供热系统室外管网水力平衡度检测
- 格式:docx
- 大小:11.01 KB
- 文档页数:1
建筑节能工程现场检验重点内容及方法(一)围护结构现场实体检验1 、建筑围护结构施工完成后,应对围护结构的外墙节能构造和严寒、寒冷、夏热冬冷地区的外窗气密性进行现场实体检测。
当条件具备时,也可直接对围护结构的传热系数进行检测。
2 、外墙节能构造的现场实体检验方法见规范。
其检验目的是:(1)验证墙体保温材料的种类是否符合设计要求;(2)验证保温层厚度是否符合设计要求;(3)检查保温层构造做法是否符合设计和施工方案要求。
3、严寒、寒冷、夏热冬冷地区的外窗现场实体检测应按照国家现行有关标准的规定执行。
其检验目的是验证建筑外窗气密性是否符合节能设计要求和国家有关标准的规定。
4 、外墙节能构造和外窗气密性的现场实体检验,其抽样数量可以在合同中约定,但合同中约定的抽样数量不应低于本规范的要求。
当无合同约定时应按照下列规定抽样:(1)每个单位工程的外墙至少抽查3处,每处一个检查点;当一个单位工程外墙有2种以上节能保温做法时,每种节能做法的外墙应抽查不少于3处;(2)每个单位工程的外窗至少抽查3樘。
当一个单位工程外窗有2种以上品种、类型和开启方式时,每种品种、类型和开启方式的外窗应抽查不少于3樘。
5 、外墙节能构造的现场实体检验应在监理(建设)人员见证下实施,可委托有资质的检测机构实施,也可由施工单位实施。
6 、外窗气密性的现场实体检测应在监理(建设)人员见证下抽样,委托有资质的检测机构实施。
7 、当对围护结构的传热系数进行检测时,应由建设单位委托具备检测资质的检测机构承担;其检测方法、抽样数量、检测部位和合格判定标准等可在合同中约定。
8 、当外墙节能构造或外窗气密性现场实体检验出现不符合设计要求和标准规定的情况时,应委托有资质的检测机构扩大一倍数量抽样,对不符合要求的项目或参数再次检验。
仍然不符合要求时应给出“不符合设计要求”的结论。
对于不符合设计要求的围护结构节能构造应查找原因,对因此造成的对建筑节能的影响成都进行计算或评估,采取技术措施予以弥补或消除后重新进行检测,合格后方可通过验收。
- 110 -工 程 技 术0 引言供热工程在调试、运行过程中,室温经常无法符合设计要求,即热源近端用户室内温度过高,而远端用户则出现室内温度不达标的情况。
其主要原因往往是水系统各并联环路之间出现严重水力失衡的情况,导致末端换热设备的供热量大幅偏离设计条件,进而影响室温调节。
为保证末端用户的供热效果,后期运维人员常采取提高二次热水温度,或提升水泵扬程的方法。
上述做法虽能解决用户供热需求,却同时带来热源效率降低、热媒输配功耗增加等一系列问题。
笔者在参与住宅供暖项目设计时发现,小区二次供热管网设计一般都滞后于单体供暖施工图,且由不同设计人员来完成,设计人员往往会忽视各并联水环路的资用压头,仅按最大允许流速、经济比摩阻直接确定管径,确定单体热力入口处平衡阀规格时,要直接按接管管径选型。
大量工程案例表明,按上述错误的设计做法,仅依靠后期调试很难实现水力平衡,无法使每个房间的实际散热量与设计供热量相匹配。
因此,笔者以某住宅小区供暖工程为例,浅谈设计过程中热水管网水力平衡的计算与设计。
1 相关规范条文文献[1]第5.9.11条:“室内热水供暖系统的设计应进行水力平衡计算,并应采取措施使设计工况时各并联环路之间(不含共用段)的压力损失相对差额不大于15%。
”当双管系统并联环路之间的压力损失相对差额不大于15%时,最大流量偏差可控制在8%左右,平均水温及散热量偏差可控制在2%左右[3],可保证供暖系统的运行效果。
文献[2]第5.3.6条:设计室内热水供暖系统时,应计算水力平衡,并采取控制措施,使设计工况下各并联环路之间(不含公共段)的压力损失差额不大于15%;在计算水力平衡时,要计算水冷却产生的附加压力,其值可取设计供、回水温度条件下附加压力值的2/3。
2 计算公式及原理热水供暖系统中计算管段的压力损失计算如下[4]。
'''P P P d l y iO UX ]UX 2222(1)式中:∆P —计算管段的压力损失,Pa ;∆P y —计算管段的沿程损失,Pa ;∆P i —计算管段的局部损失,Pa ;λ—管段的摩擦阻力系数;d —管段内径,m ;l —管段长度,m ;ρ—热水的密度,kg/m 3;υ—热水流速,m/s ;ζ—局部阻力系数,常用管道配件可参考文献[3]。
采暖通风与空调、配电与照明工程安装完成后,应进行系统节能的检测,且应由建设单位委托具有相应系统节能检测资质的检测机构检测并出具报告。
受季节影响未能进行的节能性能检测项目,应在保修期内补做。
一、依据标准JGJ/T132-2009《采暖居住建筑节能检验标准》GB50243-2002《通风与空调工程施工质量验收规范》GB/T19232-2003《风机盘管组》GB/T14294-2008《组合式空调机组》GB5700-2008《室内照明测量方法》GB50034-2004《建筑照明设计标准》GB/T18204.15-2000《公共场所风速测定方法》GB/T18204.13-2000《公共场所空气温度测定方法》GB50019-2003《采暖通风与空气调节设计规范》GB50189-2005《公共建筑节能设计标准》、系统节能性能检测主要项目及要求三、其它约定系统节能性能检测的项目和抽样数量也可以在工程合同中约定,必要时可增加其他检测项目,但合同中约定的检测项目和抽样数量不应低于GB50411-2007 标准的规定。
四、系统节能性能检测时,需要甲方提供以下资料(电子版CAD图)(一)建筑总图,采暖总图,以及动力站全套图纸、建筑施工图设计说明,建筑平面图;暖通空调施工图设计说明(包括暖通设备表),暖通空调系统图,空调水系统平面图,空调通风系统平面图,采暖平面图(包括采暖管路详图)(二)电气施工图设计说明(包括照明设备表),照明系统图,照明平面图;根据甲方提供的图纸,才能做出系统节能性能的检测方案,确定检测项目及数量,检测费用,测点布置等。
五、注意事项(一)检测的对象应是按设计要求完成施工安装且分项工程或系统已经调试完毕的通风与空调系统。
测试前,建筑围护结构应已安装完毕,户门已安装好。
(二)采暖通风空调系统各分项性能检验应在系统实际正常运行状态下进行检测。
采暖供热系统正常运行工况:在水压试验合格的前提下,处于热态运行中的采暖供热系统满足一下诸条件时,则称该系统处于正常运行工况。
供热管网水力平衡调节技术综述摘要:由于环境、管道质量等因素的影响,集中供热管网运行中普遍存在水力失调等问题,一定程度上影响了水热资源功能的有效发挥,导致部分用户室温达不到要求,是供热企业必须下大气力解决的问题。
本文通过对供热管网水力失调问题及原因的分析,尝试运用温差法、比例法、CCR 法、综合调节法实现供热管网水力平衡调节,保证供热管网正常运行。
对供热企业具有一定的指导作用。
关键词:供热管网;水力平衡;调节技术引言:利用供热网管实现集中供热是城市主要的供热形式。
一般而言,集中供热必须达到各户受热均匀。
目前由于受环境、条件等的影响,供热网管中水力失调的问题还普遍存在。
为实现均衡供热目标必运利用相应技术手段,采取相应措施对供热管网的水力进行有效调节,以保证供热网管水力平衡,用户受热均衡,最大限度的发挥供热网管的作用,保证供热企业的经济效益和社会效益,保护受热企业、个人的合法权益。
1.水力平衡调试的重要性供热管网的服务对象是广大用户,二者之间是通过千千万万星罗棋布的供热管路的互相连接建立起联系的,管路的连接方式因不同需要有串联或并联方式。
供热管路系统常常出现水力平衡失调的问题,这类问题通常源自于设计缺陷或施工过程的不合理,或者是运行期间的故障,这种问题的直接后果就是用户的室内供热系统有的过热,有的过冷,由此引发后续的收费缴费争端。
水力失调在供热管路的运行期间已成为常见故障。
具体来说,供热介质提供给近端用户的流量较之设计标准严重超标,超标程度可达2到3倍,致使近端用户室内过热;而远端用户则正好相反,供热介质提供给他们的流量达不到设计标准,导致室内过冷,有的用户就会偷偷放水,浪费宝贵的水资源。
供热公司为了满足远端用户的供热需求,处理方式通常是加大热介质流量,或者直接把供热温度抬高,远端用户的供热需求是满足了,但是近端用户的室内会热得受不了,而且还增大了系统的能耗严重拉低热效率等等。
要有效规避类似现象,确保供热平衡,实现供热计量,保障供热系统的平稳运行,水力平衡调试势在必行。
1、简述网格布单位面积质量试验操作步骤?答:1、通过网格布的整个幅宽,切取一条至少35cm宽的试样作为实验室样本;2、在一个清洁的工作台面上,用裁剪工具和模板,切取规定的试样数;3、若含水率超过0.2%(或含水率未知),应将试样置于105±3℃的干燥箱中干燥1h,然后放入干燥器中冷却至室温;4、从干燥器中取出试样后,立即称取每个试样的质量并记录结果。
如果使用试样皿,则应扣除试样皿质量。
2、防护热箱法测定试样传热系数或热阻的测试条件是怎样的?答:测试条件的选择应考虑最终的使用条件和对准确度的影响。
试验平均温度和温差都影响测试结果。
通常建筑应用中平均温度一般在10℃~20℃,最小温差为20℃。
根据试验目的调节热、冷侧的空气速度。
调节温度控制器使Φ2或Φ3之一或二者尽可能小或等于0。
3、用防护热箱法测定试样传热系数时,影响传热性质的因素有哪些?答:试件自身及边界条件、试件的尺寸、传热方向、温度、温差、气流速度以及相对湿度。
4、依据JGJ 144-2004标准,外墙外保温系统型式试验包括哪些项目?答:耐侯性、抗风荷载性能、抗冲击性、吸水量、耐冻融性能、热阻、抹面层不透水性、保护层水蒸气渗透阻。
5、测试材料的导热系数时,如何确定冷热板的温度?答:测试材料的导热系数时,测试平均温度、冷热面温差一般很据产品标准要求设定。
无要求时,可设为20℃的温差,根据测试平均温度的要求来设定冷面温度。
冷面温度=平均温度-温差/2。
6、影响材料导热性能的主要因素有哪些?答:材料的分子结构及其化学成分;材料的表观密度;温度;湿度;松散材料的粒度;热流方向;填充气体孔型的影响。
7、对建筑板材厚度测量的位置及方法应遵循哪些原则?答:测量的位置取决于试样的形状和尺寸,但至少取5个点;为了得到一个可靠的平均值,测量点应尽可能分散些。
取每一点上三个读数的中值,并用5个或5个以上的中值计算平均值。
8、建筑外窗保温性能检测时,安装试件的洞口是如何规定的?答:安装试件的洞口不应小于1500mm×1500mm。
供暖系统中管道的压力检测方案
简介
供暖系统中管道的压力检测是确保系统安全运行的重要环节。
本文档将介绍一种简单的管道压力检测方案,以保证供暖系统的正
常运行。
检测方法
1. 准备工作:在进行管道压力检测前,确保供暖系统已经关闭,并且所有阀门处于关闭状态。
2. 压力计选择:选择一个精度高、可靠性强的压力计,用于测
量管道的压力。
3. 测试点选择:选择供暖系统中的关键位置作为测试点,例如
进水口、出水口等。
4. 连接压力计:将压力计与管道连接,确保连接牢固,无泄漏。
5. 压力测试:打开压力计,记录管道中的压力数值。
持续观察
一段时间,确保压力稳定。
6. 分析结果:根据压力测试结果,判断供暖系统中管道的压力
是否正常。
如果压力超过系统承受范围,应及时采取措施修复。
注意事项
1. 在进行管道压力检测时,务必确保安全,避免发生意外事故。
必要时请佩戴个人防护装备。
2. 检测过程中应仔细观察压力计的指示,确保读数准确。
3. 如果发现管道存在泄漏或其他异常情况,请立即停止测试,
并采取相应的修复措施。
4. 建议定期进行管道压力检测,以确保供暖系统的安全运行。
结论
通过采用上述简单的管道压力检测方案,可以有效确保供暖系
统中管道的安全运行。
同时,定期检测可以及时发现问题并采取修
复措施,提高供暖系统的可靠性和稳定性。
采暖居住建筑节能检验标准 JGJ132--2001采暖居住建筑节能检验标准JGJ132-2001第1章总则第1.0.1条为了贯彻国家有关节约能源的法律,法规和政策,检验采暖居住建筑的实际节能效果,制定本标准.第1.0.2条本标准适用于严寒和寒冷地区设置集中采暖的居住建筑及节能效果检验时,除应符合本标准外,尚应符合国家现行有关强投制性标准的规定.第2章术语第2.0.1条水力平衡度(HB)hydraulic balance level 采暖居住建筑物热力入口处循环水量(质量流量)的测量值与设计值之比.第2.0.2条供热系统补水率(Rmurate of water makeup 供热系统要正常运行条件下,检测持续时间内系统的补水量与设计循环水量之比.第2.0.3条热像图thermogram 用红外摄像仪拍摄的表示物体表面表观辐射温度的图片.第3章一般规定第3.0.1条对试点小区应检验下列项目: 1.建筑物单位采暖耗热量; 2.小区单位采暖耗煤量; 3.建筑物室内平均温度;4.建筑物围护结构传热系数;5.建筑物围护结构热桥部位内表面温度;6.建筑物围护结构热工缺陷;7.室外管网水力平衡度;8.供热系统补水率; 9.室外管网输送效率.第3.0.2条对试点建筑应检验下列项目: 1.建筑物单位采暖耗热量; 2.建筑物室内平均温度; 3.建筑物围护结构传热系数; 4.建筑物围护结构热桥部位内表面温度; 5.建筑物围护结构热工缺陷.第3.0.3条对非试点小区应检验下列项目: 1.建筑物单位采暖耗热量; 2.建筑物室内平均温度; 3.室外管网水力平衡度; 4.供热指法统补水率.第3.0.4条对非试点建筑应检验下列项目: 1.建筑物单位采暖耗热量; 2.建筑物室内平均温度.第3.0.5条节能检验必须在下列有关技术文件准备齐全的基础上进行: 1.国家有关部门对节能设计审核文件; 2.由国家认可的检测机构出具的外门(或户门),外窗及保温材料的性能报告; 3.锅炉或热交换器,循环水泵等的产品合格证; 4.节能隐蔽工程施工质量的验收报告.第3.0.6条检测中使用的仪器仪表应在检定有效期内,并应具法定计量部门出具的校验合格证(或校验印记).除另有规定外,仪器仪表的性能应符合标准附录A的有关规定.第3.0.7条建筑物体形系数(S)类型可分为以下两类: 1.当S≤0.30时应为第一类; 2.当S>0.30时为第二类.第3.0.8条建筑物窗墙面积比(WWR)类型可分为以下两类: 1.当WWR≤0.30时为第一类; 2.当WWR>0.30时为第二类.第3.0.9条当采暖居住建筑物同时符合下列条件时应视为同一类采暖居住建筑物: ---相同的外围护结构体系; ---相同的建筑物体型系数类型;---相同的窗墙面积类型.第3.0.10条代表性建筑物根据层数,朝向和采暖系统形式在同一类采暖居住建筑物中综合选取.4.1 建筑物单位采暖耗热量第4.1.1条与建筑单位采暖耗热量有关的物理量的检测应在供热系统正常运行后进行,检测持续时间不少于168h.第4.1.2条对建筑物的供热量应采用热量计量装置在建筑物热力入口处测量.计量装置中温度计和流量计的安装应符合相关产品的使用规定.供回水温度测点宜位于外墙外侧且距外墙轴线2.5m以内.第4.1.3条建筑物室内平均温度应按本标准第4.3节规定的检测方法进行检测.第4.1.4条室外空气温度主应设置在百箱内;当无百叶箱时,应采取防护措施;感温测头宜在建筑物不同方向同时设置室外温度测点.检测持续时间内室外平均温度应按下列公式计算:tea=∑mi=1∑nj=1tei,j/m.n(4.1.4)式中tea---检测持续时间内室外平均温度();℃tei,j---第i个温度测点的第j 个逐时测量值();℃m---富强外温度测点的数量; n---单个温度测点逐时测量值的总个数; i---室外温度测点的编号; j---室外温度第i个测点测点测量值的顺序号.第4.1.5条在有人居住的条件下进行检测是时,建筑物单位采暖耗热量应按下公式(4.1.5-1)计算;在无人居住的条件下进行检测时,建筑物单位采暖耗热量应按公式(4.1.5-2).qhm=Qhm/A0.ti-te/tia-tea.278/Hr+(ti-te/tia-tea-1).qIH(4.1.5-1)qhm=Qhm/A0.ti-te/tia-tea.278/Hr-qIH(4.1.5-2)式中qhm---建筑物单位采暖耗热量(W/m2; Qhm---检测持续时间内在建筑物执力口处测得的总供热量(MJ); qIH---单位建筑面积的建筑物内部得热(W/m2),应按行业标准<<民用建筑节能设计标准(采暖居住建筑部分)>>(JGJ26)的规定采用;ti---全部房间平均室内计算温度,一般住宅建筑取16;℃te---计算用采暖期室外平均温度();,℃应按行业标准<<民用建筑节能设计标准(采暖居住建筑部分)>>(JGJ26)>>附录A的规定采用; tia---检测持续时间内建筑物室内平均温度();℃tea---检测持续时间内室外平均温度();℃A0---建筑物的总采暖建筑面积(mW),应按行业标准<<民用建筑节能设计标准(采暖居住建筑部分)>>(JGJ26)附录D的规定; Hr---检测持续时间(h); 278---单位换算系.4.2 小区单位采暖耗煤量第4.2.1条与小区单位采暖耗煤量有关的物理量的检测,应在供热系统正常运行后进行,检测持续时间应为采暖期.第4.2.2条耗煤量应按批逐日计量和统计.第4.2.3条在检测持续时间内,煤应用基低位发热值的化验批数应与供热锅炉房进煤批数相应一致,且煤样的制备方法应符合现行国家标准<<工业锅炉热工试验规范>>(GB10180)的有关规定.第4.2.4条小区室内平均温度应代表性建筑物的室内平均温度的检测值为基础.代表性建筑物室内平均温度的检测应按本标准第4.3节规定的检测方法执行.代表性建筑物的采暖建筑面积应占其同一类建筑物采暖建筑面10%以上.第4.2.5条室外平均温度的检测和计算应符合本标准第4.1.4条的有关规定.第4.2.6条小区室内平均温计按下列公式计算:tqt=∑mi=1ti,qt.A0,i/∑mi=1A0,i(4.2.6-1)ti,qt=∑nj=1ti,j.Ai,j/∑nj=1Ai,j(4.2.6-2)式中tqt---检测持续时间内小区室内平均温度();℃ti,qt---检测持续时间内第i类建筑物的室内平均温度();℃ti,j---检测持续时间内第i类建筑物中第j栋代表性建筑物的室内平均温度(),℃应按本标准公式(4.3.3)计算; A0,i---第i类建筑物的采暖建筑面积(m2); Ai,j---第i类建筑物中第j栋代表性建筑物的采暖建筑面积(m2),应按行业标准<<民用建筑节能设计标准(采暖居住建筑部分)>>(JGJ26)附录D的规定计算; n---第i类建筑物中代表性建筑物的栋数;m---小区中采暖居住建筑物的类别数.第4.2.7条小区单位采暖耗煤量应按下列公式计算:qcm=8.2×10-4.Gct.Qydw,av/A0,qt.ti-te/tqt-tea.Z/Hr(4.2.7)式中qcm---小区单位采暖耗煤量(标准煤)(kg/m2.a); Gct---检测持续时间内的耗煤量(kg);当燃料为天然气时,天然气耗量应按热值折算为标准煤量; Qydw,av---检测持续时间内燃用煤的平均应用基低发热值(kJ/kg);当燃料为天然气时,取标煤发热值; A0,qt---小区内所有采暖建筑物的总采暖建筑面积(m2); Z---采暖期天数(d),应按行业标准<<民用建筑节能设计标准(采暖居住建筑部分)>>(JGJ26)附录A附表A的规定采用.4.3 建筑物室内平均温度第4.3.1条建筑物室内平均温度应在采暖期最冷月检测,且检测持续时间不少于168h.但当该项检测是为了配合单暖耗热量或单位采暖耗煤量的检测而进行时,其检测的起止时间应符合相应项目检测方法中的有关规定.第4.3.2条温度计应设于室内有代表性的位置,且不应受太阳辐射或室内热源的直接影响.第4.3.3条建筑物室内平均温度应代表性房间室内温度的逐时检测值为依据,且应按下列式计算:tia=∑nj=1trm,j.Arm,j/∑nj=1Arm,j(4.3.3)式中tia---检测持续时间内建筑物室内平均温度();℃trm,j---检测持续时间内第j个温度逐时检测值的算术平均值();℃Arm,j---第j个温度计所代表的采暖建筑面积(m2); j---室内温度计的序号; n---室内温度计的个数.4.4 建筑物围护结构传热系数第4.4.1条围护结构传热系数的现场检测宜采用热流计法或经国家质量技术监督部门认定的其它方法.第4.4.2条热流计及其标定应符合现行行业标准<<建筑用热流计>>(JG/T3016)的规定.第4.4.3条温度传感器用于温度测量时,测量误差应小于0.5;℃用一对温度传感器直接测量温差时,测量误差应小于2;用两个温度相减求取温差时,测量误差应小于0.2.℃第4.4.4条测点位置应根据检测目的确定.测量主体部位的传热系数时,测点位置不应靠近热桥,裂缝和有空气渗漏的部位,不应受加热,制冷装置的风扇的直接影响.第4.4.5条测点位置应根据检测目的确定.测量主体部体的传热系数时,测点位置不应靠近桥,和有空气渗漏的部位,不应受加热,制冷装置和风扇的直接影响.第4.4.6条热流计和温度传感器的安装应符合下列规定: 1.热流计应直接安装在被测围护结构的内表面上,且应与表面完全接触; 2.温度传感器应在被测围护结构两侧表面安装,外表面温度传感器宜在与热流计相对位置安装.温度传感同0.1m长引线与被测表面紧密接触,传感器表面的辐射系数应与被测表面基本相同.第4.4.7条检测应采暖供热系统正常运行后进行,检测时间宜选在最冷月且应避开气温剧烈变化的天气,检测持续时间不少于96h.检测期间室内空气温度应保持基本稳定,热流计不得受阳光直射,围护结构被测区域的外表面宜避免雪侵袭和阳光直射.第4.4.8条检测期限间,应逐时记录热流密度和内,外表面温度.可记录多次采样数据的平均值采样间隔宜短于传感器最小时间常数的二分之一.第4.4.9条数据分析可采用算术平均法或动分析法.第4.4.10条采用算术平均法进行数据分析时,应按下式计算围护结构的热阻,并符合下列规定:R=∑nj=1(θIj-θE j)/∑nj=1qj(4.4.10)式中R---围护结构的热阻(m2.K/W); θIj---围护结构内表面的第j次测量值();℃θEj---围护结构外表面温度的第i次测量();℃qj---热流密度的第j次测量值(W/m2). 1.对于轻型围护结构(单位面积比热容小于20kJ(m2.K)),宜使用夜间采集的数据(日落后面h至日出)计算围护结构的热阻.当经过个夜间测量之后,相邻两次测量的计算结果相差不大于5%时即可结束测量. 2.对于重型围护(单位面积比热容大于等于20kJ/(m3.K)),应使用全天安数据(24h(的整数倍)计处围护结构的热阻,且只有下列条件得到满足时方可结束测量: 1)未次R计算值与24h之前的R计算值值差不大于5%;2)检测期间内计算第一个INT(2×DT/3)天内与最后一个同样长的天数内的R 计算值相差不大于5%. 注:DT为检测持续天数,INT表示取整数部分.第4.4.11条围护结要的传热系数应按下式计算:K=1/(Ri+R+Re)(4.4.11)式中K---围护结构的传热系数(W/m2.k); Ri---内表面换热阻,应按国家标准<<民用建筑热工设计规范>>(GB50176)附录二附表2.2的规定采用; Re---外表面换热阻,应按国家标准<<民用建筑设计规范>>(GB50176)附录二附表2.3的规定采用.4.5 建筑物围护结构热桥部位内表面温度第4.5.1条热桥部位内表面温度宜采用热电偶等温度传感贴于表面进行检测;检测仪表符合本标准第4.4.3条和第4.4.4条的规定;也可采用红外摄像仪测量热桥部位内表面温度,但应符合本符合标准第4.5.4条的规定.第4.5.2条内表面温度测点应选取在热桥部位温度最低处.室内空气温度测点距离地面应为1.5m左右,并应离开被测墙面0.5m以上.室外空气温度测点离地面的高度应为1.5-2.0m,并应离开被测墙面0.5m以上.空气温度传感器应采用热辐射防护措施.第4.5.3条内表面温度传感器连同0.1m长引线应与测表面紧密接触,传感器表面的辐射系数应与被测表面相同.第4.5.4条检测应在供热系统正常运行且进行,检测时间宜选在最冷月,并应避开气温剧烈变化的天气.检测持续时间不少应少于96h.温度测量数据应每不时记录一次.第4.5.5条室内外计算温度下热桥部位的内表面温度应按下式计算:θI=tdi-tim-θIm(tdi-tde)/tim-tem(4.5.5)θI---室内外计算温度下热桥部位内表面温度(); ℃θIm---检测持续时浊内热桥部位内表面温度逐次测量值的算术平均值();℃tim---检测持续时间内室内空气温度逐次测量值的算术值();℃tem---检测持续时间内室内外空气温度逐次测量值的算术值();℃tdi---室内计算温度(),℃应根据具体设计图纸确定或按国家标准<<民用建筑热工设计规范>>(GB50176)第4.1.1条的规定采用;tde)---围护结构冬季室外计算温度(),℃应根据具体设计图纸确定或按国家标准<<民用建筑热工设计规范>>(GB50176)第2.0.1条的规定采用.4.6 建筑物围护结构热工缺陷第4.6.1条建筑物围护结构热工缺陷宜采用红外摄进行定性检测.第4.6.2条红外摄像仪及其温度测量范围就合冬季现场测量要求.红外摄像仪传感器的使用波长应处在2.0-2.6μm,3.0-5.0μm或8.0-14.0μm之内,传感器不应低于0.1,℃其测量误差应小于0.5.℃第4.6.3条检测应在供热系统正常运行后进午.围护结构处于直射阳光下时不应进行检测.第4.6.4条用红外摄像仪对围护结构进行检测之前,应首先对围着护结构进行普测,然后对可位进行详细检测.第4.6.5条应对实测热像图进行分析并判断是否存在热工缺陷以及缺陷的类型和严重程度.可通过与参考热衷像图的对比进行判断.必要时可采用内窥镜,取样等方法进行认定.第4.6.6条围护结构空气渗透性能宜采用经国家质量技术监督部门认定的测试方法时行检测.4.7 室外管网水力平衡度第4.7.1条水力平衡度的检测应在供热系统运行稳定的基础上进行.第4.7.2条在水力平衡度检测过程中,循环水泵的运行状态和设计相符.循环水泵出口总流时应稳定维持为设计值的100%-110%.第4.7.3条流量计量装置应安装在供热系统相应的热力入口处,且应符合相应产品使用要求.第4.7.4条循环水量的测量值应以相同检测持续时间(一般为30min)内各热力入口处测得的结果为依据进行计算.第4.7.5条水力平衡度应按下式计算:HBj=Gwm,j/Gwd,j(4.7.5)式中HBj---第j个入口处的水力平衡度; Gwm,j---第j个热力入口处循环水量的测量值(kg/s); Gwd,j---第j个热力入口处循环水量的测量值(kg/s);j---热力入口的序号.4.8 供热系统补水率第4.8.1条补水率的检测应在供热系统运行稳定且室外管网水力平衡度检合格的基础上进行.第4.8.2条检测持续时间不应少于24h.第4.8.3条总补水量应采用具有累计流量显示功能的流量计量装置测量.流量计量装置应安装在系统补水管上适宜的位置,且应符合相应产品的使用要求.第4.8.4条供热系统补水率应按下式计算:Rmu=Gmu.100%/Gwt(4.8.4)式中Rmu---供热系统补水率; Gmu---检测持续时间内系统的总补水量(kg); Gwt---检测持续时间内系统的设计循环水量的累计值(kg).4.9 室外管网输送效率第4.9.1条室外管网输送效率的检测应最冷月进行,且检测持续时间不少于24h.第4.9.2条检测期间,供热系统应处于正常运行状态,且锅炉(或换热器)的热力工况应保持稳定,并应符合下列规定: 1.锅炉或换热器出力的波动不应超过10%; 2.锅炉或换热进出水温度与设计值之差不大于10.℃第4.9.3条各个热力(包括锅炉房或热力站)入口的热量应同是时测量,其检测方法应符合本标准第4.1.2条的规定.第4.9.4条室外管网输送效率应按下式计算:ηm,t=∑nj=1Qm,j/Qm,t(4.9.4)式中ηm,t---室外管网输送效率; Qm,j---检测持续时间内在第j个热力入口处测得的热量累计值(M); Qm,t---检测持续时间内在锅炉房或热力总管处测得的热量累计值(MJ); j---热力入口的序号.5.1 检验对象的确定第5.1.1条试点小区及非点小区建筑物节能效果的检验应以同类建筑物中的代表性建筑物为对象.第5.1.2条检验建筑物单位采暖耗热量时,其受检面积不应小于一个热力入口所对应的采暖建筑面积.第5.1.3条试点小区及非试点小区单位采暖耗煤量的检验以整个供热系统(含锅炉.管网和热用户)为对象.第5.1.4条建筑物室内平均温度的检验部位应为底层,顶层和中间层的代表性房间,且每层的测点数不应少于3个.第5.1.5条每一种保温结构体系至少应选择一处对外围护结构主体部位的传热系数进行检验.第5.1.6条热桥部位内表面温度检验部位的数量可依现场情况而定,但在同一类建筑物中,其检验部不应少于一处.第5.1.7条建筑物围护结构热工缺陷应实行普测.第5.1.8条水力平衡度,补水北和输送效率的检验均应以独立的供热系统为对象.5.2 合格判据第5.2.1条建筑物物单位耗热量或小区单位采暖耗煤不应大于行业标准<<民用建筑节能设计标准(采暖居住建筑部分)>>(JGJ26)附录A附录A中相关指标值.第5.2.2条建筑物室内温度的逐时值最不低应低于16,℃最高不应高于24.℃第5.2.3条建筑物围护结构主体部位的传热系数应符合设计要求.第5.2.4条在室内外计算温度条件下,围护结构热桥部位的内表面温度不应低于室内空气露点温度,且在确定室内空气露点温度时,[到内空气相对湿度应按60%计算.第5.2.5条建筑物外围护结构不应存在热工缺陷.第5.2.6条室外供热管网各个热力入口入的水力平衡度应为0.9-1.2.第5.2.7条供热系统补水率不就大于0.5%.第5.2.8条室外管网输送效率不就在小于0.9.附录A 仪器仪表的性能要求第附录A.0.1条在按本标准进行节能检验过程中,除另有规定外,所使用的仪器仪表的性能应符合表A的有关规定.仪器仪表的性能要求表A序号测量的目标参数测头的不确定度()℃二次仪表总不确定度功能精度(级)1空气温度≤0.5应具有自动采集和储数据功能,并可以和计算机接口0.1≤5%2空气温差≤0.4应具有自动采集存储数据功能,并可以和计算机接口0.1≤0.1≤5%3水温度≤2(低温水系统) ≤3(高温水系统)宜具有自动采集和储数据功能,并可以和计算机接口0.1≤5%4水温差≤0.5(低温水系统) ≤1.0(高温水系统)宜具有自动采集和储数据功能,并可以和计算机接口0.1≤5%5水流量-二次仪表应能显示瞬时流量或累计流量,或能自动存储,打印数据,或可以和计算机接口-≤5%6热量-集成化热表具有自动采集和自动存储瞬时或累计数据的功能,并能打印数据或可与计算机接口-≤10%7煤量--2≤5%附录B 本标准用词说明1为便于在执行本规范条文时区别对待,对于要求严格程度不同的用词说明如下: 1)表示很严格,非这样不可的用词正面词采用"必须",反面词采用"严禁"。
供热管网水力平衡调节方法分析摘要:维护供热管网水力平衡,降低供热能耗,必须重视优化供热管网水力平衡调节方法。
目前,邻近调节法颇为常用,这种方法会先从水力失调度最低的用户开始根据邻近顺序实施有序调节,不仅能减少调节次数,而且有助于优化调节结果,加强控制力度。
与此同时,也会采用比例法、温差法、CCR法与综合调节法等。
本文将以建筑供热管网为例,简单分析供热管网水力平衡调节方法,希望能有助于降低能耗。
关键词:供热管网;水力平衡;调节方法从整体上看,供热管网水力失衡的诱因是多方面的,最初的供热管网设计方案不合理,运行调节方法不当均会导致供热管网水力不平衡。
据调查了解,在建筑供热管网实际运行中,不少近端用户的流量值是设计值的两到三倍,而远端用户的流量值却远低于设计值。
为了满足远端用户供热需求,在供热管网系统运行中,通常会采取增加供热参数和系统流量等措施,这样必然会导致近端用户室内温度更高,增加能耗,降低热源效率与造成更多热损问题。
对此,必须全面优化供热管网水力平衡调节方法,提高热源利用率,降低能耗与损失。
一、某建筑供热管网工程项目概况某建筑供热管网工程为社区供热管网系统,其换热站被设置在本小区地上,最初方案为二次网采暖供回水设计的温度在60到85摄氏度之间,供热管网系统选用了补水泵定压模式,在地下一层的热力小室内安装了热力入口装置,在热力入口处安装了温度计、过滤器、压力表和自力式压差平衡阀。
由本换热站供热的高层建筑一共有十栋楼,供热管网系统根据楼层高度分了三个区域,1到11楼为地区,12到22楼为中区,23到33楼为高区,为了满足各楼层用户供暖需求,设计方案指定选用了散热器采暖方案。
在地区,压力参数是0.46MPa,中区的压力参数是0.79MPa,高区的压力参数是1.12MPa,从低向高递增[1]。
在供热管网建设过程中,首先要精选燃气管材,做好管道安全质量检测工作,加强管材采购管理,选购经济实惠、质量合格的供热管道。