物理化学第四版第一章 气体pTV的关系2013.2
- 格式:ppt
- 大小:821.50 KB
- 文档页数:35
第1章 气体的p V T 关系1-1 物质的体膨胀系数与等温压缩率的定义如下:试导出理想气体的与压力,温度的关系。
解:理想气体 pV = nRT1-4 一抽成真空的球星容器,质量为25.0000g 。
充以4C 水之后,总质量为125.0000g 。
若改充以25C ,13.33kPa 的某碳氢化合物气体,则总质量为25.0613g 。
试估算该气体的摩尔质量。
水的密度按1g.cm 1-计算。
解:1-10 氯乙烯,氯化氢及乙烯构成的混合气体中,各组分的摩尔分数分别为0.89,0.09及0.02。
于恒压力101.325kPa 下,用水吸取其中的氯化氢,所得混合气体中增加了分压力为2.607kPa 的水蒸气。
试求洗涤后的混合气体中氯乙烯及乙烯的分压力。
解: p B = y B pp (C 2H 3Cl) =0.89/(0.89+0.02)⨯(101.325-2.670) kPa = 96.487 kPa p (C 2H 4) = p 总- p (C 2H 3Cl) = (98.655- 96.487) kPa = 2.168 kPa1-12 气体在40 C 时的摩尔体积为0.381dm.mol 1-。
设CO 2为范德华气体,试求其压力,并比较与实验之5066.3kPa 的相对误差。
解RE=2.41%pV T V V a ⎪⎭⎫ ⎝⎛∂∂=1p p nRT V p p nRT V p V VpT T 11)/(112-=⋅-=⎪⎪⎭⎫ ⎝⎛∂∂=⎪⎪⎭⎫ ⎝⎛∂∂=κ1-1-33molg 31.30mol kg )0000.250000.125(1033.1315.298315.8100163.0⋅=⋅-⨯⨯⨯⨯⨯==-pV mRTM T p nR V T p nRT V T V V a p p V 11)/(11=⋅=⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂=TT p V V ⎪⎪⎭⎫⎝⎛∂∂=1κ1-18 把25 C 的氧气冲入40dm 3的氧气钢瓶中,压力达202.7210 kPa 。
一章气体的pVT关系1.1 物质的体膨胀系数与等温压缩率的定义如下试推出理想气体的,与压力、温度的关系。
解:根据理想气体方程1.2 气柜内贮有121.6 kPa,27℃的氯乙烯(C2H3Cl)气体300 m3,若以每小时90 kg的流量输往使用车间,试问贮存的气体能用多少小时?解:假设气柜内所贮存的气体可全部送往使用车间。
1.3 0℃,101.325kPa的条件常称为气体的标准状况,试求甲烷在标准状况下的密度?解:将甲烷(M w=16g/mol)看成理想气体: PV=nRT , PV =mRT/ M w甲烷在标准状况下的密度为=m/V= PM w/RT=101.32516/8.314273.15(kg/m3)=0.714 kg/m31.4 一抽成真空的球形容器,质量为25.0000g充以4℃水之后,总质量为125.0000g。
若改充以25℃,13.33 kPa的某碳氢化合物气体,则总质量为 25.0163g。
试估算该气体的摩尔质量。
水的密度1g·cm3计算。
解:球形容器的体积为V=(125-25)g/1 g.cm-3=100 cm3将某碳氢化合物看成理想气体:PV=nRT , PV =mRT/ M wM w= mRT/ PV=(25.0163-25.0000)8.314300.15/(1333010010-6)M w =30.51(g/mol)1.5 两个容积均为V 的玻璃球泡之间用细管连结,泡内密封着标准状态下的空气。
若将其中的一个球加热到 100℃,另一个球则维持 0℃,忽略连接细管中气体体积,试求该容器内空气的压力。
解:由题给条件知,(1)系统物质总量恒定;(2)两球中压力维持相同。
标准状态:因此,1.6 0℃时氯甲烷(CH 3Cl )气体的密度ρ随压力的变化如下。
试作p p-ρ图,用外推法求氯甲烷的相对分子质量。
1.7 今有20℃的乙烷-丁烷混合气体,充入一抽成真空的200 cm3容器中,直至压力达101.325 kPa,测得容器中混合气体的质量为0.3897 g。
第一章 气体的pVT 性质无论物质是哪一种聚集状态,都有许多宏观性质,如压力p 、体积V 、温度T 、密度ρ、内能U 、熵S 等.在重多的宏观性质中,p 、V 、T 三者是物理意义非常明确、又易于直接测定的基本性质.当物质的量n 一定后,其pVT 性质不可能同时独立取值,而存在如下关系:0),,(=T V p f该函数称为状态方程.若考虑到物质的量n,则可表示为: 0),,,(=T V p n f鉴于液、固体的可压缩性一般甚小,即等温压缩率(系数) T T pVV )(1∂∂-=κ和体膨胀系数p V TVV a )(1∂∂=均较小,故在通常的物理化学计算中,常将其体积随压力和温度的变化忽略.与凝聚态相比,气体具有较大的等温压缩系数T κ和体膨胀系数V a ,其体积随温度和压力的变化较大,故一般只研究气体的pVT 性质.1.1 理想气体状态方程1.理想气体状态方程波义尔定律: 常数=pV (n,T 恒定)盖.吕萨克定律 常数=T V / (n,p 恒定)阿伏加德罗定律 常数=n V / (p,T 恒定)这三个定律都客观地反映了低压下气体服从的pVT 简单关系.将其结合可整理得到状态方程: nRT pV =此即理想气体状态方程.式中,R 是摩尔气体常数.其值经精确测定,为:11314510.8--⋅⋅=K mol J R .因摩尔体积n V V m /=,故理想气体状态方程又可写成:RT pV m = 因M m n =,Vm =ρ,故理想气体状态方程又可写成:RT Mm pV =或RT pM ρ=例: 试由上列三定律导出理想气体状态方程.解: 因任意体系均满足:0),,,(=n T V p f ,可改写成:),,(n T p f V =该式取全微分得:dn nVdT T V dp p V dV T p n p n T ,,,)()()(∂∂+∂∂+∂∂= 由波义尔定律得: 0=+Vdp pdV (T,n 恒定)此即: pV p V n T -=∂∂,)( 同理,由盖.吕萨克定律和阿伏加得罗定律可得: T V T V n p =∂∂,)(和 nV n V T p =∂∂,)( 代入全微分式得:dn nVdT T V dp p V dV ++-=)(此式即: ndn T dT p dp V dV +=+ 或 )ln()ln(nT d pV d =亦即: 0)ln(=nT pV d ,积分可得: 常数=nTpV又据阿伏加德罗定律知,当气体的p,V 一定时,体系的(V/n )为与气体各类无关的常数,故上式中的常数对任何气体都应具有相同的值,如用R 表示,则上式变为: nRT pV =这就是理想气体状态方程.2.理想气体凡在任何温度、压力下均服从方程nRT pV =的气体称理想气体. 按照上述定义,理想气体必须具备下列两个微观特征: (1).气体分子本身不占有体积,是没有大小的质点.因在T 恒定时,常数=m pV ,当0→p 时,必有0→m V (2).分子间无相互作用力.分子可近似被看作是没有体积的质点。