第七章 嵌入式Linux的BootLoader
- 格式:ppt
- 大小:800.00 KB
- 文档页数:34
嵌入式系统中Bootloader 的设计与实现马学文1,朱名日1,2,程小辉1 (1. 桂林工学院电子与计算机系,桂林541004;2.中南大学信息物理工程学院,长沙410083)—97—作者所承研的项目中硬件平台是基于ARM7TDMIRISC 内核的三星公司S3C4510B 微处理器,采用的嵌入式Linux 系统为uCLinux。
系统有64MB SDRAM, 其地址从0x 0800.0000 ~0x0bff.ffff, 还有32MB Flash, 其地址从0x0c00.0000~0x0dff.ffff。
32MB Flash 具体规划如下:从0x0c00.0000 开始的第1 个1MB 放Bootloader,从0x0c10.0000开始的2MB放Linux kernel, 从0x0c30.0000开始的余下部分都给rootdisk。
64MB SDRAM 启动后的具体程序分布示意图如图2 所示。
图2 64MB SDRAM 的程序分布示意图Bootloader 一般有几个文件组成。
先是START.s,也是唯一的一个汇编程序,其余的都是C 语言写成的,START.s主要用来初始化堆栈:_start:ldr r1,=StackInit /* r1 是参数字符串的地址*/ldr sp,[r1]int main().equ StackInitValue,_end_data+0x1000/* 在连结脚本中指定4K __end_data*/StackInit:.long StackInitValue.global JumpToKernelJumpToKernel: /*拷贝内核的代码*/mov pc, r0 /*获得Kernel 地址*/.global JumpToKernel0x /*用来扩展内核*/JumpToKernel0x: /*拷贝获得的扩展内核*/mov r8, r0mov r0, r1mov r1, r2mov r2, r3mov r3, r4mov pc, r8.section“.data.boot”.section“.bss.boot”其中main 函数的C 语言实现过程如下:int main(){U32 *pSource, *pDestin, count;U8 countDown, bootOption;U32 delayCount;U32 fileSize, i;char c;char *pCmdLine;char *pMem;init(); /*初始化Flash 控制器和CPU 时钟*/EUARTinit(); /*串口初始化*/EUARTputString("\n\n Linux Bootloader\n"); /*打印信息*/ EUARTputString((U8 *)cmdLine); /*command_line 支持, 用于定制内核*/EUARTputString("\n\n");用command_line 可以给内核传一些参数,自己定制内核的行为。
在嵌入式系统学习过程中涉及到了在嵌入式系统学习过程中涉及到了Bootloader,下面讲述了Bootloader的基本作用,在后续的文章中我将对如何编写自己的Bootloader进行介绍。
1. Bootloader的基本概念:简单地说,bootloader就是在操作系统内核运行前运行地一段小程序。
通过这段小程序,可以对硬件设备,如CPU、SDRAM、Flash、串口等进行初始化,也可以下载文件到系统板、对Flash进行擦除和编程,真正起到引导和加载内核镜像的作用,但是随着嵌入式系统的发展,bootloader已经逐渐在基本功能的基础上,进行了扩展,bootloader可以更多地增加对具体系统的板级支持,即增加一些硬件模块功能上的使用支持,以方便开发人员进行开发和调试。
从这个层面上看,功能扩展后bootloader可以虚拟地看成是一个微小的系统级的代码包。
bootloader是依赖于硬件而实现的,特别是在嵌入式系统中。
不同的体系结构需求的bootloader是不同的;除了体系结构,bootloader还依赖于具体的嵌入式板级设备的配置。
也就是说,对于两块不同的嵌入式板而言,即使它们基于相同的CPU构建,运行在其中一块电路板上的bootloader,未必能够运行在另一块电路开发板上。
BootLoader为系统复位或上电后首先运行的代码,一般应写在起始物理地址0x0开始。
Bootloader的启动过程可以是单阶段的,也可以是多阶段的。
通常多阶段的bootloader能提供更为复杂的功能,以及更好的可移植性。
从固态存储设备上启动的bootloader大多数是二阶段的启动过程,也即启动过程可以分为stage 1和stage 2两部分。
2. ARM Bootloader的一般作用对于一个ARM系统来说,本质上,bootloader作为引导与加载内核镜像的“工具”,在实现上,必须提供以下几个功能,更确切地说,必须做到以下几点:(1)初始化RAM(必需):bootloader必须能够初始化RAM,因为将来系统要通过它保存一些Volatile数据,但具体地实现要依赖与具体的CPU以及硬件系统。
ARM-Linux嵌入式系统的BootLoader分析与设计0引言由BootLoader和固化在固件(firmware)中的Boot代码(可选)共同组成一个嵌入式系统的引导加载程序。
它的作用和功能就像固化到计算机内主板上的一个ROM芯片程序BIOS(basicinputoutputsystem)。
但是它一般不配置像BIOS那样的固件程序,这是因为要考虑经济方面的原因,因此必须自己完成这方面的工作。
BootLoader可以初始化硬件设备,建立内存空间的映射图,从而将系统的软硬件环境带到一个合适的状态,以便为最终调用操作系统内核准0 引言由Boot Loader和固化在固件(firmware)中的Boot代码(可选)共同组成一个嵌入式系统的引导加载程序。
它的作用和功能就像固化到计算机内主板上的一个ROM芯片程序BIOS(basic input output system)。
但是它一般不配置像BIOS那样的固件程序,这是因为要考虑经济方面的原因,因此必须自己完成这方面的工作。
Boot Loader可以初始化硬件设备,建立内存空间的映射图,从而将系统的软硬件环境带到一个合适的状态,以便为最终调用操作系统内核准备好正确的环境。
它的实现严重地依赖于硬件,特别是在嵌入式系统中,即使基于同一个CPU的Boot Loader,对于不同的板子,也有很大的不同。
1 Boot Loader分析系统加电,然后复位后,基本上所有的CPU都是从复位地址上取得指令的。
以微处理器为核心的嵌入式系统中,通常都有某种类型的固态存储设备(FLASH,E2PROM等),这个固态存储设备被映射到一个预先设置好的地址上。
在系统加电复位后,一开始处理器就会去执行存放在复位地址处的程序,而且通过开发环境可以将Boot Loader定位在复位地址一开始的存储空间上,因此Boot Loader是系统加电后,在操作系统内核或者一些应用程序被运行之前,首先会运行的程序。