三元系相图绘制
- 格式:doc
- 大小:46.50 KB
- 文档页数:3
三元相图的绘制详解在材料科学、化学等领域,三元相图是一种非常重要的工具,它能够直观地展示三种组分在不同条件下的相态变化和平衡关系。
三元相图的绘制并非易事,需要对相关的理论知识有深入的理解,并掌握一定的实验技巧和数据处理方法。
下面,就让我们一起来详细了解三元相图的绘制过程。
要绘制三元相图,首先得明确什么是三元相图。
简单来说,三元相图是表示在恒压和恒温下,由三种组分构成的系统中,各相的状态与成分之间关系的图形。
它通常由等边三角形组成,三角形的三个顶点分别代表三种纯组分。
绘制三元相图的第一步是确定研究的体系和实验条件。
这包括选择要研究的三种物质,设定温度、压力等参数。
在确定了体系和实验条件后,接下来就是进行实验获取数据。
实验方法多种多样,常见的有热分析法、金相法、X 射线衍射法等。
以热分析法为例,我们将不同成分的样品加热或冷却,通过测量样品的温度随时间的变化,来确定相变点。
在实验过程中,需要精确控制温度变化的速率,以确保测量结果的准确性。
同时,要对多个不同成分的样品进行测试,以获得足够的数据来绘制相图。
当我们获得了大量的实验数据后,就可以开始着手绘制相图了。
绘制的过程中,需要将实验得到的相变温度和成分数据标注在等边三角形的坐标上。
在标注数据时,要注意坐标的转换和计算。
因为在三元相图中,成分通常用质量分数或摩尔分数来表示,而不是直接用实验中测量得到的数值。
比如说,如果我们知道了三种组分 A、B、C 的质量分数分别为 wA、wB、wC,那么在等边三角形坐标中,对应的坐标点可以通过以下公式计算:对于 A 组分,横坐标 xA = wA /(wA + wB + wC) ×边长对于 B 组分,纵坐标 yB = wB /(wA + wB + wC) ×边长通过这样的计算,我们就可以将实验数据准确地标注在相图上。
标注完数据点后,接下来就是连接这些点,形成相区的边界线。
这需要根据相律和热力学原理来判断。
实验五三元体系(H2O-HAC-CHCl3)相图的绘制一.实验目的:1.熟悉相律和利用等边三角形坐标表示三组分相图的方法。
2.用溶解度法绘制具有一对共轭溶液的三组分相图,并绘制连接线。
二、基本原理:根据相律,f=c-φ+2=3+2-φ=5-φ,若指定温度和压力,则f**=3-φ,f**最多为2,可用平面图来表示。
图1 (a)图1(b)图2(1)物系点组成的确定:在定温定压下,三组分体系的状态和组成之间的关系通常可用等边三角形坐标来表示,如图1(a),等边三角形三顶点A、B和C分别表示三个纯物质,AB,BC及CA三边分别表示A和B,B和C以及C和A所组成的二组分组成。
三角形内任一点,则表示三组分的组成。
如O点的组成:A%=Cc’,B%=Aa’,C%=Bb’。
即各物种的组成为过物系点O做各顶点对边的平行线。
又因为各物种总的百分组成为100%,三角形为等边三角形,所以又可以由其中的一条边表示各组分的百分组成,如图1中(b)所示。
当然,给出一定组成的溶液百分比,按照上述表示方法,也应该能找出对应的物系点。
(2)溶解度曲线的绘制对于具有一对共轭溶液的三液系相图,如图2,该三液系相图中A和B,A和C为完全互溶而B和C为部分互溶,曲线abc为溶解度曲线。
曲线上方为单相区,曲线下方为二相区,物系点落在二相区内,即分为二相,如X 点则分成组成为E和F的二相,而EF线称为连接线。
对于溶解度曲线的绘制,本实验是先以完全互溶的两个组分(如A和C),以一定的比例混合所组成的均相溶液,如图2上的N点,滴加入组分B,根据平衡相图的直线规则,物系点则沿着NB移动,直至溶液变混,即为L点。
再加入A,物系点由LA上升至N’点而变清。
再加入B,此时物系点又沿着N’B由N’移动至L’而再次变混,再滴加A使变清……,如此反复,最后连接L,L’,L’’……即可画出溶解度曲线。
(3)连接线的绘制由于连接线是表示在两相区内呈平衡两相的组成(或A在两相中的分配),所以可以在两相区内配制溶液,待平衡后分析每相中的任何一种组成的含量,连接在溶解度曲线上该两含量的组成点而得出。
实验八三组分体系等温相图的绘制【目的要求】1. 熟悉相律,掌握用三角形坐标表示三组分体系相图。
2. 掌握用溶解度法绘制相图的基本原理。
【实验原理】对于三组分体系,当处于恒温恒压条件时,根据相律,其自由度f*为:f*=3-Φ式中,Φ为体系的相数。
体系最大条件自由度f*max=3-1=2,因此,浓度变量最多只有两个,可用平面图表示体系状态和组成间的关系,通常是用等边三角形坐标表示,称之为三元相图。
如图2-8-1所示。
等边三角形的三个顶点分别表示纯物A、B、C,三条边AB、BC、CA分别表示A和B、B和C、C和A所组成的二组分体系的组成,三角形内任何一点都表示三组分体系的组成。
图2-8-1中,P点的组成表示如下:经P点作平行于三角形三边的直线,并交三边于a、b、c三点。
若将三边均分成100等份,则P点的A、B、C组成分别为:A%=Pa=Cb,B%=Pb=Ac,C%=Pc=Ba。
苯-醋酸-水是属于具有一对共轭溶液的三液体体系,即三组分中二对液体A和B,A和C 完全互溶,而另一对液体B和C只能有限度的混溶,其相图如图2-8-2所示。
图2-8-1 等边三角形法表示三元相图图2-8-2 共轭溶液的三元相图图2-8-2中,E、K2、K1、P、L1、L2、F点构成溶解度曲线,K1L1和K2L2是连结线。
溶解度曲线内是两相区,即一层是苯在水中的饱和溶液,另一层是水在苯中的饱和溶液。
曲线外是单相区。
因此,利用体系在相变化时出现的清浊现象,可以判断体系中各组分间互溶度的大小。
一般来说,溶液由清变浑时,肉眼较易分辨。
所以本实验是用向均相的苯-醋酸体系中滴加水使之变成二相混合物的方法,确定二相间的相互溶解度。
【仪器试剂】具塞锥形瓶(100mL,2只、25mL,4只);酸式滴定管(20mL,1支);碱式滴定管(50mL,1支);移液管(1mL,1支、2mL,1支);刻度移液管(10mL,1支、20mL,1支);锥形瓶(150mL,2第二篇基础实验2只)。
实验三组分相图的绘制
一实验目的
绘制苯一醋酸一水体系的互溶度相图。
为了绘制相图就需通过实验获得平衡时,各相间的组成及二相的连结线。
即先使体系达到平衡,然后把各相分离,再用化学分析法或物理方法测定达成平衡时各相的成分。
但体系达到平衡的时间,可以相差很大。
对于互溶的液体,一般平衡达到的时间很快;对于溶解度较大,但不生成化合物的水盐体系,也容易达到平衡;对于一些难溶的盐,则需要相当长的时间,如几个昼夜。
由于结晶过程往往要比溶解过程快得多,所以通常把样品置于较高的温度下,使其较多溶解,然后把它移放在温度较低的恒温槽中,令其结晶,加速达到平衡。
另外摇动、搅拌、加大相界面也能加快各相间扩散速度,加速达到平衡。
由于在不同温度时的溶解度不同,所以体系所处的温度应该保持不变。
二实验原理
水和苯的互溶度极小,而醋酸却与水和苯互溶,在水和苯组成的二相混合物中加入醋酸,能增大水和苯之间的互溶度,醋酸增多,互溶度增大。
当加入醋酸到达某一定数量时,水和苯能完全互溶。
这时原来二相组成的混合体系由浑变清。
在温度恒定的条件下,使二相体系变成均相所需要的醋酸量,决定于原来混合物中水和苯的比例。
同样,把水加到苯和醋酸组成的均相混合物中时,当水达到一定的数量,原来均相体系要分成水相和苯相的二相混合物,体系由清变浑。
使体系变成二相所加水的量,由苯和醋酸混合物的起始成分决定。
因此利用体系在相变化时的浑浊和清亮现象的出现,可以判断体系中各组分间互溶度的大小。
一般由清变到浑,肉眼较易分辨。
所以本实验采用由均相样品加人第三物质而变成二相的方法,测定二相间的相互溶解度。
当二相共存并且达到平衡时,将二相分离,测得二相的成分,然后用直线连接这二点,即得连结线。
一般用等边三角形的方法表示三元相图(图1)。
等边三角形的三个顶点各代表纯组分;三角形三条边AB、BC、CA分别代表A和B、B和C、C和A所组成的二组分的组成;而三角形内任何一点表示三组分的组成。
例如图1-1中的P点,其组成可表示如下:经P点作平行于三角形三边的直线,并交三边于a、b、c三点。
若将三边均分成100等分,则P点的A、B、C组成分别为:
A%=Cb,B%=Ac,C%=Ba
对共轭溶液的三组分体系,即三组分中二对液体AB及AC完全互溶,而另一对BC则不溶或部分互溶的相图,如图1-2所示。
图中EK1K2K3DL3L2L1F是互溶度曲线,K1L1、K2L2等是连结线。
互溶度曲线下面是两相区,上面是一相区。
图1-1等边三角形法表示三元相图图1-2共轭溶液的三元相图
三仪器药品
100 ml磨口锥形瓶,50ml磨口锥形瓶,50ml滴定管,200ml锥形瓶,2ml移液管,1ml 移液管,苯,醋酸,NaOH溶液(0.5mol/dm3),酚酞指示剂。
四实验步骤
(1)测定互溶度曲线
取三根洁净的滴定管分别装入苯、醋酸及水(装苯和醋酸的滴定管应事先干燥)。
用滴定管加5ml苯于干净的100ml磨口锥形瓶内,再用滴定管滴入1ml醋酸。
摇匀成均相后,由滴定管慢慢滴入蒸馏水,边滴边摇动,并仔细观察有无浑浊现象,直到有浑浊的“油珠”出现,记下这时所用水的体积。
再加入2ml醋酸,体系又成均相。
继续用水滴定、使体系再由清变浑。
分别记下这时体系中苯、醋酸及水所加入的总毫升数。
而后依次再加入3、3、5、5、5ml醋酸。
同法分别用水进行滴定,并记录体系中各组分的含量。
测定后,在体系中再加人10ml苯,使体系分成二相,塞好塞子,留给下面测定连结线用。
另取一干净的100ml磨口锥形瓶,先用滴定管加入1ml苯及5ml醋酸,摇成均相后,用水滴定,使其成两相。
以后再依次加人1、2、5ml的醋酸,用水滴定,方法同前。
滴完后,加苯15ml,使体系分成两相。
塞好瓶塞留待测连结线用。
再取一个100ml磨口锥形瓶,用滴定管加入0.5ml苯及8ml醋酸,摇匀后,用水滴定,使其由清变浑,记下所用水的体积数。
然后,再依次加入2、5ml醋酸,继续用水滴至终点。
在滴定时要一滴一滴慢慢地加,特别是醋酸含量很少时,更应特别注意。
在醋酸含量较多时,开始时可滴得快一些,接近终点要慢慢地滴定,因为这时溶液接近饱和,溶解平衡需要较长的时间,因此更要多加振荡。
由于分散的“油珠”颗粒能散射光线,所以只要体系出现浑浊,而在2—3分钟内仍不消失,即可认为已到终点。
此实验由于有水参加,故所用装苯和醋酸的容器都必须干燥。
(2)连结线的测定
将由上述所得的二个溶液中各个组分的含量准确地记录下来。
将瓶塞塞紧后,用力摇动,摇动时勿使瓶内液体流出。
然后每隔5分钟摇一次,约半小时后,分别倒入二个干净的分液漏斗内。
待二液分层后,分别将各层液体放入干净的磨口锥形瓶中,用2ml移液管取上层溶液2ml置于已称好的25ml磨口锥形瓶内,准确称其质量,然后用水洗入200ml锥形瓶中,加少许酚酞,用NaOH标准溶液滴定其中醋酸的含量。
同样用1ml移液管取下层液体1ml,称量,以酚酞为指示剂,用NaOH滴定醋酸的含量。
在不用分液漏斗分离,直接采用移液管取下层液体时,可采用洗耳球吹气法。
即在轻轻吹气的同时使移液管插入下层液体,这样可防止上层液体进入移液管中。
五数据处理
(1)互溶度曲线的绘制
根据各次所用的苯、醋酸和水的体积以及在实验所处的温度下水、苯、醋酸的密度,求算每次体系出现复相时这三种组分的质量及体系的总质量。
计算三种组分所占的质量百分数。
按下表列出各次所得的数据:
根据上表数据,在三角坐标纸上,画出各次的组成点。
然后用曲线板,将这些点连结成一光滑的曲线。
标明由曲线分割开的各相区的意义
(2)连结线的绘制
a.计算二瓶中苯、醋酸和水的质量百分数,画于上面的三角相图内。
b.由所取各相的质量及由NaOH滴定所得的数据,求出醋酸在各相内的质量百分数。
c.将醋酸的质量百分数画在三角相图的互溶度曲线上。
水层内的醋酸含量画于含水成分多
的一边,苯层内的醋酸含量画于含苯成分多的另一边。
联结由c所得的二个成平衡的液层的组成点,即为连结线。
该连结线应通过由a所得的体系的总组成点。