等式的基本性质学习过程 一、课前准备实数的运算性质与大小顺序的关系:数轴上右边的点表示的数总 左边的点所表示的数,可知:b a b a -⇔>b a b a -⇔=0ba b a -⇔<结论:要比较两个实数的大小,只要考察它们的差的符号即可。
二、新课导学不等式的基本性质: 10. 对称性:b a >⇔ ; 20. 传递性:⇒>>c b b a ,;30. 同加性:⇒>b a ;推论:同加性:⇒>>d c b a , ;30. 同乘性:⇒>>0,c b a ,⇒<>0,c b a ;推论1:同乘性:⇒>>>>0,0d c b a ;推论2:乘方性:⇒∈>>+N n b a ,0 ; 推论3:开方性:⇒∈>>+N n b a ,0 ;推论4:可倒性:⇒>>0b a .☆比较两数大小的一般方法:比差法与比商法(两正数). 典型例题例1已知0,0>>>c b a ,求证:b ca c > .例2若0a b a >>>-,0c d <<,则下列命题中能成立的个数是( )()1ad bc >;()20a bd c+<;()3a c b d ->-;()4()()a d c b d c ->-.A 1 .B 2 .C 3 .D 4.例3 ()1若0x y <<,试比较()()22x yx y +-与()()22xy x y -+的大小()2设0a >,0b >,且a b ≠,试比较a b a b 与b a a b 的大小.例4 若2()f x ax c =-满足4-≤(1)f ≤1-,1-≤(2)f ≤5,求(3)f 的取值范围.变式训练1:(1)已知0a b >>,0d c <<<(2)已知,,a b c 满足:a b c R +∈、、,222a b c +=,当n N ∈,2n >时,比较n c 与n na b +的大小.(3)设()1log 3,()2log 2x x f x g x =+=,其中0,1x x >≠,比较()f x 与()g x 的大小.§1.1.2基本不等式学习目标1. 理解并掌握重要的基本不等式,不等式等号成立的件 2 . 初步掌握不等式证明的方法学习重难点学习重点: 基本不等式的运用学习过程 一、课前准备 二、新课导学探究1:重要不等式 1. 222(,)a b ab a b R +≥∈(当且仅当a b =时取“=”) 2.重要不等式的几何解释3.变式:(1)22222a b a bab ++⎛⎫≤≤⎪⎝⎭(2)222a b c ab bc ac ++≥++ (3)若0b >,则22a b a b+≥ 例1.若,,a b c R +∈,求证:222a b c a b c b c a++≥++探究2:基本不等式(均值不等式)1.2a b +≤(0,0)a b >>(当且仅当a b =时取“=”),其中2a b+正数a,b 的算数平均数和几何平均数 2.基本不等式的几何解释3.推广:若0,0a b >>,则有22ab a b a b +≤≤≤+a b =时取“=”)例2.已知y x ,都是正数①如果xy 是定值p ,那么当y x =时,和y x +有最小值p 2; ②如果和y x +是定值s ,那么当y x =时,积有最大值241s利用基本不等式求最值应注意:①x,y 一定要都是正数;②求积xy 最大值时,应看和x+y 是否为定值;求和x+y 最小值时,看积xy 是否为定值;③等号是否能够成立.以上三点可简记为“一正二定三相等”. 利用基本不等式求最值时,一定要检验等号是否.........能取到...,若取到等号,则解法是合理的,若取不到,则必须改用其他方法. 例3.(1) 设.11120,0的最小值,求且yx y x y x +=+>> ; (2) 设x 、y 是正实数,且x+y=5,则lgx+lgy 的最大值是_______________________. (3) 若正数b a ,满足3++=b a ab ,则ab 的取值范围是 .例4.(1)已知,a b 是正常数,a b ≠,,(0,)x y ∈+∞,求证:222()a b a b x y x y++≥+,指出等号成立的条件;(2)利用(1)的结论求函数29()12f x x x=+-(1(0,)2x ∈)的最小值,指出取最小值时x的值.例5.为了竖一块广告牌,要制造三角形支架.三角形支架如图,要求∠ACB=60°,BC 长度大于1米, 且AC 比AB 长0.5米.为了广告牌稳固,要求AC 的长度越短越好,求AC 最短为多少米? 且当AC 最短时,BC 长度为多少米?变式训练2: (1)已知54x <,求函数14245y x x =-+-的最大值。
第一讲不等式和绝对值不等式不等式和绝对值不等式1.回顾和复习不等式的基本性质和基本不等式.2.理解绝对值的几何意义,并能利用绝对值不等式的几何意义证明以下不等式:(1)|a+b|≤|a|+|b|;(2)|a-b|≤|a-c|+|c-b|;(3)会利用绝对值的几何意义求解以下类型的不等式:|ax+b|≤c,|ax+b|≥c,|x-c|+|x-b|≥a.,在自然界中存在着大量的不等量关系和等量关系,不等关系和相等关系是基本的数学关系.它们在数学研究和数学应用中起着重要的作用.学习时注意适当联系实际,加深理解现实生活中的不等关系与相等关系.适当应用数形结合有利于解决问题.如函数的图象、集合的韦恩图、数集的数轴表示等.1.1不等式1.1.1不等式的基本性质1.回顾和复习不等式的基本性质.2.灵活应用比较法比较两个数的大小.3.熟练应用不等式的基本性质进行变形与简单证明.1.实数的运算性质与大小顺序的关系.数轴上右边的点表示的数总大于左边的点所表示的数,从实数的减法和在数轴上的表示可知:a>b⇔a-b________;a=b⇔a-b________;a<b⇔a-b________.答案: >0=0<0得出结论:要比较两个实数的大小,只要考查它们的差的符号即可.思考1比较大小:x2+3________x2+1.答案: >2.不等式的基本性质.(1)对称性:如果a >b ,那么b <a ;如果b <a ,那么a >b .(2)传递性:如果a >b ,且b >c ,那么a >c ,即a >b ,b >c ⇒a >c .(3)加法:如果a >b ,那么a +c >b +c ,即a >b ⇒a +c >b +c .推论:如果a >b ,且c >d ,那么a +c >b +d .即a >b ,c >d ⇒a +c >b +d .(4)乘法:如果a >b ,且c >0,那么ac >bc ;如果a >b ,且c <0,那么ac <bc .(5)乘方:如果a >b >0,那么a n >b n (n ∈N ,且n >1).(6)开方:如果a >b >0,那么n a >n b (n ∈N ,且n >1).思考2 若a >b ,则有3+a ____2+b .思考3 若a >b >0,则有3a ____2b .答案: 2.思考2:> 思考3:>一层练习1.设a ,b ,c ∈R 且a >b ,则( )A .ac >bc B.1a <1bC .a 2>b 2D .a 3>b 3 答案: D2.(2014·四川高考理科)若a >b >0,c <d <0,则一定有( )A.a c >b dB.a c <b dC.a d >b cD.a d <b c解析:选D.因为c <d <0,所以-c >-d >0,即得1-d >1-c >0,又a >b >0.得a -d >b -c,从而有a d <b c. 答案:D3.比较大小:(x +5)(x +7)________(x +6)2.答案:<4.“a >b ”与“1a >1b ”同时成立的条件是________________________________________________________________________. 答案:b <0<a二层练习5.已知a ,b ,c 满足c <b <a ,且ac <0,那么下列选项中不一定成立的是( )A .ab >acB .c (b -a )>0C .cb 2<ab 2D .ac (a -c )<0答案:C6.设角α,β满足-π2<α<β<π2,则α-β的取值范围是( )A .-π<α-β<0B .-π<α-β<πC .-π2<α-β<0D .-π2<α-β<π2答案:A7.如果a <b <0,那么下列不等式成立的是( )A.1a <1b B .ab <b 2C .-ab <-a 2D .-1a <-1b答案:D8.若1a <1b <0,则下列不等式:①a +b <ab ;②|a |>|b |;③a <b ;④b a +a b >2.其中正确的有() A .1个 B .2个 C .3个 D .4个答案:B9.已知a >b >0,则a b 与a +1b +1的大小是________.答案:a b >a+1b +110.已知a >0,b >0,则b 2a +a 2b 与a +b 的大小关系是________.答案:b 2a +a 2b ≥a +b三层练习11.设x ,y ∈R ,则“x ≥1且y ≥2”是“x +y ≥3”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .即不充分也不必要条件答案:A12.设0<a <b <1,则下列不等式成立的是( )A .a 3>b 3 B.1a <1bC .a b >1D .lg(b -a )<0答案:D13.(2014·山东高考理科)已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是( )A.1x 2+1>1y 2+1B .ln(x 2+1)>ln(y 2+1)C .sin x >sin yD .x 3>y 3解析:选D.由a x <a y (0<a <1)知,x >y ,所以A .y =1x 2+1在(-∞,0)递增,(0,+∞)递减,无法判断 B .y =ln(x 2+1)在(-∞,0)递减,(0,+∞)递增,无法判断C .y =s in x 为周期函数,无法判断D .y =x 3在R 上为增函数,x 3>y 3答案:D14.设a >b >1,c <0,给出下列三个结论:①c a >c b; ②a c <b c ;③log b (a -c )>log a (b -c ).其中所有的正确结论的序号是________.A .①B .①②C .②③D .①②③解析:根据不等式的性质构造函数求解.∵a >b >1,∴1a <1b.又c <0, ∴c a >c b,故①正确. 构造函数y =x c .∵c <0,∴y =x c 在(0,+∞)上是减函数.又a >b >1,∴a c <b c ,故②正确.∵a >b >1,-c >0,∴a -c >b -c >1.∵a >b >1,∴log b (a -c )>log a (a -c )>log a (b -c ),即log b (a -c )>log a (b -c ),故③正确.答案:D1.不等关系与不等式.(1)不等关系强调的是关系,而不等式强调的则是表示两者不等关系的式子,可用“a>b”,“a<b”,“a≠b”,“a≥b”,“a≤b”等式子表示,不等关系可通过不等式来体现;离开不等式,不等关系就无法体现.(2)将不等关系熟练化为不等式是解决不等式应用题的基础,不可忽视.2.不等式的性质.对于不等式的性质,关键是正确理解和运用,要弄清每一个性质的条件和结论,注意条件放宽和加强后,结论是否发生了变化;运用不等式的性质时,一定要注意不等式成立的条件,切不可用似乎、是或很显然的理由代替不等式的性质.特别提醒:在使用不等式的性质时,一定要搞清它们成立的前提条件.3.比较两个实数的大小.要比较两个实数的大小,通常可以归结为判断它们的差的符号(仅判断差的符号,至于确切值是多少无关紧要).在具体判断两个实数(或代数式)的差的符号的过程中,常会涉及一些具体变形,如:因式分解、配方法等.对于具体问题,如何采用恰当的变形方式来达到目的,要视具体问题而定.。
不等式的性质与绝对值不等式__________________________________________________________________________________ __________________________________________________________________________________教学重点:掌握基本不等式的概念、性质;绝对值不等式及其解法;教学难点: 理解绝对值不等式的解法1、基本不等式2b a ab +≤ (1)基本不等式成立的条件:_____________(2)等号成立的条件:当且仅当b a =时取等号.2、几个重要的不等式).0(2);,(222>≥+∈≥+ab ba ab R b a ab b a ),(2)2();,()2(2222R b a b a b a R b a b a ab ∈+≤+∈+≤ 3、算术平均数与几何平均数设,0,0>>b a 则b a ,的算术平均数为________,几何平均数为______,基本不等式可叙述为:两个正实数的算术平均数不小于它的几何平均数.4、利用基本不等式求最值问题已知,0,0>>y x 则(1)如果积xy 是定值,p 那么当且仅当y x =时,y x +有最小值是.2p (简记:积定和最小).(2)如果和y x +是定值,p ,那么当且仅当y x =时,xy 有最大值是.42p (简记:和定积最大). 5、若0x >,则12x x +≥ (当且仅当1x =时取“=”) 若0x <,则12x x+≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x+≥+≥+≤即或 (当且仅当b a =时取“=”) 若0>ab ,则2≥+ab b a (当且仅当b a =时取“=”)若0ab ≠,则22-2a b a b a b b a b a b a+≥+≥+≤即或 (当且仅当b a =时取“=”) 若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”) 注意:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.(2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用6、绝对值的意义:(其几何意义是数轴的点A (a )离开原点的距离a OA =)()()()⎪⎩⎪⎨⎧<-=>=0,0,00,a a a a a a7、含有绝对值不等式的解法:(解绝对值不等式的关键在于去掉绝对值的符号)(1)定义法;(2)零点分段法:通常适用于含有两个及两个以上的绝对值符号的不等式;(3)平方法:通常适用于两端均为非负实数时(比如()()x g x f <);(4)图象法或数形结合法;(5)不等式同解变形原理:即()a x a a a x <<-⇔><0 ()a x a x a a x -<>⇔>>或0()c b ax c c c b ax <+<-⇔><+0 ()c b ax c b ax c c b ax -<+>+⇔>>+或0 ()()()()()x g x f x g x g x f <<-⇔< ()()()()()()x g x f x g x f x g x f <>⇔>或 ()()()()a x f b b x f a a b b x f a -<<-<<⇔>><<或0类型一: 基本不等式的性质例1. 已知,0,0>>n m 且,81=mn 则n m +的最小值为( )A .18B .36C .81D .243练习1. 若,2,0,0=+>>b a b a 则下列不等式对一切满足条件的b a ,恒成立的是________(写出所有正确命题的编号).① 1≤ab ②2≤+b a ③222≥+b a ④322≥+b a ⑤.211≥+ba 练习2. 已知,822,0,0=++>>xy y x y x 则y x 2+的最小值是________.例2:求函数15()22y x =<<的最大值 练习3. 求下列函数的值域22132y x x =+ 练习4. 求下列函数的值域1y x x=+ 类型二:绝对值不等式的性质及其解法例3. 解不等式392+≤-x x练习5. 解不等式32<-x练习6. 解不等式532<+<-x例4. 解不等式123x x ->-。
练习7. 解不等式125x x -++<练习8. 解关于x 的不等式212+<-x x1. 已知,0,0>>y x y b a x ,,,成等差数列y d c x ,,,成等比数列,则cdb a 2)(+的最小值是( ) A .0 B .1 C .2D .4 2. 若直线),0,0(02>>=+-b a by ax 被圆014222=+-++y x y x 截得的弦长为4,则b a 11+的最小值为( )A.14B. 2C.32+ 2D.32+2 23. 若,0,0>>y x 且y x a y x +≤+恒成立,则a 的最小值是________4. 求2710(1)1x x y x x ++=>-+的值域 5. 解不等式22x x x x >++的值。
6.解不等式 x x 3232->-的值。
_________________________________________________________________________________ _________________________________________________________________________________基础巩固1. 若函数)2(21)(>-+=x x x x f 在a x =处取最小值,则=a ( ) A .1+ 2 B .1+ 3 C .3 D .42. 已知,02,0,0,0=+->>>z y x z y x 则2y xz 的( ) A .最小值为8B .最大值为8C .最小值为18D .最大值为183. 函数xx y 1+=的值域为 ____________________. 4. 在平面直角坐标系xOy 中,过坐标原点的一条直线与函数x x f 2)(=的图象交于P 、Q 两点,则线段PQ 长的最小值是________.5. 若,0,0>>y x 满足,53xy y x =+则y x 43+的最小值是( )A.245B.285 C .5 D .6 6. 已知,0,0>>b a ,1222=+b a 则21b a +的最大值为________.7. 下列不等式一定成立的是( )A .)0(lg )41lg(2>>+x x x B .),(2sin 1sin Z k k x x x ∈≠≥+π C .)(212R x x x ∈≥+ D.)(1112R x x ∈>+ 8. 设,0,0>>b a 且不等式011≥+++b a k b a 恒成立,则实数k 的最小值等于( ) A .0 B .4C .-4D .-2 9. 已知M 是ABC ∆内的一点,且AB ·AC =23,,300=∠BAC 若MCA MBC ∆∆,和MAB ∆的面积分别为,,,21y x 则y x 41+的最小值是( ) A .20 B .18 C .16 D .1910. 已知,1log log 22≥+b a 则b a 93+的最小值为________11. 已知0,0x y >>,且191x y+=,求x y +的最小值 12. 若a x x >+++12恒成立,求实数a 的取值范围。
13. 数轴上有三个点A 、B 、C ,坐标分别为-1,2,5,在数轴上找一点M ,使它到A 、B 、C 三点的距离之和最小。
14. 解关于x 的不等式10832<-+x x15. 解关于x 的不等式2321>-x能力提升16.已知两条直线m y l =:1和),0(128:2>+=m m y l 1l 与函数x y 2log =的图象从左至右相交于点A 、B ,2l 与函数x y 2log =的图象从左至右相交于点C 、D ,记线段AC 和BD 在x 轴上的投影长度分别为.,b a 当m 变化时,a b 的最小值为( ) A .16 2 B .8 2C .348D .34417.对任何实数x ,若不等式12x x k +-->恒成立,则实数k 的取值范围为 ( )A .k<3 B.k<-3 C.k ≤3 D. k ≤-318.函数)1,0(1≠>=-a a a y x 的图象过定点,A 若点A 在直线)0,(01>=-+n m ny mx 上,求nm 11+的最小值; 19.若正数b a ,满足,3++=b a ab 求ab 的取值范围20. 解关于x 的不等式1212-<-m x )(R m ∈ 21. 解关于x 的不等式1312++<--x x x22. 设全集U R =,解关于x 的不等式: 110x a -+->()x R ∈课程顾问签字: 教学主管签字:。