_时间序列的平稳性和单位根检验解读
- 格式:ppt
- 大小:1006.50 KB
- 文档页数:52
时序预测中的时间序列平稳性检验方法详解时间序列分析是一种统计方法,用于分析时间序列数据的模式和趋势,以便预测未来的趋势。
时间序列预测是在一定时间范围内对未来数据进行估计和预测,而时间序列的平稳性检验是进行时间序列预测的第一步。
在本文中,我将详细解释时序预测中的时间序列平稳性检验方法。
时间序列的平稳性是指时间序列在统计特性上不随时间发生显著变化的性质。
在时间序列分析中,平稳性是一个非常重要的性质,因为只有平稳的时间序列才能应用于许多经典的时间序列模型。
下面我们将介绍一些常见的时间序列平稳性检验方法。
1. 绝对值单位根检验绝对值单位根检验是一种检验时间序列平稳性的方法。
它的基本思想是对时间序列进行绝对值转换,然后应用单位根检验。
如果单位根检验的结果表明时间序列的绝对值是平稳的,那么原始时间序列也是平稳的。
2. ADF检验ADF(Augmented Dickey-Fuller)检验是一种常用的检验时间序列平稳性的方法。
它的原假设是时间序列具有单位根,即不平稳。
如果经过ADF检验,可以拒绝原假设,那么就可以认为时间序列是平稳的。
3. PP检验PP(Phillips-Perron)检验也是一种检验时间序列平稳性的方法。
它与ADF 检验类似,都是基于单位根检验的原理。
PP检验的优点是可以处理具有序列相关性和异方差性的时间序列数据。
4. KPSS检验KPSS(Kwiatkowski-Phillips-Schmidt-Shin)检验是一种用于检验时间序列平稳性的方法。
与ADF检验相反,KPSS检验的原假设是时间序列是平稳的,因此如果检验结果表明拒绝原假设,那么就可以认为时间序列是不平稳的。
以上是一些常见的时间序列平稳性检验方法,每种方法都有其适用的场景和局限性。
在实际应用中,可以根据时间序列的特点和数据的分布情况选择合适的方法进行平稳性检验。
在进行时间序列预测时,平稳性检验是非常重要的一步,只有在时间序列平稳的情况下,才能应用于各种经典的时间序列模型,从而得到准确的预测结果。
时间序列---平稳性检验试验一平稳性检验1.图示判断给出一个随机时间序列,首先可通过该序列的时间路径图来粗略地判断它是否是平稳的。
一个平稳的时间序列在图形上往往表现出一种围绕其均值不断波动的过程;而非平稳序列则往往表现出在不同的时间段具有不同的均值(如持续上升或持续下降)。
进一步的判断:检验样本自相关函数及其图形,随着k的增加,样本自相关函数下降且趋于零。
但从下降速度来看,平稳序列要比非平稳序列快得多。
例题:选择数据1986.01---0995.12的月数据进行分析:时序图:相关系数及图形:初步判断序列为非平稳序列。
2.平稳性的单位根检验原理:对时间序列的平稳性除了通过图形直观判断外,运用统计量进行统计检验则是更为准确与重要的。
单位根检验(unit root test)是统计检验中普遍应用的一种检验方法。
检验一个时间序列Xt的平稳性,可通过检验带有截距项的一阶自回归模型Xt=α+ρXt-1+μt (*)中的参数ρ是否小于1。
或者:检验其等价变形式Xt=α+δXt-1+μt (**)中的参数δ是否小于0 。
因此,针对式?Xt=α+δXt-1+μt 我们关心的检验为:零假设H0:δ=0。
备择假设 H1:δ<0然而,在零假设(序列非平稳)下,即使在大样本下t 统计量也是有偏误的(向下偏倚),通常的t 检验无法使用。
Dicky 和Fuller 于1976年提出了这一情形下t 统计量服从的分布(这时的t 统计量称为τ统计量),即DF 分布(见表9.1.3)。
由于t 统计量的向下偏倚性,它呈现围绕小于零值的偏态分布。
如果:t<临界值,则拒绝零假设H0:δ =0,认为时间序列不存在单位根,是平稳的。
为了保证DF 检验中随机误差项的白噪声特性,Dicky 和Fuller 对DF 检验进行了扩充,形成了ADF (Augment Dickey-Fuller )检验。
实际检验时从模型3开始,然后模型2、模型1何时检验拒绝零假设,即原序列不存在单位根,为平稳序列,何时检模型1: t mi it it t XX X εβδ+?+=?∑=--11 (*模型2: t mi it it t XX X εβδα+?++=?∑=--11 (*模型3: t m i i t it t X X t X εβδβα+?+++=?∑=--11 (*验停止。