数学建模之报童收益最大期望问题(优选.)
- 格式:pdf
- 大小:751.77 KB
- 文档页数:4
报童模型(Newsboy model)
问题:
报童出售报纸,零售价a>购进价b>退回价c。
因此,每售出一份报纸,赚a-b,每退回一份报纸赔b-c。
那么,报童每天要购进多少份报纸才能使收入最大?
分析:
如果购进太多,就会卖不完,从而赔钱;如果购进过少,导致报纸不够销售,就会减少收入。
因此,存在一个最优的购进量,使得收入最大。
因此,应当根据需求来确定购进量。
然而,每天的需求是随机的,进而每天的收入也是随机的。
因此,优化问题的目标函数应是长期日平均收入,等于每天收入的期望。
准备:
调查随机量的需求规律——每天需求量为r 的概率f(r), r=0,1,2…
建模:
设每天购进n 份,日平均收入为G(n)。
已知售出一份赚a-b;退回一份赔b-c。
若r<=n,则售出r,返回n-r => 赚(a-b)r,赔(b-c)(n-r)。
若r>n,则售出n,赚(a-b)n。
目标函数
求n使G(n)最大。
求解:
视r为连续变量f(r)=>p(r)(概率密度)
结果解释:
取n,使
其中,a-b即售出一份报纸赚的钱,b-c即退回一份报纸赔的钱。
报童诀窍一、问题:报童每天清晨从报社购进报纸零售,晚上将没有卖掉的报纸退回。
设报纸每份的购进价为b ,零售价为a ,退回价为c ,假设a>b>c 。
即报童售出一份报纸赚a-b ,退回一份赔b-c 。
报童每天购进报纸太多,卖不完会赔钱;购进太少,不够卖会少挣钱。
试为报童筹划一下每天购进报纸的数量,以获得最大收入。
二、模型分析:购进量由需求量确定,需求量是随机的。
假定报童已通过自己的经验或其他渠道掌握了需求量的随机规律,即在他的销受范围内每天报纸的需求量为 r 份的概率是f(r)(r=0,1,2…)有了f(r),a 和b,c 就可以建立关于购进量的优化模型。
三、模型建立:假设每天购进量是n 份,需求量是随机的,r 可以小于,等于或大于n, ,所以报童每天的收入也是随机的。
那么,作为优化模型的目标函数,不能取每天的收入,而取长期卖报(月,年)的日平均收入。
从概率论大数定律的观点看,这相当于报童每天收入的期望值,简称平均收入。
记报童每天购进n 份报纸的平均收入为G(n),如果这天的需求量r<=n,则售出r 份,退回n-r 份;如果需求量人r>n,则r 份将全部售出。
需求量为r 的概率是f(r),则()()()()[]()()()∑∑=∞+=-+----=n r n r r nf b a r f r n c b r b a n G 01问题归结为在()c b a r f ,,,已知时,求n 是G(n)最大。
四、模型求解:购进量n 都相当大,将r 视为连续变量便于分析和计算,这时概率f(r)转化为概率密度函数p(r)()()()()[]()()()⎰⎰∞-+----=n ndr r np b a dr r p r n c b r b a n G 0计算()()()()⎰---=ndrr p c b n np b a dndG 0()()()()dr r p b a n np b a n ⎰∞-+--令0=dndG 得dndG ()()()()()()dr r p b a dr r p c b n np c a n n⎰⎰∞-+---=02得到()()cb b a drr p dr r p nn --=⎰⎰∞n 应满足上式。
报童模型3种例题详解报童模型是一种常用的供应链管理模型,用于衡量库存管理的最佳策略。
在这篇文章中,我们将详解报童模型的三种例题,以帮助读者更好地理解这个模型以及它的实际应用。
1. 例题一:基本的报童模型在这个例题中,假设一个报摊要订购一种杂志,供应商提供了每本杂志的成本和销售价格。
报童需要在售罄前进行订购决策,以最大化利润。
首先,我们需要确定售罄概率分布,并计算售罄带来的成本和利润。
然后,我们可以使用期望利润最大化的公式来计算最佳订购数量。
通过解决这个例题,我们可以了解如何应用报童模型来进行库存管理并最大化利润。
2. 例题二:考虑损失销售的报童模型在这个例题中,我们要考虑到如果需求超过库存时带来的损失销售。
与例题一相比,我们需要加入一个额外的指标——失销销售成本。
失销销售成本是指由于库存不足而无法满足需求而导致的损失。
针对这个例题,我们需要计算售罄带来的损失成本,并将其加到总成本中。
然后,同样使用期望利润最大化的公式来计算最佳订购数量。
通过解决这个例题,我们可以了解如何考虑到损失销售成本来优化报童模型,以实现更准确的库存管理。
3. 例题三:考虑折扣的报童模型在这个例题中,我们假设供应商提供了折扣政策。
即在一定的订购数量上能够享受到更低的成本。
通过使用带有折扣的报童模型,我们将计算出能够最大化利润的最佳订购数量。
我们需要结合折扣成本以及其他成本来计算总成本,并使用期望利润最大化的公式来确定最佳订购数量。
通过解决这个例题,我们可以了解如何考虑折扣政策来优化报童模型,并在实践中应用这一模型。
通过上述三个例题的解析,我们可以更加深入地理解报童模型及其在供应链管理中的应用。
这个模型不仅能够帮助我们进行库存管理,还能够优化成本并最大化利润。
在实际业务中,我们可以根据具体情况灵活运用报童模型,以实现更加高效的供应链管理。
数学建模一1、问题呈现报童每天清晨从报社购进报纸零售,晚上将没有卖完的报纸退回。
设每份报纸的购进价为,零售价为,退回价为,应该自然地假设。
这就是说,报童售出一份报纸赚,退回一份报纸赔。
报童如果每天购进的报纸太少,不够卖的,会少赚钱;如果购进太多,卖不完,将要赔钱。
请你为报童筹划一下,他应该如何确定每天购进报纸的数量,以获得最大的收入。
2、数学建模基本假设1、假设报童现在要与报社签定一个长期的订购合同,所以要确定每日的订购量n。
2、假设报纸每日的需求量是r,但报童是一个初次涉足卖报行业的菜鸟,毫无经验,无法掌握需求量r的分布函数,只知道每份报纸的进价b、售价a及退回价c。
3、假设每日的定购量是n。
4、报童的目的是尽可能的多赚钱。
3、知识准备应该根据需求量r确定需求量n,而需求量r是随机的,所以这是一个风险决策问题。
而报童却因为自身的局限,无法掌握每日需求量的分布规律,已确定优化模型的目标函数。
但是要得到n 值,我们可以从卖报纸的结果入手,结合r与n 的量化关系,从实际出发最终确定n值。
由常识可以知道卖报纸只有赚钱、不赚钱不赔钱、赔钱会有三种结果。
4、模型解析解:设报纸具有时效性每份报纸进价b元,卖出价a元,卖不完退回份报纸c元。
设每日的订购量为n,如果订购的多了,报纸剩下会造成浪费,甚至陪钱。
订的少了,报纸不够卖,又会少赚钱。
为了获得最大效益,现在要确定最优订购量n。
n的意义。
n是每天购进报纸的数量,确定n一方面可以使报童长期以内拥有一个稳定的收入,另一方面也可以让报社确定每日的印刷量,避免纸张浪费。
所以,笔者认为n的意义是双重的。
本题就是让我们根据a、b、c及r来确定每日进购数n。
建立模型现在用简单的数学式表示这三种结果。
1、赚钱。
赚钱又可分为两种情况:①r>n,则最终收益为(a-b)n (1)②r<n,则最终收益为(a-b)r-(b-c)(n-r)>0整理得:r/n>(b-c)/(a-c) (2)2、由(2)式容易得出不赚钱不赔钱。
strategy1收益期望值损失期望值报纸订购量
42083.6 5.76420
44086.28 5.72440
460888.56460
48088.5614.88480
收益最大值88.5614.88480
均值85.2888.696
strategy2损失期望值收益期望值报纸订购量
5.728
6.28440
5.7683.6420
8.5680400
8.5688460
14.8888.56480
损失最小值 5.7286.28440
分析:1.当采用获取最大收益为目标的决策方案时,就会得到报纸预订购量应为480,但此时损失期望值达到.当采用获取最小损失值为目标的决策方案时,就会得到报纸预订购量应为440,此时虽然收益只有86.28,但
所有收益期望值得均值,且其损失期望值为最小.综合考虑,这是既赚钱又少赔的最佳选
值达到最大.不是最佳选择.28,但此时期望收益值高于最佳选择.。
报童收益期望最大问题教程一:复习期望求解公式 ,二:报童问题报童进报纸每份价格a 元,卖价b 元,退还c 元,市场需求m 份报纸概率m p (假定平均需求λ份), 可以只考虑500≤m , 若报童进报n 份,求收益平均Income(n) 解答:对应市场需求m 份报纸,报童收益为[][]()[][]()m I m a b m I m n c a m a b n n ∞+-+----,1,0)())(()(,对应概率为m p因此,收益平均Income(n)=[][]()[][](){}∑=∞+-+----5000,1,0)())(()(m m n np m I m a b m I m n c a m a b例题:若a=0.4, b=0.6, c=0.3, !200200m e p mm -=,求Income 对n 表达矩阵 Income(n)=[][]()[][](){}∑=∞+-+----5000,1,0)())(()(m m n np m I n a b m I m n c a m a ba=0.4;b=0.6;c=0.3; lamda=200;for n=1:500for i=1:500; %忽略i=0情况gailv(i)=exp(-lamda+i*log(lamda)-sum(log(1:i)));Income(i)=((b-a)*i-(a-c)*(n-i))*(i<=n)+(b-a)*n*(i>n);endExpectationIncome(n)=sum(gailv.*Income);endplot(ExpectationIncome)在这里,ExpectationIncome是报童收益向量问题1、报童应该准备买进多少份报纸,使得期望收益达到最大?for i=1:500if ExpectationIncome(i)==max(ExpectationIncome);thebestamount=iendend运行结果thebestamount =206问题2、现在,若报童还卖另外一份报纸,对应a=0.5;b=0.7;c=0.4;lamda=250;两份报纸,报童各应准备买进多少份,使得期望收益达到最大?解答:显然,如果报童资金足够,每份报纸进货可以分别计算如问题一,得到,第一份报纸进货206,第二份报纸进货257,但是,如果报童总资金不足206*0.4+257*0.5=210.9000元,报童该如何进货呢?比如,报童只有150元)最大应该此时,假定第一份报纸买入i=1:206,计算第二份报纸在范围(257买入量时两份报纸总收益矩阵将a=0.4;b=0.6;c=0.3; lamda=200时报童收益向量定义为AA=ExpectationIncome; 将a=0.5;b=0.7;c=0.4;lamda=250时报童收益向量定义为B. B=ExpectationIncome;for i=1:206if (150-i*0.4)/0.5>=257;totalincome(i)=A(i)+max(B);elsetotalincome(i)=A(i)+B(ceil((150-i*0.4)/0.5));endendplot(totalincome)050100150200250 4850525456586062646668for i=1:206if totalincome(i)==max(totalincome)newspaperone=i, newspapertwo=(150-0.4*newspaperone)/0.5,maxincome=max(totalincome)endend。
报童数学建模 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】报童诀窍一、问题: 报童每天清晨从报社购进报纸零售,晚上将没有卖掉的报纸退回。
设报纸每份的购进价为b ,零售价为a ,退回价为c ,假设a>b>c 。
即报童售出一份报纸赚a-b ,退回一份赔b-c 。
报童每天购进报纸太多,卖不完会赔钱;购进太少,不够卖会少挣钱。
试为报童筹划一下每天购进报纸的数量,以获得最大收入。
二、模型分析:购进量由需求量确定,需求量是随机的。
假定报童已通过自己的经验或其他渠道掌握了需求量的随机规律,即在他的销受范围内每天报纸的需求量为r 份的概率是f(r)(r=0,1,2…)有了f(r),a 和b,c 就可以建立关于购进量的优化模型。
三、模型建立:假设每天购进量是n 份,需求量是随机的,r 可以小于,等于或大于n,,所以报童每天的收入也是随机的。
那么,作为优化模型的目标函数,不能取每天的收入,而取长期卖报(月,年)的日平均收入。
从概率论大数定律的观点看,这相当于报童每天收入的期望值,简称平均收入。
记报童每天购进n 份报纸的平均收入为G(n),如果这天的需求量r<=n,则售出r份,退回n-r 份;如果需求量人r>n,则r 份将全部售出。
需求量为r 的概率是f(r),则问题归结为在()c b a r f ,,,已知时,求n 是G(n)最大。
四、模型求解:购进量n 都相当大,将r 视为连续变量便于分析和计算,这时概率f(r)转化为概率密度函数p(r)计算令0=dn dG 得dn dG ()()()()()()dr r p b a dr r p c b n np c a n n ⎰⎰∞-+---=02 得到()()c b b a dr r p dr r p n n--=⎰⎰∞0 n 应满足上式。
()10=⎰∞dr r p 使报童日平均收入达到最大的购进量为()ca b a dr r p n --=⎰0 根据需求量的概率密度p(r)的图形可以确定购进量n 在图中用p1,p2分别表示曲线p(r)下的两块面积,则cb b a P P --=21 O nr因为当购进n 份报纸时,()dr r p P n ⎰=01是需求量r 不超过n 的概率; ()dr r p P n ⎰∞=2是需求量r 超过n 的概率,既卖完的概率,所以上式表明,购进的份数n 应使卖不完与卖完的概率之比,恰好等于卖出一份赚的钱a-b 与退回一份赔的钱b-c 之比。
报童问题关于报童问题的分析摘要本⽂讨论了单周期的随即贮存模型——报童问题。
通过运⽤插值拟合等基本模型,运⽤概率论与数理统计、数值积分等背景知识,得出每天报纸需求量的概率分布,建⽴报童收益模型,以达到报童最⼤收益为⽬的,使报童每天的买进量与需求量尽可能地吻合,以使损失最少,收益最⼤。
在问题⼀中,⾸先求出概率分布)(r f 。
再设定每天报纸的买进量是定值,并将其代⼊建⽴好的报童收益模型中求出平均收益最⼤值,得出nr r f =)(,7358.33)(=n MaxG ,200=n 。
在问题⼆中,即将第⼀问中的概率分布)(r f 转化为概率密度)(r p ,在matlab ⼯具箱⼦cftool 中计算得出此时概率密度为正态分布,将问题⼀模型中的求和转化为积分,通过对⽬标通过数值积分等⼿段得出报童每天不同买进量下每天平均收⼊,从⽽分析得出每天的最优报纸进货量n 。
其中2)98.54)1.190(()(--=x er p ,=)(n G 672.84,=n 207。
关键词随即贮存,概率分布,概率密度,平均收益,数值积分1、问题重述1.1问题背景在实际⽣产⽣活过程中,经常会遇到⼀些随时间、地点、背景不同⽽发⽣变化的事物,例如报纸的销售的问题。
如果报纸的销售量⼩于需求量,则会给报童带来缺货损失,失去⼀部分潜在客户,⼀部分报纸失销(为简化计算,在本模型中我们忽略缺货损失);如果报纸的销售量⼤于需求量,则会导致⼀部分报纸被退回报社,给报童造成⼀部分退货损失,减少盈利。
所以在实际考虑中,应使报纸的购⼊量尽可能地吻合需求量,减少报童的损失,获得更⼤的盈利。
1.2报童获利途径报童以每份0.3元的价格买进报纸,以0.5元的价格出售。
当天销售不出去的报纸将以每份0.2元的价格退还报社。
根据长期统计,假设已经得到了159天报纸需求量的情况。
对现有数据分析,得出报童每天最佳买进报纸量,使报童的平均总收⼊最⼤。
1.3问题提出现在需⽤数学建模解决以下问题:问题1:若将据报纸需求量看作离散型分布,试根据给出统计数据,求出报纸需求量的分布律,并建⽴数学模型,确定报童每天买进报纸的数量,使报童的平均总收⼊最⼤?问题2:若将据报纸需求量看作连续型分布,试根据给出的统计数据,进⾏分布假设检验,确定该报纸需求量的分布,并建⽴数学模型,确定报童每天买进报纸的数量,使报童的平均总收⼊最⼤?2、模型假设(1)假设报童在以后的⽇⼦⾥需求量概率分布概率密度遵循这159天的规律(2)假设不考虑缺货损失(3)假设报童进报纸量达到⼀定数量后不会产⽣贮存等其他费⽤(4)假设报童每天都能买进计算出来的应进报纸量3、符号说明r报纸需求量(rf报纸需求量概率密度(离散型))p报纸需求量概率密度(连续型)(r)n每天报纸买进量)(n G 报童每天购进n 份报纸的平均收⼊ )(n g报童⼀天的利润收⼊1p n r <时的概率 2p n r >时的概率 i s 每天卖出报纸量 i b每天退回报纸量4、问题分析单周期随机贮存在实际⽣产⽣活中经常遇到,单周期即只订⼀次(缺时也不订),期后可处理余货;随机因素是需求和拖后时间,统计规律为历史资料。
报童模型关于报童卖报的问题摘要报童模型在1956年⾸次被提出来以后,就成为学术界的关注焦点,有着⼤量的学者或经济领域的⼈⼠对它进⾏研究和分析,由于报童模型问题中涉及到很多不确定因素的影响,⼈们为了研究和确定这些因素在模型中的量化,通过很多不同的计算⽅法和理论⽅法来使这些⾮量化的因素最⼤化的量化表达,使之趋近于理性决策,但是⼜不是完全能够明确和量化的,这些就是报童模型中的有限理性。
报童模型中关于有限理性涉及到的问题与⽅法到如今已将发展到很多⽅⾯,在随机因素⽅⾯⾸先就是不确定环境下的随机需求,还有库存管理,供应链协调等,在做有限理性决策的时候,⼈们尽量通过具体的推算⽅法来做出最优化决策,虽然不是完全理性决策,但是确实使利润接近最⼤化的有限理性决策。
本论⽂讨论的是报童卖报问题,报童卖报问题实际上就是通过分析,找出⼏种可能的⽅案,通过求解,找出⼀个最优的⽅案来订报,使得报童赢利取得最⼤期望值或报童损失的最⼩期望值的临界值,也就是使报童获得的利益最⼤。
本⽂⾸先建⽴了最⼤期望值和最⼩期望值的模型,然后分别⽤连续的⽅法和离散的⽅法求解,最后得出结论。
尽管报童赢利最⼤期望值和损失最⼩期望值是不相同的,但是确定最佳订购量的条件是相同的。
关键词:报童模型、概率统计、概率分布建模、离散引⾔在报童模型中,有限理性决策主要⾯对的随机性因素是需求和时间,报童模型是典型的单价段,随机需求模型,主旨是寻找产品的最佳订货量,来最⼤化期望收益或最⼩化期望损失。
本⽂⾸先通过理论回顾解释出什么是报童模型中的有限理性,然后罗列了部分在报童模型中有限理性问题上进⾏研究的部分⽂献成果。
再得出有报童模型有限理性的发展。
⼀、问题重述报童每天清晨从报社购进报纸零售,晚上将没有卖掉的报纸退回。
设报纸每份进购价为b,零售价为a,退回价为c,⾃然地假设a>b>c.也就是说,报童售出⼀份报纸赚a-b,退回⼀份赔b-c,。
试为报童筹划⼀下每天购进报纸的数量,使得收⼊最⼤,那么报童每天要购进多少份报纸?⼆、模型分析如果每天购进的报纸太少,不够卖的,会少赚钱;如果购进太多,卖不完,将要赔钱。
1典型例题1.报童每天订购的报纸,每卖出一份赢利a 元,如果卖不出去并将报纸退回发行单位,将赔本b 元.每天买报人数不定,报童订报份数如超过实际需要,就要受到供过于求的损失;反之,要受到供不应求的损失.设P (m )是售出m 份报纸的概率,试确定合理的订报份数,使报童的期望损失最小.解:设报童每天订购Q 份报纸,则其收益函数为⎩⎨⎧>≤--=Q m am Qm b m Q am m y ,,)()( 利润的期望为∑∑∞+==+-+=1)()(])[()]([Q m Qm m aQP m P bQ m b a m y E比较各个m 的)]([m y E 值,使其最大者即为所求.若m 的取值过多,可将)]([m y E 当成m 的连续函数或借鉴连续函数求极值的方法令0d )]([d =mm y E .2.血友病也是一种遗传疾病,得这种病的人由于体内没有能力生产血凝块因子而不能使出血停止.很有意思的是,虽然男人及女人都会得这种病,但只有女人才有通过遗传传递这种缺损的能力.若已知某时刻的男人和女人的比例为1:1.2,试建立一个预测这种遗传疾病逐代扩散的数学模型. 解:假设有α%的人患有血友病,并假设下一代与上一代虽人数可能不等,但所生男女比例一样.基于这样一个假设,不妨设下一代男女与上一代相同,设初始第一代男女分别占总人数的比例占总人数的比例为 a 0,b 0,由题设,a 0:b 0=1:1.2.注意到只有女人遗传血友病,由此,第一代将有%210αb 个女人及%210αb 个男人有血友病,血友病占总人数的百分比为 %2.22.1%0001αα=+=b a b c同理,第二代将有%21210αb ⋅个女人及%21210αb ⋅个男人有血友病,血友病占总人数的百分比为 %2.22.121%210002αα⋅=+=b a b c依次类推,第n 代将有%)21(0αb n个女人及%)21(0αb n个男人有血友病,血友病占总人数的百分比为%2.22.1)21(%)21(10001αα⋅=+=--n n n b a b c令∞→n ,则0→n c .3.某石油公司必须就下一个打井位置作出决定.如果打出来的井什么也没有(既无油也无天然气),则投资费用(打井费用)全部赔掉.如果打出来的是气井,则可以说是部分成功,如果打出来2的是油井,则是完全成功.由于结果的不确定性,更由于做某种测试(取样)只能得到不完全的信息,因而作出决定是困难的.试建立一个数学模型,使公司的预期收益最大 解:设 B 1——预测是油井,B 2——预测是气井,B 3——预测是无油气井. 由于做取样只能得到不完全的信息,因此根据取样结果,计算出在B 1,B 2,B 3分别发生的条件下,B 1,B 2,B 3发生的概率.然后利用贝叶斯公式,计算出实际是油井、气井和废井情况下,而预测是B 1,B 2,B 3之一的概率值,若给出各种情况下的费用,计算出各个期望值即可.下面画出决策树(如图3).图34 假设有一笔1000万元的资金于依次三年年初分别用于工程A 和B 的投资.每年初如果投资工程A ,则年末以0.4的概率回收本利2000万元或以0.6的概率分文不收;如果投资工程B ,则年末以0.1的概率回收2000万元或以0.9的概率回收1000万元.假定每年只允许投资一次,每次只投1000万元;试确定第3年末期望资金总数为最大的投资策略. 解: 建立决策树(如图4).1 32 6 78410 511投资A8000.4 成功 投资A 2000投资B 0 投资B情况同7投资A 1000 1800 2000 0.6 失败 0.6 800 0 0.60.4 2000 3000 11000.1 0.9 100012 投资A 2000 2800 0.6 0.4 4000 0.4 13 投资B 4000 31000.1 0.930003000 0.121002000投资A1800决策B 1 B 2 B 3 预测废井预测气井 预测油井实际废井 实际气井 实际油井 实际废井 实际油井实际气井3图4在投资A 的决策树中,第一年投资A ,第二年投资B ,第三年投资B 的期望值最大. 在投资B 的决策树中(只在A 的决策树中②节点中的0.4,0.6分别换成0.1,0.9即可),可算得第一年投资B ,第二年投资B ,第三年投资B 的期望值是两个决策树中的最大者.5.某工程队承担一座桥梁的施工任务.由于施工地区夏季多雨,需停工三个月.在停工期间该工程队可将施工机械搬走或留在原处.如搬走,需搬运费1800元.如留原处,一种方案是花500元筑一护堤,防止河水上涨发生高水位的侵袭.若不筑护堤,发生高水位侵袭时将损失10000元.如下暴雨发生洪水时,则不管是否筑护堤,施工机械留在原处都将受到60000元的损失.据历史资料,该地区夏季高水位的发生率是25%,洪水的发生率是2%.试用决策树法分析该施工队要不要把施工机械搬走及要不要筑护堤?解:建立决策树模型如图5.图5 使用期望值法计算过程见图6.A CB D B 高水位 0.25 高水位 0.25洪水 0.02洪水 0.02筑堤 不筑堤搬走 不搬走-1800 -500 -60500 -10000-60000A CB D B高水位 0.25 高水位 0.25洪水 0.02洪水 0.02筑堤 不筑堤搬走 不搬走-1800 -500 -60500-10000 -60000-1800-1335 -1335 -3700图6最优决策为:不必搬走机械,但要筑一个护堤,期望损失1335元.4。