锂电池充电保护板电路
- 格式:doc
- 大小:170.50 KB
- 文档页数:1
锂电池保护电路三线接法
锂电池保护电路通常有三个线,包括正极正电源线、负极负电源线和负极电流检测线。
以下是锂电池保护电路的三线接法:
1. 正极连接:将锂电池的正极与正电源线连接。
正电源线一般是保护电路的VCC供电线,用来为保护电路和连接电子设备提供正电源。
2. 负极连接:将锂电池的负极与负电源线连接。
负电源线被用作保护电路的GND线,它可以提供回路的接地。
3. 电流检测线:连接在负极电流检测引脚上,用来测量和监控电池的电流。
负极电流检测引脚输出的电流信号可以用于保护电路控制电池的充放电情况,以便保护电池。
需要注意的是,锂电池保护电路的具体接法可能会根据不同的电路设计有所不同,建议在使用保护电路时,根据其所附的说明书或者技术规范进行正确的接线。
此外,为了确保电路的安全和稳定性,需要遵守电路设计的要求,使用合适的线材和连接方式。
多串锂电池保护板电路
多串锂电池保护板电路通常包括以下几个主要部分:
1.电压检测模块:用于检测电池组的总电压和各单体电池的电压,确保电池组在正常范围内工作。
2.电流检测模块:用于检测电池组的充放电电流,防止过流或短路等异常情况。
3.温度检测模块:用于检测电池组的温度,防止过热或异常温度对电池性能的影响。
4.保护控制模块:根据电压、电流和温度等参数,控制电池组的充放电过程,确保电池组的安全和稳定运行。
在具体电路设计上,多串锂电池保护板电路需要考虑以下几个方面:
1.电压平衡:由于多串锂电池的电压不一致,需要设计合理的电路结构,确保各单体电池之间的电压平衡,避免因电压不均衡导致的故障。
2.充电控制:根据电池组的总电压和各单体电池的电压,控制充电器的充电电流和充电时间,防止过充或欠充对电池性能的影响。
3.放电控制:根据电池组的总电压和各单体电池的电压,控制放电电路的放电电流和放电时间,防止过放或异常放电对电池性能的影响。
4.故障保护:当电池组出现异常情况时,如过流、过热等,保护板需要立即切断电源,防止故障扩大。
综上所述,多串锂电池保护板电路需要综合考虑电压、电流、温度等多个因素,设计合理的电路结构和控制策略,确保电池组的安全和稳定运行。
锂电池保护板二极保护电路设计锂电池是一种被广泛应用于电子产品中的电池,它具有高能量密度、轻量化以及长寿命的特点,因此受到了广泛的关注和应用。
然而,锂电池在充放电过程中存在着一定的安全隐患,如果不加以合理的保护措施,可能会导致电池过充、过放、短路等问题,甚至引发火灾或爆炸。
锂电池保护板的设计对于保障电池的安全性至关重要。
在锂电池保护板中,二极保护电路是一项至关重要的设计,它主要负责监测电池的电压、温度和电流等参数,一旦发现异常情况,及时对电池进行保护。
二极保护电路的设计对于确保锂电池的安全性至关重要。
本文将从设计原理、电路结构、工作原理和实际应用等方面对锂电池保护板二极保护电路进行深入探讨,以期为锂电池保护板的设计和应用提供一定的参考价值。
一、设计原理二极保护电路的设计原理主要是基于对锂电池充放电过程的监测和保护。
一般来说,锂电池的充放电过程中会伴随着电压、温度和电流等参数的变化,如果这些参数超出了锂电池的允许范围,就会对电池造成潜在的安全隐患。
二极保护电路的设计目标就是及时监测这些参数,并在出现异常情况时对电池进行保护,保证电池的安全性。
二、电路结构二极保护电路通常由电压检测电路、温度检测电路和电流检测电路等部分组成。
其中,电压检测电路一般采用分压电路来对电池的电压进行监测,温度检测电路则通常采用NTC热敏电阻来监测电池的温度变化,而电流检测电路则使用霍尔元件或电流互感器等来监测电池的充放电电流。
在监测到异常情况时,二极保护电路会通过MOS管或继电器等元件对电池进行保护,比如切断充电或放电电路,从而保证锂电池的安全性。
三、工作原理二极保护电路在工作过程中主要分为两个阶段,第一阶段是监测阶段,通过电压、温度和电流检测电路对电池的参数进行实时监测。
第二阶段是保护阶段,当监测到电池出现异常情况时,二极保护电路会通过控制MOS管或继电器等元件对电池进行保护,比如切断充电或放电电路,避免电池受到进一步的损害。
成组锂电池串联充电时,应保证每节电池均衡充电,否则使用过程中会影响整组电池的性能和寿命。
常用的均衡充电技术有恒定分流电阻均衡充电、通断分流电阻均衡充电、平均电池电压均衡充电、开关电容均衡充电、降压型变换器均衡充电、电感均衡充电等。
而现有的单节锂电池保护芯片均不含均衡充电控制功能;多节锂电池保护芯片均衡充电控制功能需要外接CPU,通过和保护芯片的串行通讯(如I2C总线)来实现,加大了保护电路的复杂程度和设计难度、降低了系统的效率和可靠性、增加了功耗。
本文针对动力锂电池成组使用,各节锂电池均要求充电过电压、放电欠电压、过流、短路的保护,充电过程中要实现整组电池均衡充电的问题,设计了采用单节锂电池保护芯片对任意串联数的成组锂电池进行保护的含均衡充电功能的电池组保护板。
仿真结果和工业生产应用证明,该保护板保护功能完善,工作稳定,性价比高,均衡充电误差小于50mV。
锂电池组保护板均衡充电基本工作原理采用单节锂电池保护芯片设计的具备均衡充电能力的锂电池组保护板示意图如图1所示。
其中:1为单节锂离子电池;2为充电过电压分流放电支路电阻;3为分流放电支路控制用开关器件;4为过流检测保护电阻;5为省略的锂电池保护芯片及电路连接部分;6为单节锂电池保护芯片(一般包括充电控制引脚CO,放电控制引脚DO,放电过电流及短路检测引脚VM,电池正端VDD,电池负端VSS等);7为充电过电压保护信号经光耦隔离后形成并联关系驱动主电路中充电控制用MOS管栅极;8为放电欠电压、过流、短路保护信号经光耦隔离后形成串联关系驱动主电路中放电控制用MOS管栅极;9为充电控制开关器件;10为放电控制开关器件;11为控制电路;12为主电路;13为分流放电支路。
单节锂电池保护芯片数目依据锂电池组电池数目确定,串联使用,分别对所对应单节锂电池的充放电、过流、短路状态进行保护。
该系统在充电保护的同时,通过保护芯片控制分流放电支路开关器件的通断实现均衡充电,该方案有别于传统的在充电器端实现均衡充电的做法,降低了锂电池组充电器设计应用的成本。
智能型锂电池保护板电路的设计与实现摘要锂离子电池因储能容量大、使用寿命长、清洁环保、能量体积比大等众多优点,所以在各行各业被广泛使用,逐渐成为了电池的主流产品。
然而因锂电池的能量密度高,也使得难以确保其安全性,所以需要相匹配的电池保护电路来确保电池以及使用设备的安全。
本文介绍了通过锂离子电池的充放电特点设计一种支持多种规格锂电池及电池组的保护电路的详细过程。
本文以锂电池的充放电特点作为研究主体,详细阐述了作者在学士学位论文工作期间对锂电池充放电过程中对其保护的研究与设计。
介绍了锂电池的特点以及其保护电路的发展现状及趋势,其次说明了锂电池的充放电的概念、原理、制定目标设计参数以及保护电路的设计过程、实现方法。
设计过程中,首先提出三种可行性方案,并通过理论分析进行方案筛选,确定由精工电子的电源管理芯片S-8209为核心构成的设计方案。
然后通过对S-8209进行Pspice建模并仿真,验证其功能并为设计方案提供理论基础。
然后绘制电路图,并施以改进优化设计方案。
最后进行锂电池保护电路的调试,并对毕业设计期间的工作作出总结。
关键词:锂电池保护电路电池组Pspice建模S-8209The Design and Implementation Of Intelligent Lithium-ion Battery ProtectionCircuitAbstractLithium-ion battery is widely used in almost all walks of life, because of its large capacity, long useful life, environment friendly and large volume ratio of energy. It is becoming the mainstream products of battery. But its high volume ratio of energy is also the unstable caution of security. So it is necessary to match the battery protection circuitry to ensure the safety of the battery and the equipment of using the battery.This article describes the adoption of lithium-ion battery charge and discharge characteristics of a variety of specifications to design a lithium battery group and battery protection circuit.In this paper, the charge and discharge characteristics of lithium battery as a research subject during the process. This article introduces the characteristics of lithium battery and its protection circuit development and trend, followed by shows the principles of lithium battery charge and discharge. And then make the design settings. During the design process, firstly proposed various of design options. Through theoretical analysis to determine the program, selected Seiko electronic power management IC S-8209 to achieve the design. Then carried out on the S-8209 Pspice model and simulation to verify its functionality and provide a theoretical basis for the design. Then draw the circuit diagram, and helping to improve optimization design. Finally, debug the lithium battery protection circuit and summary my work during the graduation project.Keywords: Lithium-ion battery Battery protection circuit Pspice-modeling Lithium-ion battery group S-8209目录1 绪论 (1)1.1 课题研究背景 (1)1.2 课题的研究方向和发展前景 (2)1.2.1锂电池保护电路的现状 (2)1.2.2 锂电池保护电路的发展前景 (3)1.3 选题的目的和意义 (4)1.4 设计要求 (5)1.5 主要工作及流程 (7)2 技术背景及方案选择 (8)2.1 锂电池的介绍 (8)2.1.1 锂电池简介 (8)2.1.2 锂电池的特点 (9)2.1.3 锂电池的充电原理 (11)2.1.4 锂电池的放电原理 (12)2.1.5 锂电池的工作过程 (13)2.1.6 锂电池保护的必要性 (13)2.2 锂电池充电器的介绍 (14)2.2.1 锂电池充电器简介 (14)2.2.2 恒流——恒压式锂电池充电器 (15)2.3 Pspice仿真软件的介绍 (17)2.3.1 Pspice的发展与现状 (17)2.3.2 Pspice的组成 (18)2.3.3 Pspice的分析功能 (19)2.3.4 使用Pspice建立仿真模型 (20)2.4 实现方案的选择 (21)2.4.1 方案介绍 (21)2.4.2 方案的对比与选择 (22)2.4.3 方案存在的问题 (24)3 设计实现 (24)3.1 原理分析 (24)3.1.1 整体实现原理 (24)3.1.2 各部分功能的实现方法 (25)3.1.3 S-8209的性能指标 (27)3.1.4 S-8209功能原理分析 (29)3.1.5 S-8209的典型电路原理 (31)3.2 使用Pspice进行仿真 (34)3.2.1 仿真的意义及作用 (34)3.2.2 对S-8209芯片建立仿真模型 (35)3.2.3 锂电池保护电路的仿真 (37)3.3锂电池保护电路的制作 (41)3.3.1 设计电路 (41)3.3.2 确定选用元件的型号及参数 (42)3.3.3 绘制PCB电路板 (43)4 总结 (45)4.1 实际电路测试 (45)4.2 理论与实际对比分析 (45)4.3 经验总结 (46)致谢 (47)参考文献 (48)附录 (51)附1Pspice仿真描述语句 (51)附2 锂电池保护电路电路图 (52)附3 锂电池保护电路实物图 (54)外文资料翻译及原文 (55)1 绪论1.1 课题研究背景锂离子电池因储能容量大、使用寿命长、清洁环保、能量体积比大等众多优点,所以在各行各业被广泛使用,逐渐成为了电池的主流产品。
锂电池电路保护板详解1.锂电池电路保护板典型电路2.保护板的核心器件:U1 和 U2A/U2B。
U1是保护IC,它由精确的比较器来获得可靠的保护参数。
U2A和U2B是MOS管,串在主充放电回路,担当高速开关,执行保护动作。
3.B1的正负极接电芯的正负极;P+,P-分别接电池输出接口的正负极。
4.R3是NTC电阻,配合用电器件的MCU产生保护动作(检测电池温度)。
R4是固定阻值电阻,做电池识别。
5.放电路径:B1+ ----- P+ ------ P- ------B1-6.充电路径:P+ ------- B1+ ------ B1- ------ P-7.DO是放电保护执行端,CO 是充电保护执行端。
8.充电保护:当电池被充电,电压超过设定值VC(4.25V-4.35V,具体过充保护电压取决于保护IC)时,CO变为低电平,U2B截止(箭头向内是N-MOS,VG大于VS导通),充电截止。
当电池电压回落到VCR(3.8V-4V,具体由IC决定),CO变为高电平,U2B导通,充电继续。
VCR必须小于VC一个定值,以防止频繁跳变。
9.过充保护的时候,即电池充满电的时候,U2B MOS截止了,手机是不是就关机了呢?答案是肯定没有,不然的话手机开机插着充电器充电,充满电就会自动关机了。
现在的MOS管生产工艺决定了,生产的时候都会形成一个寄生二极管(也叫体二极管,不用担心体二极管的耐流值,电池厂都替你考虑了,放电是没问题的)MOS管标准的画法如上图。
充电保护的时候,B-到P-处于断开状态,停止充电。
但U2B的体二极管的方向与放电回路的电流方向相同,所以仍可对外负载放电。
当电芯两端电压低于4.3V时,U2B将退出充电保护状态,U2B重新导通,即B-与P-又重新接上,电芯又能进行正常的充放电。
10.过放保护:当电池因放电而降低至设定值VD(2.3-2.5V),DO变为低电平,U2A截止,放电停止。
P-到B-处于断开状态。
锂电池充电电路详解四、锂电池的充放电要求;1、锂电池的充电:根据锂电池的结构特性,最高充电终止电压应为4.2V,不能过充,否则会因正极的锂离子拿走太多,而使电池报废。
其充放电要求较高,可采用专用的恒流、恒压充电器进行充电。
通常恒流充电至4.2V/节后转入恒压充电,当恒压充电电流降至100mA以内时,应停止充电。
充电电流(mA)=0.1,1.5倍电池容量(如1350mAh的电池,其充电电流可控制在135,2025mA之间)。
常规充电电流可选择在0.5倍电池容量左右,充电时间约为2,3小时。
2、锂电池的放电:因锂电池的内部结构所致,放电时锂离子不能全部移向正极,必须保留一部分锂离子在负极,以保证在下次充电时锂离子能够畅通地嵌入通道。
否则,电池寿命就相应缩短。
为了保证石墨层中放电后留有部分锂离子,就要严格限制放电终止最低电压,也就是说锂电池不能过放电。
放电终止电压通常为3.0V/节,最低不能低于2.5V/节。
电池放电时间长短与电池容量、放电电流大小有关。
电池放电时间(小时)=电池容量/放电电流。
锂电池放电电流(mA)不应超过电池容量的3倍。
(如1000mAH电池,则放电电流应严格控制在3A以内)否则会使电池损坏。
目前市场上所售锂电池组内部均封有配套的充放电保护板。
只要控制好外部的充放电电流即可。
五、锂电池的保护电路:两节锂电池的充放电保护电路如图一所示。
由两个场效应管和专用保护集成块S--8232组成,过充电控制管FET2和过放电控制管FET1串联于电路,由保护IC 监视电池电压并进行控制,当电池电压上升至4.2V时,过充电保护管FET1截止,停止充电。
为防止误动作,一般在外电路加有延时电容。
当电池处于放电状态下,电池电压降至2.55V时,过放电控制管FET1截止,停止向负载供电。
过电流保护是在当负载上有较大电流流过时,控制FET1使其截止,停止向负载放电,目的是为了保护电池和场效应管。
过电流检测是利用场效应管的导通电阻作为检测电阻,监视它的电压降,当电压降超过设定值时就停止放电。
锂电池保护电路原理分析,由于锂电池的特性与其它可充电电池不同,内部通常都带有一块保护板,不少人对该保护板的作用不了解(有些人可能还不知道锂电池里有保护电路),下面将对锂电池的特点及其保护电路工作原理进行阐述。
由于锂电池的化学特性,在锂电池保护电路原理分析,由于锂电池的特性与其它可充电电池不同,内部通常都带有一块保护板,不少人对该保护板的作用不了解(有些人可能还不知道锂电池里有保护电路),下面将对锂电池的特点及其保护电路工作原理进行阐述。
由于锂电池的化学特性,在正常使用过程中,其内部进行电能与化学能相互转化的化学正反应,但在某些条件下,如对其过充电、过放电和过电流将会导致电池内部发生化学副反应,该副反应加剧后,会严重影响电池的性能与使用寿命,并可能产生大量气体,使电池内部压力迅速增大后爆炸而导致安全问题,因此所有的锂电池都需要一个保护电路,用于对电池的充、放电状态进行有效监测,并在某些条件下关断充、放电回路以防止对电池发生损害。
下图为一个典型的锂电池保护电路原理图。
锂电池保护电路锂电池保护板如上图所示,该保护回路由两个MOSFET(V1、V2)和一个控制IC(N1)外加一些阻容元件构成。
控制IC负责监测电池电压与回路电流,并控制两个MOSFET的栅极,MOSFET 在电路中起开关作用,分别控制着充电回路与放电回路的导通与关断,C3为延时电容,该电路具有过充电保护、过放电保护、过电流保护与短路保护功能,其工作原理分析如下:1、正常状态在正常状态下电路中N1的“CO”与“DO”脚都输出高电压,两个MOSFET都处于导通状态,电池可以自由地进行充电和放电,由于MOSFET的导通阻抗很小,通常小于30毫欧,因此其导通电阻对电路的性能影响很小。
此状态下保护电路的消耗电流为μA级,通常小于7μA。
2、过充电保护锂离子电池要求的充电方式为恒流/恒压,在充电初期,为恒流充电,随着充电过程,电压会上升到4.2V(根据正极材料不同,有的电池要求恒压值为4.1V),转为恒压充电,直至电流越来越小。
锂电池充电电路图2009-03-08 18:26锂电池是继镍镉、镍氢电池之后,可充电电池家族中的佼佼者.锂离子电池以其优良的特性,被广泛应用于: 手机、摄录像机、笔记本电脑、无绳电话、电动工具、遥控或电动玩具、照相机等便携式电子设备中。
一、锂电池与镍镉、镍氢可充电池:锂离子电池的负极为石墨晶体,正极通常为二氧化锂。
充电时锂离子由正极向负极运动而嵌入石墨层中。
放电时,锂离子从石墨晶体内负极表面脱离移向正极。
所以,在该电池充放电过程中锂总是以锂离子形态出现,而不是以金属锂的形态出现。
因而这种电池叫做锂离子电池,简称锂电池。
锂电池具有:体积小、容量大、重量轻、无污染、单节电压高、自放电率低、电池循环次数多等优点,但价格较贵。
镍镉电池因容量低,自放电严重,且对环境有污染,正逐步被淘汰。
镍氢电池具有较高的性能价格比,且不污染环境,但单体电压只有1.2V,因而在使用范围上受到限制。
二、锂电池的特点:1、具有更高的重量能量比、体积能量比;2、电压高,单节锂电池电压为3.6V,等于3只镍镉或镍氢充电电池的串联电压;3、自放电小可长时间存放,这是该电池最突出的优越性;4、无记忆效应。
锂电池不存在镍镉电池的所谓记忆效应,所以锂电池充电前无需放电;5、寿命长。
正常工作条件下,锂电池充/放电循环次数远大于500次;6、可以快速充电。
锂电池通常可以采用0.5~1倍容量的电流充电,使充电时间缩短至1~2小时;7、可以随意并联使用;8、由于电池中不含镉、铅、汞等重金属元素,对环境无污染,是当代最先进的绿色电池;9、成本高。
与其它可充电池相比,锂电池价格较贵。
三、锂电池的内部结构:锂电池通常有两种外型:圆柱型和长方型。
电池内部采用螺旋绕制结构,用一种非常精细而渗透性很强的聚乙烯薄膜隔离材料在正、负极间间隔而成。
正极包括由锂和二氧化钴组成的锂离子收集极及由铝薄膜组成的电流收集极。
负极由片状碳材料组成的锂离子收集极和铜薄膜组成的电流收集极组成。
PDVD锂离子电池保护板方案介绍一. 保护板的组成PDVD保护板一般由两大部分组成:保护线路和充电线路A. 保护线路一般由专用两节锂电保护芯片组成,比较流行的品牌为日本精工(SEIKO)和美之美(MITSUMI)B. 充电线路一般由充电控制和充电指示两部分组成,一般由专用芯片(如TI公司BQ2000、BQ2057),DC/DC芯片或MCU芯片等组成.二.电芯保护原理在锂离子电池使用过程中,为避免使用者的错误使用而造成电池升温,电池内电解液的分解而产生气体使其内压上升,金属锂等的释出而造成有起火及破裂的危险,以及过放电电池使电池特性劣化等各种原因,在锂离子电池回路中匀要采用保护电路。
对锂离子充电电池的保护,必须有以下3个保护功能,以保证电池的安全性和可靠性。
1.过充保护防止电池的特性劣化、起火及破裂,确保安全性。
2.过放保护防止电池的特性劣化,确保电池的使用寿命。
3.过电流保护防止MOSFET的破坏,短路保护及确保搬运时的安全性。
基本控制原理如下图所示:FET1 FET2注:U1为保护板保护IC(DO为放电保护控制端,CO为充电保护控制端),U2为MOSFET管保护回路主要由保护IC和两个MOSFET管构成,保护IC同时检测电池B1、B2两端电压并控制两个MOSFET管的通断。
对电池进行充电,当电池B1或B2电压充至过放保护电压以上时,经适当延时后将发生过充保护,保护IC通过CO端控制FET2的栅极使其断开,截断回路电流起到保护作用。
对电池进行放电,当电池B1或B2电压放至过放保护电压值以下时,经适当延时将发生过放保护,保护IC通过DO端控制FET1的栅极使其断开,截断回路电流起到保护作用。
当P+和P-端发生短路时,保护IC通过DO端控制FET2的栅极使其断开, 截断回路电流起到保护作用。
其中R1为保护IC提供电源并为过充检测提供回路,R2为过流和短路检测提供检测端。
二. 充电控制原理锂电池充电采用恒流转恒压(CC/CV)方式,充电特性曲线如下图示.充电过程主要由恒流和恒压两阶段构成,线路中采用的芯片主要是对充电电流和充电电压及转灯指示进行控制,以完成整个充电过程.充电开始时,线路提供恒定电流对电芯进行充电,当电芯电压接近8.4V时,充电转为恒压充电,充电电流逐渐减小至充电结束电流并转灯指示充电结束.三. 方案介绍1. 方案一A. 组成芯片充电控制IC:BQ2000保护IC:S8232或MM1292B. 方案特点优点:※过充,过放,过流,短路保护功能可靠齐全※充电控制含预充电(脉冲充电),恒流充电,恒压充电※监控充电时电芯表面温度,温度异常时切断充电电流※可设充电时间限制,在规定时间内切断充电电流※最小电流终止充电※转灯指示, 预充电时LED红绿闪烁,快充时亮红色,充满时亮绿色※恒压电压准确,精度高于1%※高低边电流检测※开关频率高达500KHz,提高充电效率缺点:※外围元件较多,成本较高※充电电流控制精度±20%略高C. 线路图保护部分:充电部分:A. 组成芯片充电控制IC:BQ2057保护IC:S8232或MM1292B. 方案特点优点:※过充,过放,过流,短路保护功能可靠齐全※充电控制含预充电(脉冲充电),恒流充电,恒压充电※监控充电时电芯表面温度,温度异常时切断充电电流※最小电流终止充电※转灯指示, 预充电时LED红绿闪烁,快充时亮红色,充满时亮绿色※恒压精度高于1%※动态内阻补偿,减小充电时间※高低边电流检测※外围元件少,体积空间小,成本较低※充电电流控制精度±10%缺点:※线性控制方式,充电效率不及开关控制方式C. 线路图保护部分:同方案一充电部分:A. 组成芯片充电控制IC:DC/DC MC36063A 运放:LM358 保护IC:S8232或MM1292B.方案特点优点:※开关频率达100KHZ,效率较高※元件较少,成本低※充电LED指示,充电红色,充满绿色※有限流功能※ CC/CV充电※输入电压范围大缺点:※充电保护功能少※转灯时继续充电,不切断充电电流※恒压电压精度2%较低※限流精度16%较高C.线路图4. 方案四A. 组成芯片充电控制IC:MCU JTI301C保护IC:VG202B.方案特点优点:※智慧型电池容量及效能管理※独立分容控制※电池容量预估及显示※充电控制含预充电,恒流充电,恒压充电※充电过程中,自动评估电池实际容量,达到自学习及容量估计功能※控制电池充电电压上限,关断充电电流(软件控制)※控制电池放电电压下限,关断放电回路(软件控制)※电池无放电或充电时自动进入省电模式※硬件软件双重保护※ LCD/LED显示充电状态缺点:※元件较多,成本较高C.线路图四. 常见问题及解决措施1. 电芯不匹配,导致电池性能变差,寿命缩短2. 恒压控制精度不够,导致电池过充或充不满3. 最终电流检测方式不同,导致充不满或过充4. 保护失效,发生安全问题E-MAIL: zqrqin@Nov 12 2002。
说明:图中另有电阻R3 ,一脚接CEG8205第二和第三脚,一脚接电池输出温度检测脚。
RI标有101字样R2标有102字样R3标有103字样
如果电池更换保护板或电芯后,输出电压归零,可以用非自动识别的万能充激活时间2分钟就行了。
电芯坏的表现是:用万能充直接充电芯充不进, 接万能充后不接电源,电芯电压逐渐降低,直到低于1伏.
电池保护板的代用:如果确定保护板坏了, 不想研究保护板电路图又无同样保护板可换,可以先把坏保护板上的元件全部拆除, 再找一个确定好的保护板,输入脚接电芯正负极,输出脚分别飞线接坏保护板的正负极和温度检测脚 .OK
图片:
图片:。