(完整版)空调冷热源
- 格式:ppt
- 大小:56.19 MB
- 文档页数:71
【总结篇】14种冷热源及空调系统特点介绍2015-03-17 10:25 专业分类:暖通空调浏览数:56714种冷热源及空调系统特点介绍目录:一、常规电制冷空调系统二、冰蓄冷空调系统三、水源热泵空调系统四、电蓄热空调系统五、风冷热泵空调系统六、溴化锂空调系统七、VRV空调系统八、热泵空调系统九、空气源热泵空调系统十、大温差低温送风空调系统的特点十一、变风量空调系统的特点十二、冰蓄冷与水源热泵的结合十三、水蓄冷系统十四、温湿独控空调系统系统正文:一、常规电制冷空调系统目前使用较多的空调形式,经过一个多世纪的发展,制冷主机的形式多种多样,具有制冷效率高等的优点,它有如下特点:优点:1)系统简单,占地比其他形式的稍小。
2)效率高,COP(制冷效率)一般大于5.3。
3)设备投资相对于其它系统少。
不足之处:1)冷水机组的数量与容量较大,相应的其他用电设备数量、容量也增加,运动设备的增加加大了维护、维修工作量。
2)总用电负荷大,增加了变压器配电容量与配电设施费。
3)所使用电量均为高峰电,不享受峰谷电价政策,运行费用高。
4)在拉闸限电时出现空调不能使用的状况。
2003、2004年夏季空调主机减半运行,造成大部分中央空调达不到效果。
5)运行方式不灵活,在过渡季节、节假日或休息时间个别区域供冷,需要开主机运行,形成大马拉小车,浪费了机组的配置能力,增加了运行费用。
6)对于大型区域供冷系统较难实现较好的供冷(供水温度不能降低),管网的投资大、输送能耗高、空调品质差。
二、冰蓄冷空调系统冰蓄冷空调是在常规水冷冷水机组系统的基础上减小制冷主机容量增加蓄冰装置,利用夜间低谷低价电力时段将冷量通过冰的形式储存起来,白天需要供冷时释放出来。
该技术在二十世纪30年代开始应用于美国,在70年代能源危机中得到发达国家的大力发展。
从美国、日本、韩国、台湾等较发达的国家和地区的发展情况来看,冰蓄冷已经成为中央空调的发展方向。
比如,韩国明令超过2000㎡建筑,必须采用冰蓄冷或煤气空调,日本超过5000㎡的建筑物,就在设计时考虑采用冰蓄冷空调系统。
第一章空调冷热源一般规定空调人工冷热源宜采用集中设置的冷(热)水机组和供热、换热设备。
其机型和设备的选择,应根据建筑物空调规模、用途、冷热负荷、所在地区气象条件、能源结构、政策、价格及环保规定等情况,按下列要求通过综合论证确定:1.热源应优先采用城市、区域供热或工厂余热;2.具有城市燃气供应,尤其是执行分季气价的地区,可采用燃气锅炉、燃气热水机供热,或燃气吸收式冷(温)水机组供冷、供热;3.无上述热源和气源的地区,可采用燃煤锅炉、燃油锅炉供热,电动压缩式冷水机组供冷或燃油吸收式冷(温)水机组供冷、供热;4.具有多种能源的地区的大型建筑,可采用复合式能源供冷、供热;5.夏热冬冷地区、干旱缺水地区的中、小型建筑可采用空气源热泵或地下埋管式地源热泵冷(热)水机组供冷、供热;6.有天然水等资源可供利用时,可采用水源热泵冷(热)水机组供冷、供热;7.全年进行空气调节,且各房间或区域负荷特性相差较大,需长时间同时供热和供冷的建筑物,经技术经济比较后,可采用水环热泵空调系统供冷、供热;8.在执行分时电价,峰谷电价差较大的地区,采用低谷电价时段蓄冷(热)能产生显著经济效益的建筑,可采用蓄冷(热)系统供冷(热)。
在电力充足、供电政策和价格优惠的地区,符合下列情况之一时,可采用电力为供热能源:第二章以供冷为主,供热负荷较小的建筑;第三章无城市、区域热源及气源,采用燃油、燃煤设备受环保、消防严格限制的建筑;第四章夜间可利用低谷电价进行蓄热的系统。
需设空调的商业或公共建筑群,有条件时宜采用热、电、冷联产系统或设置集中供冷、供热站。
符合下列情况之一时,宜采用分散设置的风冷、水冷式或蒸发冷却式空调机组:第五章空调面积较小,采用集中供冷、供热系统不经济的建筑;第六章需设空调的房间布置过于分散的建筑;第七章设有集中供冷、供热系统的建筑中,使用时间和要求不同的少数房间;第八章需增设空调,而机房和管道难以设置的原有建筑;第九章居住建筑。
空调冷热源方案1)冷水机组的分类按动力种类分:电力驱动—蒸气压缩式冷水机组热力驱动—吸收式冷水机组压缩机按种类分:活塞式螺杆式离心式涡旋式压缩机按冷凝器冷却方式分:水冷式风冷式蒸发冷却式2)冷水机组的冷量范围、使用工质和范围单效吸收机:COP=0.7~0.8;双效吸收机:COP=1.2~1.3;三效吸收机(进口):COP=1.6~1.7吸收机的一次能耗与电制冷机的比较吸收机燃煤的热量转换:锅炉效率为80%时,吸收机COP=1.3时,则综合效率为:1.3×0.8=1.04电动压缩机燃煤的热量转换:制冷机按COP值=5.5计算;发电效率按30%时,输配电耗为10%的综合效率为(30%-30%×10%=27%),则综合效率为:5.5×27%=1.485仅一次能耗相差(1.485-1.04)÷1.04=42.78%直燃式吸收式制冷机的使用条件:电力紧张地区、需要降低电力峰值时。
直燃机:1.3;直燃机的一次能耗与电制冷机的比较制冷机按COP值=5.5计算;大型燃气发电厂的发电效率55%,输配电耗为10%的综合效率为(55%-55%×10%=49.5%),则综合效率为:5.5×49.5%=2.7225仅一次能耗相差(2.7225-1.3)÷1.3=109.4%结论:1不提倡通过燃煤、燃气、燃油的吸收式制冷方式做空调制冷。
2当需要电力调峰时:在天然气终端价格2元/m3时,等效发电多消耗的燃料为0.4元/kWh,采用中规模的燃气调峰发电厂替代吸收机,增加的吸收机的投资可在运行9000h内(一般为5~8年)回收投资3)区域制冷空调负荷不可能同时出现峰值,利用各建筑空调的顺时差值减少装机,降低投资与一般分布式制冷系统比较,区域供冷存在着运行效率低、随负荷调节性能差、运行能耗高且计量收费难等问题。
因此,在负荷分散时,没有对冷源效率、输送系统能耗、部分负荷下维持高效的方法、计量收费方式等进行充分论证,找到科学可行的解决方案前,不提倡和推广区域制冷。