深圳地铁三号线正线信号系统201004.16
- 格式:ppt
- 大小:8.49 MB
- 文档页数:56
例谈地铁信号系统降级模式1 系统概述深圳地铁3号线(龙岗线)采用基于无线通信技术的移动闭塞系统(CBTC)信号控制系统。
它通过提高列车位置的报告精度和移动授权的更新率来提供更大的通过能力,并减小列车的间隔距离,以满足城轨交通运营"小编组、高密度、大运量"的要求。
该ATC控制系统包括:ATS列车自动监控子系统、ATP列车自动防护子系统、ATO列车自动运行子系统、CBI联锁子系统、DTS数据传输子系统和TWC车-地通信等子系统,系统结构模型如图1所示,分别采取高质量硬件设备、双网络通道和采用冗余方式(3取2或2乘2取2结构)的安全型计算机等,最大限度地减少系统故障的发生,从而保证系统的安全、可靠。
2 降级模式必要性目前在建及拟建的城市轨道交通项目中,信号系统大多采用CBTC控制系统。
虽然国外有CBTC系统无降级系统的运营经验,但根据目前国内实施的CBTC 项目开通情况来看,如广州地铁3号线、4号线、5号线,上海地铁8号及北京地铁机场线等,基本上采用从联锁级控制-点式ATP控制-全线ATC控制的调试过程。
因此,CBTC系统采用适当的降级模式还是很有必要的,其主要应用在如下情形:(1)線路开通初期,信号系统不具备ATP/ATO开通条件的临时过渡期间列车运行;(2)CBTC列车的车载信号设备故障或非CBTC列车(如工程车或不兼容本线信号系统的列车)运行时;(3)控制中心(OCC)或区域控制器(ZC)功能故障,而联锁设备完好时。
3系统降级模式对有冗余配置的ATC系统设备,当主用设备故障时将会自动地切换至备用设备工作并报警,主、备设备之间的切换可确保系统的连续显示及控制功能。
在正常情况下,控制中心(中央ATS)根据服务器从列车和区域控制(ZC)站上接收到的信息对线路的运行情况进行监控。
3.1 ATS的降级模式在ATS的降级模式下,需车-地双向通信和RATP/RATO设备功能正常。
前者确保列车信息能够正确地传递给联锁区域通信管理设备,后者能够按照联锁区域通信管理设备发出的指令及时、准确地为列车准备进路和提供列车计算速度曲线所需的参数。
1 研究背景据统计,目前国内已有45个城市开通轨道交通运营线路,运营里程达7 900多公里,城市轨道交通出行已经成为一种必然趋势。
国内城市轨道交通建设自2010年便进入建设高峰期,若信号系统的使用寿命按照15~20年考虑,未来几年内国内城市轨道交通将进入既有线路信号系统改造高峰期。
目前国内城市轨道交通既有线路信号系统更新改造方案主要包含4种方案。
(1)保持原信号系统制式、局部改造方案。
例如,广州地铁1号线正线信号系统采用德国西门子公司基于无绝缘数字音频轨道电路的LZB700M型系统,于1997年首期工程开通试运营,2015年开展信号系统更新改造,采用保持原信号系统制式、局部改造的方式。
(2)保持原信息系统制式与CBTC相结合改造方案。
例如,上海地铁2号线信号系统采用基于轨道电路的准移动闭塞系统(TBTC),于2015年启动信号系统更新改造,对部分线路信号系统采用了保持原信号系统制式方案,目前项目处于改造中。
方案采用“基于轨道电路的列车控制系统+基于通信的列车自动控制系统(TBTC+CBTC)”双系统兼容性的车载设备对既有车载系统及车辆进行改造。
(3)CBTC改造方案。
例如,上海地铁5号线一期工程于2003年11月正式投入运营,2014年开展更新改造,采用新设CBTC方案,对轨旁及车载信号系统进行了全面的更新改造。
2018年10月完成新旧信号系统倒切。
(4)TACS改造方案。
例如,上海地铁3号线于2000年开通运营一期工程,上海地铁4号线于2005年开通运营一期工程。
上海3号线和4号线全线信号系统更新改造采用新增基于车车通信的列车自主运行系统(TACS)替换既有的U200系统,对既有列车的车载设备进行更新替换,并增加降级自主定位系统,预计2024年完成改造工作。
2 深圳地铁3号线2.1 既有3号线概况深圳地铁3号线共设车站31座,全长43.06 km,一期工程于2010年12月开通运营。
列车采用6辆编组技术装备深圳地铁3号线既有信号系统更新改造方案研究刘 鑫1,罗运真2(1. 深圳地铁建设集团有限公司,广东深圳 518026;2. 广州地铁设计研究院股份有限公司,广东广州 510010)摘 要:针对信号系统发展趋势,结合深圳地铁3号线信号系统现状,论述其改造的必要性,通过改造需求分析,结合国内主要城市轨道交通线路改造情况,提出采用既有信号系统局部改造、CBTC和TACS 3种改造方案。
简析深圳地铁一期信号数据传输系统王锡波;张建新;徐美玲【摘要】通过对深圳地铁一期信号数据传输系统的分析,从中央设备层、中间传输层及现场设备层逐一介绍其工作原理及设备特点.信号系统通过802.3,OTN、Profibus等通信协议使中央控制中心与现场设备大量的数据交换成为可能,分布性、可靠性与扩展性都得到了极大的提高.【期刊名称】《现代城市轨道交通》【年(卷),期】2010(000)004【总页数】3页(P21-23)【关键词】OTN传输网络;802.3协议;Profibus总线;地铁信号【作者】王锡波;张建新;徐美玲【作者单位】深圳地铁集团运营分公司自动监控部,广东深圳,518040;深圳地铁集团运营分公司自动监控部,广东深圳,518040;深圳地铁集团运营分公司自动监控部,广东深圳,518040【正文语种】中文0 引言深圳地铁一期工程包括1号线东段(设车站15座地下车站,全长约17.25km)和4号线南段(设车站5座地下车站,全长约4km)。
一期工程信号系统设备由德国西门子公司提供。
其中数据传输的安全性和可靠性对于列车运行控制系统至关重要,为此,重点对整个系统的数据传输结构及通信方式进行描述与分析。
1 数据传输系统网络结构深圳地铁一期信号系统属准移动闭塞系统,该西门子系统采用了标准的模块结构和接口电路,适应性强、易于扩展。
全套ATC系统包括计算机联锁系统(SICAS),列车自动防护系统(ATP),列车自动驾驶系统(ATO)和列车自动监督(ATS)等4个子系统组成。
各有关计算机均采用符合信号“故障-安全”原则的“三取二”或“二取二”冗余配置。
整体各子系统之间的数据传输系统由中央设备层、中间传输层和现场设备层等3层结构组成(图1)。
1.1 中央设备层图1所示,中央级设备是一个典型的分布式系统,根据模块化设计规则,系统功能被划分为若干个块功能,分别由各个服务器实现,如图1中ADM(管理服务器),Report(报表服务器),Falko(时刻表服务器),MMI(人机交互接口)分别实现数据存储、报表服务、时刻表及人机交互功能,所有功能块又通过LAN (局域通信网络)进行数据通信由COM(通信服务器)组合在一起,实现对现场设备与列车的控制。