线性代数_中国人民大学中国大学mooc课后章节答案期末考试题库2023年
- 格式:docx
- 大小:13.73 KB
- 文档页数:18
线性代数20-21学年第二学期期末考试试卷一、填空题(将答案写在答题纸的相应位置,不写解答过程。
每空3分,共15分)1.⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-0410******** =______________________. 2.设A 是n 阶矩阵,秩(A )<n ,且A *≠0,则齐次线性方程组Ax=0的基础解系中所含解向量的个数为_____________________.3.若A ,B 均为3阶矩阵,且|A |=2,B =-3E ,则|AB |=_____________________. 4.设A 为n 阶矩阵,若行列式|5E -A |=0,则A 必有一特征值为__________________.5.二次型3223222122x x x x x +--的秩为_____________________. 1.若A ,B 为3阶矩阵,且|A |=3,B =-3E ,则|AB |=_____________________. 2.若向量组α1=(1,0,0),α2=(2,t,4),α3=(0,0,6)线性相关,则t=_____________. 3.设矩阵A =⎪⎪⎪⎭⎫⎝⎛332313322212312111b a b a b a b a b a b a b a b a b a ,其中a i b i ≠0(i =1,2,3).则秩(A )=_______________. 4.设A 为n 阶矩阵,若齐次线性方程组Ax =0只有零解,则非齐次线性方程组Ax=b 的解的个数为_____________________.5.()()===⎪⎪⎪⎭⎫⎝⎛=A R A 则秩设,,3,2,1,321 αββα____________________()==A R A 则秩已知1101001100001100001100101 .1________________________.2224, 4., ,000200011132200233121232221是负定的二次型时取值为.当则相似与.已知矩阵x x x tx x x x f t y x y B x A ++---===⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-=., ,222252322323121232221==+=+++++=b a y y f x bx x x x ax x x x f 则经正交变换化为标准形.已知二次型二、选择题(从下列各题四个备选答案中选出一个正确答案,并将其代号写在答题纸的相应位置。
线性代数_浙江大学中国大学mooc课后章节答案期末考试题库2023年1.【图片】中【图片】的系数等于().参考答案:-12.设【图片】是【图片】阶正定矩阵,则下列结论正确的是参考答案:__也是正定矩阵_3.任意一个对称的可逆实矩阵一定与同阶的单位矩阵().参考答案:(相抵)等价4.设【图片】的三个特征值为【图片】下列结论正确的是 ( )参考答案:如果则__如果的三个特征值互不相同, 则一定可以对角化.5.设E+A可逆,E-A不可逆,则下列正确的是( ).参考答案:1是A的一个特征值_-1不是A的一个特征值6.已知【图片】为一线性方程组的通解. 则下述陈述中正确的是:参考答案:该方程组系数矩阵的秩是2._该方程组至少含有两个方程.7.设有向量【图片】, 下列哪个向量【图片】可以与【图片】组成【图片】的基?参考答案:_8.关于向量线性关系说法正确的是参考答案:若向量组的秩小于向量个数, 则向量组线性相关._若向量组由一个可逆矩阵的列向量组成, 则向量组线性无关.9.已知向量组【图片】和【图片】,下列结论正确的是( ).参考答案:若存在不全为零的数,使得,则向量组线性相关10.下列各项中,是【图片】元向量组【图片】【图片】线性相关的充要条件的是 ( ).参考答案:中至少有一个部分组线性相关11.空间中过下列哪两个点的直线是平行的?【图片】和【图片】【图片】和【图片】【图片】和【图片】【图片】和【图片】参考答案:(d),(a)12.矩阵【图片】其中【图片】为待定常数, 则 ( ).参考答案:当时, 秩为 1_当且时, 秩为 3_当时, 秩为 213.假设【图片】是【图片】矩阵,【图片】是【图片】元非零列向量,【图片】是【图片】元零列向量, 下列说法正确的是 ( )参考答案:若有唯一解, 则仅有零解_若有无穷多解, 则有非零解_若仅有零解,则有唯一解14.下列结论正确的是( ).参考答案:任意一个方阵一定可以表示为一个对称矩阵与一个反对称矩阵的和._与任意n阶方阵均乘法可交换的矩阵一定是n阶数量矩阵._秩为r(r>1)的矩阵中,一定存在不为零的r-1阶子式.15.设非零方阵【图片】满足【图片】,则下列结论不正确的是().参考答案:不可逆16.已知【图片】, 其中【图片】为【图片】阶可逆矩阵,【图片】为【图片】阶可逆矩阵,则下列结论不正确的是 ( ).参考答案:_G不可逆_17.以下结论正确的是( ).参考答案:若或不可逆,则必有不可逆_若均可逆,则必有可逆18.下列矩阵方程解正确的是( ).参考答案:的解是_的解是_的解是_的解是19.设P是数域,【图片】是【图片】的一个特征值.记【图片】,则下列结论正确的是( ).参考答案:_是空间的线性子空间20.设【图片】为实对称矩阵,则下列成立的是()。
线性代数_武汉大学中国大学mooc课后章节答案期末考试题库2023年1.设A,B为可逆矩阵,则下列矩阵不一定可逆的是( ).参考答案:A+B.2.已知三阶方阵A的特征值为【图片】,则【图片】参考答案:3.若【图片】阶行列式D的值为0,则D中必有一行元素全为0.参考答案:错误4.设【图片】, 则 A 的任意 m 个列向量必线性无关.参考答案:错误5.设 A 是【图片】矩阵,A 的秩为 m,m < n, 则 A 中任一 m 阶的子式不等于零。
参考答案:错误6.n 阶⽅阵 A 可对⽅化的充分必要条件是 A 有 n 个互不相同的特征值.参考答案:错误7.行列式为0的充分条件是( ).参考答案:行列式中各行元素之和为0.8.已知三阶行列式中第二列元素依次为1,2,3,其对应的余子式的值依次为3,2,1,则该行列式的值为参考答案:-2.9.已知 4 阶行列式中第一行元素依次为 1,0,-4,3,第三行对应元素的代数余子式的值依次为 1,5,-2,x. 则x的值为:参考答案:-3.10.在函数【图片】中,【图片】的系数为参考答案:.11.设A 是 3 阶正交矩阵,【图片】是A 的逆矩阵。
若向量【图片】, 则向量【图片】的长度为_____ .参考答案:312.设向量【图片】且向量【图片】在向量【图片】上的投影向量为【图片】则 x= ____ .参考答案:13.如果矩阵A能对角化,那么A的特征值一定互不相同.参考答案:错误14.实对称矩阵一定可以相似对角化,且相似矩阵是正交阵.参考答案:错误15.设A,B为n阶矩阵,且A与B相似,则【图片】.参考答案:错误16.已知三阶矩阵A的特征值为【图片】, 则下列命题不正确的是( ).参考答案:1和-1所对应的特征向量正交.17.n阶方阵A相似于对角阵的充分必要条件是( ).参考答案:对A的每个重特征值,有个线性无关的特征向量.18.行列式为0的充分条件是()参考答案:行列式中各列元素的和为0.19.若行列式D中的每一个元素都不为零,则行列式D不等于零。
第一章 行列式4.计算下列各行列式:(1)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢7110025*********4; (2)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢-265232112131412; (3)⎥⎥⎦⎥⎢⎢⎣⎢---ef cf bf de cd bd ae ac ab ; (4)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢---d c b a100110011001解(1)7110025102021421434327c c c c --0100142310202110214---=34)1(143102211014+-⨯---=143102211014-- 321132c c c c ++1417172001099-=0(2)2605232112131412-24c c -2605032122130412-24r r -0412032122130412- 14r r -0000032122130412-=0(3)ef cf bf de cd bd ae ac ab ---=ec b e c b ec b adf ---=111111111---adfbce =abcdef 4(4)d c b a 100110011001---21ar r +dc b a ab 100110011010---+=12)1)(1(+--dc a ab 10111--+23dc c +010111-+-+cd c ada ab =23)1)(1(+--cdadab +-+111=1++++ad cd ab abcd5.证明: (1)1112222b b a a b ab a +=3)(b a -; (2)bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax +++++++++=y x z x z y z y x b a )(33+;(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c c b b b b a a a a ;(4)444422221111d c b a d c b a d c b a ))()()()((d b c b d a c a b a -----=))((d c b a d c +++-⋅;(5)1221100000100001a x a a a a x x x n n n +-----n n n n a x a x a x ++++=--111 . 证明(1)00122222221312a b a b a a b a ab a c c c c ------=左边a b a b a b a ab 22)1(22213-----=+21))((a b a a b a b +--=右边=-=3)(b a(2)bz ay by ax z by ax bx az y bx az bz ay x a ++++++分开按第一列左边bzay by ax x by ax bx az z bxaz bz ay y b +++++++ ++++++002y by ax z x bx az y z bz ay x a 分别再分bzay y x by ax x z bxaz z y b +++z y x y x z x z y b y x z x z y z y x a 33+分别再分右边=-+=233)1(yx z x z y zy x b y x z x z y z y x a(3) 2222222222222222)3()2()12()3()2()12()3()2()12()3()2()12(++++++++++++++++=d d d d d c c c c c b b b b b a a a a a 左边9644129644129644129644122222141312++++++++++++---d d d d c c c c b b b b a a a a c c c c c c 964496449644964422222++++++++d d d d c c c c b b b b a a a a 分成二项按第二列964419644196441964412222+++++++++d d d c c c b b b a a a 949494949464222224232423d d c c b b a a c c c c c c c c ----第二项第一项06416416416412222=+ddd c c c bb b a a a (4) 444444422222220001ad a c a b a ad a c a b a ad a c a b a ---------=左边=)()()(222222222222222a d d a c c a b b a d a c a b ad a c a b --------- =)()()(111))()((222a d d a c c a b b a d a c ab a d ac a b ++++++--- =⨯---))()((ad a c a b )()()()()(00122222a b b a d d a b b a c c a b b bd b c a b +-++-++--+ =⨯-----))()()()((b d b c a d a c a b )()()()(112222b d a b bd d b c a b bc c ++++++++=))()()()((d b c b d a c a b a -----))((d c b a d c +++-(5) 用数学归纳法证明.,1,2212122命题成立时当a x a x a x a x D n ++=+-==假设对于)1(-n 阶行列式命题成立,即 ,122111-----++++=n n n n n a x a x a x D:1列展开按第则n D1110010001)1(11----+=+-x xa xD D n n n n 右边=+=-n n a xD 1 所以,对于n 阶行列式命题成立.6.设n 阶行列式)det(ij a D =,把D 上下翻转、或逆时针旋转 90、或依副对角线翻转,依次得n nn n a a a a D 11111 =, 11112n nn n a a a a D = ,11113a a a a D n nnn =,证明D D D D D n n =-==-32)1(21,)1(.证明 )det(ij a D =nnn n nn n nn n a a a a a a a a a a D 2211111111111)1(--==∴ =--=--nnn n nnn n a a a a a a a a 331122111121)1()1( nnn n n n a a a a 111121)1()1()1(---=--D D n n n n 2)1()1()2(21)1()1(--+-+++-=-=同理可证nnn n n n a a a a D 11112)1(2)1(--=D D n n T n n 2)1(2)1()1()1(---=-= D D D D D n n n n n n n n =-=--=-=----)1(2)1(2)1(22)1(3)1()1()1()1(7.计算下列各行列式(阶行列式为k D k ):(1)a aD n 11=,其中对角线上元素都是a ,未写出的元素都是0;(2)xaaax aa a x D n=; (3) 1111)()1()()1(1111n a a a n a a a n a a a D n n n n n n n ------=---+; 提示:利用范德蒙德行列式的结果. (4) nnnnn d c d c b a b a D000011112=; (5)j i a a D ij ij n -==其中),det(;(6)nn a a a D +++=11111111121 ,021≠n a a a 其中.解(1) aa a a a D n 00010000000000001000 =按最后一行展开)1()1(100000000000010000)1(-⨯-+-n n n aa a)1)(1(2)1(--⋅-+n n na aa(再按第一行展开)n n n nn a a a+-⋅-=--+)2)(2(1)1()1(2--=n n a a )1(22-=-a a n(2)将第一行乘)1(-分别加到其余各行,得ax x a ax x a a x x a aa a x D n ------=0000000 再将各列都加到第一列上,得ax ax a x aaa a n x D n ----+=000000000)1( )(])1([1a x a n x n --+=- (3) 从第1+n 行开始,第1+n 行经过n 次相邻对换,换到第1行,第n 行经)1(-n 次对换换到第2行…,经2)1(1)1(+=++-+n n n n 次行交换,得 nn n n n n n n n n a a a n a a a n a a aD )()1()()1(1111)1(1112)1(1-------=---++此行列式为范德蒙德行列式∏≥>≥++++--+--=112)1(1)]1()1[()1(j i n n n n j a i a D∏∏≥>≥+++-++≥>≥++-•-•-=---=111)1(2)1(112)1()][()1()1()]([)1(j i n n n n n j i n n n j i j i∏≥>≥+-=11)(j i n j i(4) nn nnn d c d c b a b a D 011112=nn n n n nd d c d c b a b a a 0000000011111111----展开按第一行0000)1(1111111112c d c d c b a b a b nn n n n nn ----+-+2222 ---n n n n n n D c b D d a 都按最后一行展开由此得递推公式:222)(--=n n n n n n D c b d a D即 ∏=-=ni i i iin D c b da D 222)(而 111111112c b d a d c b a D -==得 ∏=-=ni i i i i n c b d a D 12)((5)j i a ij -=432140123310122210113210)det( --------==n n n n n n n n a D ij n ,3221r r r r --0432111111111111111111111 --------------n n n n,,141312c c c c c c +++152423210222102210002100001---------------n n n n n =212)1()1(----n n n(6)nn a a D a +++=11111111121,,433221c c c c c c ---n n n n a a a a a a a a a a +-------10000100010000100010001000011433221 展开(由下往上)按最后一列))(1(121-+n n a a a a nn n a a a a a a a a a --------00000000000000000000000000022433221 nn n a a a a a a a a ----+--000000000000000001133221 ++ nn n a a a a a a a a -------000000000000000001143322n n n n n n a a a a a a a a a a a a 322321121))(1(++++=---)11)((121∑=+=ni in a a a a8.用克莱姆法则解下列方程组:⎪⎪⎩⎪⎪⎨⎧=+++-=----=+-+=+++;01123,2532,242,5)1(4321432143214321x x x x x x x x x x x x x x x x ⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=++=++=++=+.15,065,065,065,165)2(5454343232121x x x x x x x x x x x x x解 (1)11213513241211111----=D 8120735032101111------=145008130032101111---=1421420005410032101111-=---= 112105132412211151------=D 11210513290501115----=1121023313090509151------=2331309050112109151------=1202300461000112109151-----=14200038100112109151----=142-=112035122412111512-----=D 811507312032701151-------=3139011230023101151-=2842840001910023101151-=----=426110135232422115113-=----=D ; 14202132132212151114=-----=D1,3,2,144332211-========∴DDx D D x D D x D D x (2) 510006510006510006510065=D 展开按最后一行61000510065100655-'D D D ''-'=65 D D D ''-'''-''=6)65(5D D '''-''=3019D D ''''-'''=1146566551141965=⨯-⨯=(,11的余子式中为行列式a D D ',11的余子式中为a D D ''''类推D D ''''''',) 51001651000651000650000611=D 展开按第一列6510065100650006+'D 46+'=D 460319+''''-'''=D 1507=51010651000650000601000152=D 展开按第二列5100651006500061-6510065000610005-365510651065⨯-= 1145108065-=--=51100650000601000051001653=D 展开按第三列51006500061000516500061000510065+6100510656510650061+= 703114619=⨯+=51000601000051000651010654=D 展开按第四列61000510065100655000610005100651--51065106565--=395-= 110051000651000651100655=D 展开按最后一列D '+10005100651006512122111=+= 665212;665395;665703;6651145;665150744321=-==-==∴x x x x x . 9.齐次线性方程组取何值时问,,μλ⎪⎩⎪⎨⎧=++=++=++0200321321321x x x x x x x x x μμλ有非零解?解 μλμμμλ-==12111113D , 齐次线性方程组有非零解,则03=D即 0=-μλμ 得 10==λμ或不难验证,当,10时或==λμ该齐次线性方程组确有非零解.10.齐次线性方程组取何值时问,λ⎪⎩⎪⎨⎧=-++=+-+=+--0)1(0)3(2042)1(321321321x x x x x x x x x λλλ 有非零解?解λλλ----=111132421D λλλλ--+--=101112431)3)(1(2)1(4)3()1(3λλλλλ-------+-=3)1(2)1(23-+-+-=λλλ 齐次线性方程组有非零解,则0=D得 32,0===λλλ或不难验证,当32,0===λλλ或时,该齐次线性方程组确有非零解.第二章 矩阵及其运算1. 已知线性变换:⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x ,求从变量x 1, x 2, x 3到变量y 1, y 2, y 3的线性变换.解 由已知:⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x , 故 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321423736947y y y , ⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947x x x y x x x y x x x y .2. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x , ⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y , 求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换.解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z , 所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .3. 设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫⎝⎛--=150421321B , 求3AB -2A 及A T B . 解 ⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB ⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503, ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T . 4. 计算下列乘积:(1)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134; 解 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎭⎫ ⎝⎛=49635. (2)⎪⎪⎭⎫⎝⎛123)321(; 解 ⎪⎪⎭⎫⎝⎛123)321(=(1⨯3+2⨯2+3⨯1)=(10).(3))21(312-⎪⎪⎭⎫⎝⎛; 解 )21(312-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎭⎫ ⎝⎛---=632142. (4)⎪⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412 ; 解 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫ ⎝⎛---=6520876. (5)⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ; 解⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x =(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3 a 13x 1+a 23x 2+a 33x 3)⎪⎪⎭⎫ ⎝⎛321x x x322331132112233322222111222x x a x x a x x a x a x a x a +++++=.5. 设⎪⎭⎫ ⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B , 问: (1)AB =BA 吗?解 AB ≠BA .因为⎪⎭⎫ ⎝⎛=6443AB , ⎪⎭⎫ ⎝⎛=8321BA , 所以AB ≠BA .(2)(A +B)2=A 2+2AB +B 2吗?解 (A +B)2≠A 2+2AB +B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎭⎫ ⎝⎛=2914148, 但 ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++43011288611483222B AB A ⎪⎭⎫ ⎝⎛=27151610, 所以(A +B)2≠A 2+2AB +B 2.(3)(A +B)(A -B)=A 2-B 2吗?解 (A +B)(A -B)≠A 2-B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛=-1020B A , ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A , 而 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A , 故(A +B)(A -B)≠A 2-B 2.6. 举反列说明下列命题是错误的:(1)若A 2=0, 则A =0;解 取⎪⎭⎫ ⎝⎛=0010A , 则A 2=0, 但A ≠0. (2)若A 2=A , 则A =0或A =E ;解 取⎪⎭⎫ ⎝⎛=0011A , 则A 2=A , 但A ≠0且A ≠E . (3)若AX =AY , 且A ≠0, 则X =Y .解 取⎪⎭⎫ ⎝⎛=0001A , ⎪⎭⎫ ⎝⎛-=1111X , ⎪⎭⎫ ⎝⎛=1011Y , 则AX =AY , 且A ≠0, 但X ≠Y .7. 设⎪⎭⎫ ⎝⎛=101λA , 求A 2, A 3, ⋅ ⋅ ⋅, A k . 解 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=12011011012λλλA , ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎪⎭⎫ ⎝⎛=101λk A k . 8. 设⎪⎪⎭⎫⎝⎛=λλλ001001A , 求A k . 解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫ ⎝⎛=222002012λλλλλ, ⎪⎪⎭⎫ ⎝⎛=⋅=3232323003033λλλλλλA A A , ⎪⎪⎭⎫ ⎝⎛=⋅=43423434004064λλλλλλA A A ,⎪⎪⎭⎫ ⎝⎛=⋅=545345450050105λλλλλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎝⎛=k A k k k k k k k k k k λλλλλλ0002)1(121----⎪⎪⎪⎭⎫ . 用数学归纳法证明:当k =2时, 显然成立.假设k 时成立,则k +1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A ⎪⎪⎪⎪⎭⎫ ⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ, 由数学归纳法原理知:⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(121. 9. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵. 证明 因为A T =A , 所以(B T AB)T =B T (B T A)T =B T A T B =B T AB ,从而B T AB 是对称矩阵.10. 设A , B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB =BA . 证明 充分性: 因为A T =A , B T =B , 且AB =BA , 所以(AB)T =(BA)T =A T B T =AB ,即AB 是对称矩阵.必要性: 因为A T =A , B T =B , 且(AB)T =AB , 所以AB =(AB)T =B T A T =BA .11. 求下列矩阵的逆矩阵:(1)⎪⎭⎫ ⎝⎛5221; 解 ⎪⎭⎫ ⎝⎛=5221A . |A|=1, 故A -1存在. 因为 ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A , 故*||11A A A =-⎪⎭⎫ ⎝⎛--=1225. (2)⎪⎭⎫ ⎝⎛-θθθθcos sin sin cos ; 解⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos A . |A|=1≠0, 故A -1存在. 因为 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=θθθθcos sin sin cos *22122111A A A A A , 所以*||11A A A =-⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos . (3)⎪⎪⎭⎫⎝⎛---145243121; 解 ⎪⎪⎭⎫ ⎝⎛---=145243121A . |A|=2≠0, 故A -1存在. 因为 ⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A , 所以 *||11A A A =-⎪⎪⎪⎭⎫ ⎝⎛-----=1716213213012.(4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2⋅ ⋅ ⋅a n≠0) .解 ⎪⎪⎪⎭⎫ ⎝⎛=n a a a A 0021, 由对角矩阵的性质知⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 10011211 . 12. 解下列矩阵方程:(1)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛12643152X ; 解 ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=12642153⎪⎭⎫ ⎝⎛-=80232. (2)⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--234311*********X ; 解 1111012112234311-⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=X⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131 ⎪⎪⎭⎫ ⎝⎛---=32538122. (3)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-101311022141X ;解 11110210132141--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111. (4)⎪⎪⎭⎫⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X . 解 11010100001021102341100001010--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫ ⎝⎛---=201431012. 13. 利用逆矩阵解下列线性方程组:(1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ;解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x , 故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x , 从而有 ⎪⎩⎪⎨⎧===001321x x x .(2)⎪⎩⎪⎨⎧=-+=--=--05231322321321321x x x x x x x x x .解 方程组可表示为⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x ,故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x , 故有 ⎪⎩⎪⎨⎧===305321x x x .14. 设A k =O (k 为正整数), 证明(E -A)-1=E +A +A 2+⋅ ⋅ ⋅+A k -1. 证明 因为A k =O , 所以E -A k =E . 又因为 E -A k =(E -A)(E +A +A 2+⋅ ⋅ ⋅+A k -1),所以 (E -A)(E +A +A 2+⋅ ⋅ ⋅+A k -1)=E , 由定理2推论知(E -A)可逆, 且(E -A)-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 一方面, 有E =(E -A)-1(E -A). 另一方面, 由A k =O , 有E =(E -A)+(A -A 2)+A 2-⋅ ⋅ ⋅-A k -1+(A k -1-A k ) =(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A),故 (E -A)-1(E -A)=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A), 两端同时右乘(E -A)-1, 就有(E -A)-1(E -A)=E +A +A 2+⋅ ⋅ ⋅+A k -1.15. 设方阵A 满足A 2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E)-1.证明 由A 2-A -2E =O 得 A 2-A =2E , 即A(A -E)=2E ,或E E A A =-⋅)(21,由定理2推论知A 可逆, 且)(211E A A -=-.由A 2-A -2E =O 得A 2-A -6E =-4E , 即(A +2E)(A -3E)=-4E ,或E A E E A =-⋅+)3(41)2(由定理2推论知(A +2E)可逆, 且)3(41)2(1A E E A -=+-.证明 由A 2-A -2E =O 得A 2-A =2E , 两端同时取行列式得 |A 2-A|=2,即 |A||A -E|=2, 故 |A|≠0,所以A 可逆, 而A +2E =A 2, |A +2E|=|A 2|=|A|2≠0, 故A +2E 也可逆. 由 A 2-A -2E =O ⇒A(A -E)=2E⇒A -1A(A -E)=2A -1E ⇒)(211E A A -=-,又由 A 2-A -2E =O ⇒(A +2E)A -3(A +2E)=-4E⇒ (A +2E)(A -3E)=-4 E ,所以 (A +2E)-1(A +2E)(A -3E)=-4(A +2 E)-1,)3(41)2(1A E E A -=+-.16. 设A 为3阶矩阵,21||=A , 求|(2A)-1-5A*|.解 因为*||11A A A =-, 所以|||521||*5)2(|111----=-A A A A A |2521|11---=A A=|-2A -1|=(-2)3|A -1|=-8|A|-1=-8⨯2=-16. 17. 设矩阵A 可逆, 证明其伴随阵A*也可逆, 且(A*)-1=(A -1)*.证明 由*||11A A A =-, 得A*=|A|A -1, 所以当A 可逆时, 有|A*|=|A|n |A -1|=|A|n -1≠0,从而A*也可逆.因为A*=|A|A -1, 所以 (A*)-1=|A|-1A .又*)(||)*(||1111---==A A A A A , 所以(A*)-1=|A|-1A =|A|-1|A|(A -1)*=(A -1)*. 18. 设n 阶矩阵A 的伴随矩阵为A*, 证明: (1)若|A|=0, 则|A*|=0; (2)|A*|=|A|n -1. 证明(1)用反证法证明. 假设|A*|≠0, 则有A*(A*)-1=E , 由此得 A =A A*(A*)-1=|A|E(A*)-1=O ,所以A*=O , 这与|A*|≠0矛盾,故当|A|=0时, 有|A*|=0.(2)由于*||11A A A =-, 则AA*=|A|E , 取行列式得到|A||A*|=|A|n . 若|A|≠0, 则|A*|=|A|n -1;若|A|=0, 由(1)知|A*|=0, 此时命题也成立. 因此|A*|=|A|n -1.19. 设⎪⎪⎭⎫⎝⎛-=321011330A , AB =A +2B , 求B .解 由AB =A +2E 可得(A -2E)B =A , 故⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-=--321011330121011332)2(11A E A B ⎪⎪⎭⎫ ⎝⎛-=011321330.20. 设⎪⎪⎭⎫⎝⎛=101020101A , 且AB +E =A 2+B , 求B .解 由AB +E =A 2+B 得 (A -E)B =A 2-E ,即 (A -E)B =(A -E)(A +E).因为01001010100||≠-==-E A , 所以(A -E)可逆, 从而⎪⎪⎭⎫⎝⎛=+=201030102E A B .21. 设A =diag(1, -2, 1), A*BA =2BA -8E , 求B . 解 由A*BA =2BA -8E 得 (A*-2E)BA =-8E , B =-8(A*-2E)-1A -1 =-8[A(A*-2E)]-1 =-8(AA*-2A)-1 =-8(|A|E -2A)-1 =-8(-2E -2A)-1 =4(E +A)-1=4[diag(2, -1, 2)]-1)21 ,1 ,21(diag 4-==2diag(1, -2, 1).22. 已知矩阵A 的伴随阵⎪⎪⎪⎭⎫⎝⎛-=8030010100100001*A , 且ABA -1=BA -1+3E , 求B .解 由|A*|=|A|3=8, 得|A|=2. 由ABA -1=BA -1+3E 得 AB =B +3A ,B =3(A -E)-1A =3[A(E -A -1)]-1A11*)2(6*)21(3---=-=A E A E⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--=-1030060600600006603001010010000161. 23. 设P -1AP =Λ, 其中⎪⎭⎫ ⎝⎛--=1141P , ⎪⎭⎫ ⎝⎛-=Λ2001, 求A 11.解 由P -1AP =Λ, 得A =P ΛP -1, 所以A 11= A=P Λ11P -1.|P|=3,⎪⎭⎫ ⎝⎛-=1141*P , ⎪⎭⎫ ⎝⎛--=-1141311P ,而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛-=Λ11111120 012001,故⎪⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=68468327322731.24. 设AP =P Λ, 其中⎪⎪⎭⎫⎝⎛--=111201111P , ⎪⎪⎭⎫ ⎝⎛-=Λ511, 求ϕ(A)=A 8(5E -6A +A 2).解 ϕ(Λ)=Λ8(5E -6Λ+Λ2)=diag(1,1,58)[diag(5,5,5)-diag(-6,6,30)+diag(1,1,25)] =diag(1,1,58)diag(12,0,0)=12diag(1,0,0). ϕ(A)=P ϕ(Λ)P -1*)(||1P P P Λ=ϕ ⎪⎪⎭⎫⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112⎪⎪⎭⎫⎝⎛=1111111114.25. 设矩阵A 、B 及A +B 都可逆, 证明A -1+B -1也可逆, 并求其逆阵. 证明 因为A -1(A +B)B -1=B -1+A -1=A -1+B -1,而A -1(A +B)B -1是三个可逆矩阵的乘积, 所以A -1(A +B)B -1可逆, 即A -1+B -1可逆.(A -1+B -1)-1=[A -1(A +B)B -1]-1=B(A +B)-1A .26. 计算⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121. 解 设⎪⎭⎫ ⎝⎛=10211A , ⎪⎭⎫ ⎝⎛=30122A , ⎪⎭⎫ ⎝⎛-=12131B , ⎪⎭⎫ ⎝⎛--=30322B ,则⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ,而⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+4225303212131021211B B A ,⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=90343032301222B A ,所以 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521, 即 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521. 27. 取⎪⎭⎫ ⎝⎛==-==1001D C B A , 验证|||||||| D C B A D C B A ≠.解4100120021100101002000021010010110100101==--=--=D C B A , 而01111|||||||| ==D C B A , 故|||||||| D C B A D C B A ≠. 28. 设⎪⎪⎪⎭⎫ ⎝⎛-=22023443O O A , 求|A 8|及A 4. 解 令⎪⎭⎫ ⎝⎛-=34431A , ⎪⎭⎫ ⎝⎛=22022A ,则⎪⎭⎫⎝⎛=21A O O A A ,故8218⎪⎭⎫ ⎝⎛=A O O A A ⎪⎭⎫ ⎝⎛=8281A O O A ,1682818281810||||||||||===A A A A A .⎪⎪⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=464444241422025005O O A O O A A . 29. 设n 阶矩阵A 及s 阶矩阵B 都可逆, 求(1)1-⎪⎭⎫ ⎝⎛O B A O ;解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211C C C C O B A O , 则⎪⎭⎫ ⎝⎛O B A O ⎪⎭⎫ ⎝⎛4321C C C C ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=s n E O O E BC BC AC AC 2143. 由此得 ⎪⎩⎪⎨⎧====s n E BC O BC O AC E AC 2143⇒⎪⎩⎪⎨⎧====--121413B C O C O C A C ,所以 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛---O A B O O B A O 111. (2)1-⎪⎭⎫ ⎝⎛B C O A .解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211D D D D B C O A , 则⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321. 由此得 ⎪⎩⎪⎨⎧=+=+==s n E BD CD O BD CD O AD E AD 423121⇒⎪⎩⎪⎨⎧=-===----14113211B D CA B D O D A D ,所以 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-----11111B CA B O A BC O A . 30. 求下列矩阵的逆阵:(1)⎪⎪⎪⎭⎫⎝⎛2500380000120025; 解 设⎪⎭⎫ ⎝⎛=1225A , ⎪⎭⎫ ⎝⎛=2538B , 则⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--5221122511A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--8532253811B .于是 ⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛----850032000052002125003800001200251111B A B A .(2)⎪⎪⎪⎭⎫⎝⎛4121031200210001. 解 设⎪⎭⎫ ⎝⎛=2101A , ⎪⎭⎫ ⎝⎛=4103B , ⎪⎭⎫ ⎝⎛=2112C , 则⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛------1111114121031200210001B CA B O A BC O A⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=411212458103161210021210001.第三章 矩阵的初等变换与线性方程组1.把下列矩阵化为行最简形矩阵:(1) ⎪⎪⎪⎭⎫ ⎝⎛--340313021201; (2)⎪⎪⎪⎭⎫⎝⎛----174034301320; (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311; (4)⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132.解 (1) ⎪⎪⎪⎭⎫ ⎝⎛--340313*********2)3()2(~r r r r -+-+⎪⎪⎪⎭⎫ ⎝⎛---020*********)2()1(32~-÷-÷r r ⎪⎪⎪⎭⎫ ⎝⎛--01003100120123~r r -⎪⎪⎪⎭⎫⎝⎛--300031001201 33~÷r ⎪⎪⎪⎭⎫ ⎝⎛--100031001201323~r r +⎪⎪⎪⎭⎫ ⎝⎛-1000010012013121)2(~r r r r +-+⎪⎪⎪⎭⎫ ⎝⎛100001000001(2) ⎪⎪⎪⎭⎫ ⎝⎛----1740343013201312)2()3(2~r r r r -+-+⨯⎪⎪⎪⎭⎫ ⎝⎛---31003100132021233~r r r r ++⎪⎪⎪⎭⎫ ⎝⎛000031001002021~÷r ⎪⎪⎪⎭⎫ ⎝⎛000031005010 (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311 141312323~rr r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛--------1010500663008840034311)5()3()4(432~-÷-÷-÷r r r ⎪⎪⎪⎪⎭⎫⎝⎛-----22100221002210034311 2423213~r r r r r r ---⎪⎪⎪⎪⎭⎫⎝⎛---00000000002210032011(4) ⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132 242321232~rr r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛-----1187701298804202111110141312782~rr r r r r --+⎪⎪⎪⎪⎭⎫⎝⎛--410004100020201111134221)1(~r r r r r --⨯↔⎪⎪⎪⎪⎭⎫ ⎝⎛----0000041000111102020132~rr +⎪⎪⎪⎪⎭⎫⎝⎛--000004100030110202012.设⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛987654321100010101100001010A ,求A 。
Single Variable Calculus_西北工业大学中国大学mooc课后章节答案期末考试题库2023年1.If f (x) and g (x) are differentiable on (a, b), 【图片】and f (x) > 0, g (x) > 0,x∈(a, b), then when x∈(a, b), we have答案:2.For what values of a and b will 【图片】be differentiable for all values of x?答案:a=-1/2, b=13.The evaluation of integral【图片】(where x>1) is答案:4.Find the derivative of【图片】答案:5.Find the centroid of a thin, flat plate covering the “triangular” region i n thefirst quadrant bounded by they-axis, the parabola【图片】, and the line【图片】.答案:6.If【图片】, find the limit of g(x) as x approaches the indicated value.答案:7.Find the derivative of the function below at x=0,【图片】答案:8.【图片】is答案:-1/329.If f (x) is continuous and F′(x) = f(x), then答案:10.Find the volume of the solid generated by revolving the region bounded bythe curve【图片】and the lines【图片】about【图片】.答案:11.The mean value【图片】that satisfies the Rolle’s Theorem on the function【图片】is答案:12.The critical number of 【图片】is ( )答案:0 and 213.Which statement is true?【图片】答案:A14.If【图片】,then【图片】答案:15.Evaluate【图片】.答案:16.The integtral of【图片】is答案:17.When x approaches infinity, the limit of【图片】is答案:18.The evaluation of integral【图片】is答案:19.If【图片】has continuous second-order derivative, and【图片】, then答案:20.Find the length of the enclosed loop【图片】shown here. The loop starts at【图片】and ends at【图片】.【图片】答案:21.The height of a body moving vertically is given by 【图片】, with s in metersand t in se conds. The body’s maximum height is ( )答案:22.If f (x) is increasing and f(x) > 0, then答案:23. A rock climber is about to haul up 100 N of equipment that has been hangingbeneath her on 40 m of rope that weighs 0.8 newton per meter. How much work will it take? (Hint: Solve for the rope and equipment separately, thenadd.)答案:24.The integral of【图片】is答案:25.Expand【图片】by partial function答案:26.Assume that u is a function of x and v is the derivative of u, then thederivative of arcsin(u) is答案:27.Find the center of mass of a thin plate covering the region bounded below bythe parabola 【图片】and above by the line 【图片】, if the density at the point 【图片】is 【图片】.答案:28.Find the limit【图片】答案:-129.Find the length of the curve【图片】, from【图片】 to【图片】.答案:53/630.Find the volume of the solid generated by revolving the regions bounded bythe curve 【图片】and line 【图片】about the x-axis.答案:31.Find the total area of the shaded region in the following picture.【图片】答案:4/332.The total area between the region 【图片】and the x-axis is答案:33.Which statement is NOT true?答案:34.Calculate【图片】答案:-135.The second derivative of the function y=secx is ( )答案:36.If gas in a cylinder is maintained at a constant temperature T, the pressure Pis related to the volume V by a formula of the form 【图片】in which a, b, n, and R are constants. Then【图片】答案:37.If【图片】then【图片】.答案:38.Calculate 【图片】The limit is ( )答案:139.Find the tangent to the folium of descartes 【图片】at the point (3,3)答案:x+y=640.Let 【图片】The tangent line to the graph of g(x) at (0,0) is ( ).答案:x-axis41.Find the derivative of the function below at x=0, 【图片】答案:It does not exist42.Find【图片】答案:43.The average value of 【图片】over theinterval [【图片】] is答案:44.Find the average rate of change of the function【图片】over the giveninterval [2,3]答案:1945.For【图片】 find the number【图片】 by using the two steps learned in 2.3.答案:0.0546.The linearization of the function 【图片】at x=1 is ( ).答案:47.If and only if x=ln(y),y=e^x.答案:正确48.Find the derivative of the function【图片】答案:49.Find the derivative of the function 【图片】It is ( )答案:50.If f (x) is an antiderivative of【图片】then【图片】答案:51.If f ′(x ) < 0, f ′′(x ) < 0, x∈(a, b), then the graph of f (x) on (a, b) is答案:decreasing and concave down.52.If【图片】, find【图片】.答案:753.At what points are the function【图片】 continuous?答案:Discontinuous at odd integer multiples of , but continuous at all other x.54.On what interval is the function 【图片】continuous?答案:55.On what interval is the function【图片】continuous?答案:56.【图片】【图片】and【图片】答案:0, 357.Suppose that the functionf(x)is second order continuous differentiable, and【图片】,【图片】. Therefore,【图片】答案:58.When x approaches 0, the limit of【图片】is答案:59.Find the area of the surface generated by revolving the curve 【图片】aboutthe x-axis to generate a solid.答案:60.Find the average rate of change of the function【图片】 over the giveninterval [0,2]答案:161.Find the limit of the function【图片】 and is the function continuous at thepoint being approached?答案:The limit is 0 and the function is continuous at62.The integral of [x/(x^2+1)]dx is答案:1/2[ln(x^2+1)]+C63.When x approaches 0, the limit of (1+3x)^(1/x) is答案:e^364.When x approaches infinity, the limit of x^(1/x) is答案:165.When x approaches infinity, for two functions f(x) and g(x), the limit off(x)/g(x) is infinity, and the limit of g(x)/f(x) is 0, thus a relationship between their growth rates can be said that答案:Function f(x) grouws faster than g(x).66. A function f is called a One-to-One function if it never takes on the same valuetwice.答案:正确67.The integtral of [e^(2x+1)]dx is答案:1/2[e^(2x+1)]+C68. A force of 2 N will stretch a rubber band 2 cm (0.02 m). Assuming thatHooke's Law applies, how far will a 4-N force stretch the rubber band?答案:4 cm69.Find the area of the surface generated by revolving the curve【图片】aboutthey-axis.答案:70.Which statement is true?答案:71.Which statement is false?答案:72.Find the integration formula of the solid volume generated by the curve 【图片】, the x-axis, and the line 【图片】revolved about the x-axis by the shell method.答案:73.Find the integration formula of the area of the region bounded above by thecurve 【图片】, below by the curve 【图片】, on the left by 【图片】, and on the right by 【图片】.答案:74.If 【图片】is continuous on [-1,1] and the average value is 2, then 【图片】答案:475. A cubic function is a polynomial of degree 3; that is, it has the form 【图片】,where a≠0. Then ( ) is false.答案:x=1 is critical number when the cubic function has only one criticalnumber.76.The graph of【图片】has ( )asymptotes.答案:377.If 【图片】then答案:78.The average value of【图片】on【图片】is答案:79.If f (x) is continuous on (−1, 1), and【图片】then答案:80.The derivative of the function【图片】 is答案:81.The function 【图片】has ( )答案:A. neither a local maximum nor a local minimum82.Find the derivative of function【图片】答案:83.Find y' , if【图片】答案:84.The derivative of 【图片】is( )答案:85.Let【图片】,Then【图片】答案:18x(x+1)86.At what points, is the function 【图片】continuous?答案:A. Discontinuous only when x= 3 or x= 187.Find the derivative of x(e^x).答案:e^x(x+1)88.The integral of (1/x)dx is答案:ln|x|+C89.Find the area of the surface generated by revolving the curve 【图片】aboutthe y-axis to generate a solid.答案:90.Find the length of the curve【图片】.答案:7ing the trapezoidal rule to estimate the integralwith n=4 steps【图片】答案:0.70500。
线性代数B期末考试题及答案一、选择题(每题5分,共20分)1. 以下哪个矩阵是可逆的?A. \(\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}\)B. \(\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}\)C. \(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\)D. \(\begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}\)答案:C2. 设 \(A\) 是一个 \(3 \times 3\) 矩阵,若 \(A^2 = I\),则\(A\) 一定是:A. 正交矩阵B. 斜对称矩阵C. 单位矩阵D. 对角矩阵答案:A3. 线性方程组 \(\begin{cases} x + 2y - z = 1 \\ 3x - 4y + 2z = 2 \\ 5x + 6y + 3z = 3 \end{cases}\) 的解的情况是:A. 有唯一解B. 有无穷多解C. 无解D. 不能确定答案:B4. 设 \(A\) 是一个 \(3 \times 3\) 矩阵,若 \(\det(A) = 0\),则 \(A\) 的秩:A. 等于3B. 小于3C. 等于0D. 大于等于3答案:B二、填空题(每题5分,共20分)1. 设 \(A\) 是一个 \(3 \times 3\) 矩阵,且 \(A\) 的行列式\(\det(A) = 2\),则 \(A\) 的伴随矩阵 \(\text{adj}(A)\) 的行列式是 _______。
答案:82. 若 \(A\) 是一个 \(3 \times 3\) 矩阵,且 \(A\) 的特征值为1,2,3,则 \(A\) 的迹数 \(\text{tr}(A)\) 等于 _______。
线性代数启蒙_北京航空航天大学中国大学mooc课后章节答案期末考试题库2023年1.在空间直角坐标系中, 方程组【图片】的图象是参考答案:一条直线2.当【图片】等于如下哪一个值时, 向量组【图片】线性无关:参考答案:其他选项都不对3.行列式【图片】参考答案:94.已知空间直角坐标系中两个向量【图片】. 过原点【图片】作长度2015的直线段【图片】同时垂直于【图片】. 求【图片】的坐标. 则本题解的个数为:参考答案:25.方程【图片】的全部根之和等于参考答案:96.向量【图片】线性无关. 向量组【图片】的秩为参考答案:37.前20个正整数的立方和【图片】参考答案:441008.数列通项公式是二次多项式【图片】, 前三项依次为【图片】. 则第5项为参考答案:120779.方阵【图片】满足条件【图片】, 决定空间直角坐标系中的变换【图片】.以下哪些命题正确:参考答案:是绕直线的旋转._1是的特征值, 是特征向量.10.满足如下条件的最小正整数【图片】等于以下哪个值:【图片】参考答案:611.【图片】是 3维列向量, 【图片】是 3维行向量, 【图片】. 则【图片】参考答案:12.【图片】,则【图片】参考答案:13.【图片】则【图片】参考答案:495014.方阵【图片】,【图片】满足【图片】.则【图片】的以下哪个元素可以不为0:参考答案:b15.设函数【图片】的最大(小)值为【图片】, 此时对应的【图片】,则【图片】参考答案:-5016.数列的通项【图片】满足条件【图片】且【图片】则【图片】试通过计算方阵【图片】的幂【图片】得到数列的通项公式. 计算得到【图片】.参考答案:34952517.四元一次方程【图片】的解空间【图片】有一组正交基由三个向量【图片】组成. 则【图片】。
参考答案:718.平面上建立了直角坐标系, 将每个点【图片】的坐标【图片】写成列向量【图片】, 【图片】. 【图片】是由实2阶方阵【图片】决定的变换. 如下命题哪些是正确的:参考答案:是平面上绕原点的旋转._是正交变换,是正交方阵.19.空间直角坐标系中的旋转变换【图片】将【图片】轴变到【图片】轴, 将【图片】轴变到【图片】轴. 如下命题哪些正确:参考答案:是绕直线旋转._旋转角度为.。
线性代数期末考试试题及答案一、选择题(每题5分,共30分)1. 若矩阵A的秩为r(A),则下列结论正确的是()A. r(A) ≤ n,其中n是矩阵A的列数B. r(A) ≤ m,其中m是矩阵A的行数C. r(A) ≤ min(m, n)D. r(A) = max(m, n)答案:C2. 下列矩阵中,哪一个不是对称矩阵?()A. \(\begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}\)B. \(\begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}\)C. \(\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 &5 \end{pmatrix}\)D. \(\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 &9 \end{pmatrix}\)答案:D3. 若向量组α1, α2, α3线性无关,则向量组()A. α1 + α2, α2 +α3, α3 + α1 线性无关B. α1 - α2, α2 - α3, α3 - α1 线性无关C. α1 + 2α2, 2α2 + 3α3, 3α3 + α1 线性无关D. α1 + α2 + α3, 2α2 + 3α3, 3α3 + α1 线性无关答案:B4. 设矩阵A是n阶可逆矩阵,则下列结论正确的是()A. A的伴随矩阵A也是可逆矩阵B. A的逆矩阵A-1也是可逆矩阵C. A的转置矩阵AT也是可逆矩阵D. A的n次幂An也是可逆矩阵答案:D5. 若行列式D = |A|的值为0,则下列结论正确的是()A. 方程组Ax = b有唯一解B. 方程组Ax = b无解C. 方程组Ax = 0有非零解D. 方程组Ax = b有无穷多解答案:C6. 若矩阵A是正交矩阵,则下列结论正确的是()A. A的行列式值为1B. A的行列式值为-1C. A的转置矩阵AT等于A的逆矩阵A-1D. A的平方等于单位矩阵E答案:CD二、填空题(每题5分,共30分)7. 若矩阵A的行列式值为3,则矩阵A的伴随矩阵A的行列式值为________。
中国大学工程线性代数(查利娟)答案网课慕课MOOC章节期末考试完整答案问:在大陆法,刑事责任建立在责任有责性,是在定罪要件的基础之上。
()答:正确问:在大陆法国家,判断犯罪成立的第一步是()。
答:以上都是问:在大陆法国家中,大量采用了瑞士最早实行的日数罚金制。
()答:错误问:在大陆法系关于犯罪构成的理论中,对于有责性的判断以行为符合刑法关于犯罪的构成要件的规定为基础。
()答:正确问:在大陆法系中,只要符合了分则所规定的构成要件,就具备了违法性。
()答:错误问:在日常生活中冠心病病人应尽量避免:答:情绪激动超负荷运动抽烟酗酒暴饮暴食通风不良、人群聚集的场所问:人们在一定的认识基础上确立的,对某种思想或事物坚信不疑并身体立行的态度是()答:信念问:在配色中,哪个着装原则是“采用同一色系中几种明度不同的色彩按照深浅不同的程度进行搭配”?()答:统一法原则问:学位论文的开题报告包括()。
答:以上都是问:社会性别分析指搜索和处理关于社会性别和信息数据的方法,也指对信息数据进行分析的过程。
()答:正确问:研制新药时,选择药物剂型必须考虑的因素有()答:生产、服用、携带、运输和贮藏的方便性制剂的稳定性和质量控制制剂的生物利用度药物本身的性质医疗、预防和诊断的需要问:家具的设计实质上是对于()的设计。
答:生活方式问:西安附近典型的新石器时代遗址有位于浐河东岸的()。
答:半坡遗址问:关于秦观,以下选项正确的是()。
答:“永叔、少游虽作艳语,终有品格”是王国维对他和欧阳修作品的评价。
被尊称为婉约派一代词宗苏门四学士之一问:在社会实践过程中,女同学完全可以化浓妆()。
答:错问:音乐审美的普遍性标准中,属于初级要求的是()。
答:齐不齐问:按本月成本差异率计算成本差异时,平时一般不分摊材料成本差异,待月末将所有发出材料的成本差异一次结转。
()答:√问:研讨创业构想包括产品或服务、行业或目标市场、创业团队及组织管理、创业资源和()几个方面。
2023大学线性代数课后答案大学线性代数内容简介第一章矩阵与行列式1.0 预备知识1.0.1 集合1.0.2 数集1.0.3 数域1.0.4 求和号1.1 线性型和矩阵概念的引入1.1.1 矩阵的定义1.1.2 常用矩阵1.2 矩阵的运算1.2.1 矩阵的线性运算1.2.2 矩阵的乘法1.2.3 方阵的幂与方阵多项式1.3 方阵的行列式1.3.1 行列式的递归定义1.3.2 排列1.3.3 行列式的等价定义1.4 行列式的'基本性质1.4.1 转置行列式1.4.2 行线性性1.4.3 行列式的初等变换1.5 Laplace定理1.5.1 子式余子式代数余子式1.5.2 Laplace定理1.5.3 行列式的按行展开与按列展开 1.5.4 方阵乘积的行列式1.6 行列式的计算1.6.1 三角化1.6.2 降阶法与镶边法1.6.3 归纳与递推1.7 可逆矩阵1.7.1 可逆矩阵1.7.2 矩阵可逆的条件1.7.3 逆矩阵的求法1.8 分块矩阵1.8.1 矩阵的分块1.8.2 分块矩阵的运算1.8.3 分块对角矩阵习题一第二章线性方程组理论2.1 解线性方程组的消元法2.1.1 线性方程组的矩阵形式2.1.2 线性方程组的初等变换2.1.3 梯矩阵和简化梯矩阵2. 2向量空间Kn2.2.1 向量空间Kn及其运算性质2.2.2 子空间2.3 向量组的秩2.3.1 线性组合、线性方程组的向量形式 2.3.2 线性相关与线性无关2.3.3 极大线性无关组、向量组的秩2.4 矩阵的相抵标准形2.4.1 初等矩阵和矩阵的初等变换2.4.2 矩阵的秩2.5 Cramer法则2.5.1 Cramer法则2.5.2 求逆矩阵的初等变换法2.5.3 矩阵方程2.6 线性方程组解的结构2.6.1 线性方程组相容性判别准则2.6.2 齐次线性方程组的解空间2.6.3 非齐次线性方程组解的结构2.7 分块矩阵的初等变换2.7.1 分块矩阵的初等变换2.7.2 分块初等矩阵2.7.3 行列式和矩阵计算中的分块技巧习题二第三章相似矩阵3.1 方阵的特征值与特征向量3.1.1 方阵的特征值与特征向量3.1.2 特征值与特征向量的求法3.1.3 特征向量的性质3.2.1 矩阵相似的概念3.2.2 相似矩阵的性质3.3 矩阵相似于对角矩阵的条件3.3.1 矩阵相似于对角矩阵的条件3.3.2 特征值的代数重数和几何重数3.3.3 矩阵Jordan标准形3.4 方阵的最小多项式3.4.1 方阵的化零多项式3.4.2 最小多项式3.4.3 最小多项式与方阵相似于对角矩阵的条件 3.5 相似标准形的若干简单应用3.5.1 行列式求值与方阵求幂3.5.2 求与给定方阵可交换的方阵习题三第四章二次型与对称矩阵4.1 二次型及其标准形4.1.1 二次型及其矩阵表示4.1.2 二次型的标准形4.1.3 实对称矩阵的合同标准形4.2 惯性定理与二次型分类4.2.1 惯性定理4.2.2 二次型的分类4.3 正定二次型4.3.1 正定二次型4.3.2 二次型正定性判别法4.4 正交向量组与正交矩阵4.4.1 向量的内积4.4.2 正交向量组4.4.3 正交矩阵4.5 实对称矩阵的正交相似标准形4.5.1 实对称矩阵的特征值和特征向量 4.5.2 实对称矩阵的正交相似标准形 4.5.3 用正交替换化二次型为标准形习题四第五章线性空间与线性变换5.1 线性空间的概念5.1.1 线性空间的定义5.1.2 线性空间的简单性质5.1.3 线性子空间5.2 线性空间的同构5.2.1 基底,维数与坐标5.2.2 基变换与坐标变换5.2.3 线性空间的同构5.3 欧氏空间5.3.1 欧氏空间的定义与基本性质5.3.2 标准正交基5.3.3 欧氏空间的同构5.4 线性变换5.4.1 线性变换的概念与运算5.4.2 线性变换的性质5.5 线性变换的矩阵5.5.1 线性变换在给定基下的矩阵5.5.2 线性变换在不同基下矩阵间的关系习题五索引参考文献大学线性代数目录《大学数学线性代数》是普通高等教育“十一五”国家级规划教材“大学数学”系列教材之一,秉承上海交通大学数学基础课程“基础厚、要求严、重实践”的特点编写而成。
线性代数_中国人民大学中国大学mooc课后章节答案期末考试题库2023年1.下列结论中不正确的是【图片】参考答案:若n阶实矩阵A的列向量组两两正交, 则A必为正交矩阵2.下列矩阵中为正交矩阵的有参考答案:_3.若向量组【图片】线性无关, 则在每个向量的相同位置去掉若干分量后仍会线性无关.参考答案:错误4.设A为n阶实矩阵对称,满足【图片】=0,且【图片】,则【图片】()参考答案:5.【图片】中的任意一个向量与自身的内积必大于零参考答案:错误6.任何实二次型都可经过可逆线性替换化为规范形,且规范形唯一。
参考答案:正确7.若m与n不相等且均大于1,则以下哪些矩阵可以视为向量?参考答案:1行n列的矩阵_m行1列的矩阵8.设【图片】是【图片】矩阵,【图片】的秩,【图片】,则下列说法中正确的是参考答案:当时,将按列分块后, 的所有列所组成的向量组必线性相关.9.已知矩阵【图片】,且【图片】,则【图片】参考答案:10.本周视频中【百鸡问题】对应的线性方程组理论上一定有无穷多解,但是只有有限个解符合实际含义。
参考答案:正确11.当用初等变换法求解n元线性方程组时, 若方程组的增广矩阵经初等行变换化成的阶梯形矩阵的最后一列不含主元,则该方程组可能存在以下什么情况?参考答案:有无穷多个解_有唯一解12.任意一个向量组都有极大线性无关组参考答案:错误13.对于【图片】中的任意两个向量【图片】,都必有【图片】参考答案:正确14.齐次线性方程组的基础解系所含解向量的个数等于参考答案:该方程组系数矩阵的列数减去系数矩阵的秩_该方程组中自由未知量的个数15.当线性方程组的系数矩阵为以下什么方阵时,对该方程组一定可以运用克拉默法则?参考答案:可逆矩阵_初等矩阵16.设矩阵【图片】的秩为【图片】,则下列叙述正确的是参考答案:至少有一个阶子式不等于 017.下列下列叙述正确的是()参考答案:单位矩阵既是对角矩阵又是对称矩阵18.下列论断中是矩阵【图片】正定的充分必要条件的是().参考答案:正定19.一个二次型可能有多个标准型。
参考答案:正确20.对于实对称矩阵A,它的属于同一特征值的特征向量一定正交。
参考答案:错误21.若A与B合同,C与D合同,则A+C与B+D合同。
参考答案:错误22.设 A 是n 阶对称矩阵, B 是 n 阶反对称矩阵,则下列矩阵中不一定能通过正交变换化成对角阵的是 ( ).参考答案:BA-2AB23.下列判断正确的是()参考答案:实对称阵可以用正交阵将其对角化24.设【图片】均为【图片】阶矩阵,且【图片】,则下列结论正确的是参考答案:当且仅当25.正交矩阵的特征值一定是实数。
参考答案:正确26.任意一个二次型,它必有唯一的().参考答案:规范形27.正交矩阵一定是对称矩阵。
参考答案:错误28.克拉默法则的应用对线性方程组的常数项有要求。
参考答案:错误29.设【图片】为同阶矩阵,且【图片】为可逆矩阵,则下列结论不正确的是参考答案:若,则30.设【图片】是【图片】矩阵,且【图片】的秩【图片】,【图片】,则【图片】参考答案:231.非齐次线性方程组的解集中一定没有零解。
参考答案:正确32.若线性方程组的系数矩阵为行满秩矩阵(即秩等于行数的矩阵),则该方程组一定有解。
参考答案:正确33.向量组【图片】线性无关【图片】线性方程组【图片】仅有唯一解.参考答案:错误34.若向量组线性相关, 则它的任何一个非空的部分组也一定线性相关。
参考答案:错误35.设【图片】是【图片】矩阵,则下列说法中正确的是参考答案:当时,将按列分块后, 的所有列所组成的向量组必线性相关.36.用初等变换法求解线性方程组时, 对方程组的增广矩阵允许做初等列变换参考答案:错误37.下列选项中可以表示两个方程组成的2元线性方程组的有?参考答案:_38.判断向量组I 与向量组II 是否等价:【图片】参考答案:错误39.秩相等的两个向量组必等价参考答案:错误40.设A为正交矩阵, 下列说法中正确的有参考答案:A的伴随矩阵也必为正交矩阵_A的行列式的绝对值必为1_也为正交矩阵41.非齐次线性方程组【图片】的仅有唯一解当且仅当它的导出组【图片】仅有零解.参考答案:错误42.下列矩阵的列向量组【图片】的一个极大线性无关组是【图片】参考答案:__43.若空间V的维数dimV=2,则在V中任意三个向量都必线性相关.参考答案:正确44.设【图片】均为【图片】阶矩阵,且【图片】,则必有参考答案:或45.齐次线性方程组与非齐次线性方程组的区别在于参考答案:常数项46.线性方程组的任意两个解的线性组合一定还是该方程组的解参考答案:错误47.设A均为3阶矩阵, 其特征值为1,-2,4, 则下列矩阵中可逆的是( )参考答案:2E-A48.零是矩阵A的特征值是 A 不可逆的 ( ).参考答案:充要条件49.设A为m×n矩阵, 则非齐次线性方程组【图片】有解的充分条件是参考答案:A的行向量组线性无关50.下列判断正确的是().参考答案:两个正定阵之和依然为正定阵51.两个实对称矩阵合同的充分必要条件是它们对应的二次型的正惯性指数相等。
参考答案:错误52.对称矩阵一定是正交矩阵。
参考答案:错误53.线性方程组的常数项个数一定与以下哪个数值相等?参考答案:系数矩阵的行数54.已知矩阵【图片】,【图片】,若【图片】与【图片】等价,则【图片】参考答案:-155.下列命题错误的是参考答案:两个初等矩阵的乘积一定是初等矩阵56.对于非齐次线性方程组【图片】的一个解【图片】以及它的导出组【图片】的一个解【图片】,以下哪些项是【图片】的解参考答案:_57.下列关于标准正交基的说法中正确的有参考答案:若三阶实矩阵A 满足,则矩阵A 列向量组是的一个标准正交基_若V 是的r维子空间,则V 中任意r个线性无关的向量都可以通过正交化和单位化后变成V 的一个标准正交基58.实数域R上的n元非齐次线性方程组的解集构成【图片】的一个线性子空间参考答案:错误59.【图片】的任意子空间都有基参考答案:错误60.下列有关利用正交坐标替换化某个二次型为标准形的论断中正确的是( ).参考答案:对应标准形的平方项的系数之积是此二次型对应矩阵的行列式61.设矩阵【图片】,若【图片】可逆,则【图片】必须满足参考答案:且62.以下哪些选项属于向量的加法运算律?参考答案:加法结合律_加法交换律63.设【图片】均为n维列向量,【图片】是【图片】矩阵,则下列说法中正确的是参考答案:当向量组线性相关时, 向量组也线性相关._当向量组线性无关时, 向量组也线性无关.64.行列式【图片】的充分必要条件是参考答案:或65. 1. 下列有关特征值和特征向量的说法正确的是()参考答案:属于每个特征值的特征向量必有无穷多个66.设矩阵【图片】,则下列向量中为矩阵的特征向量的数量为()【图片】,【图片】,【图片】,【图片】,【图片】,【图片】参考答案:467.设矩阵 A 的特征值为1(二重),-1,则 r(A+2E)+r(A-E)=().参考答案:468.含零向量的向量组一定线性相关。
参考答案:正确69.向量组【图片】能将向量【图片】线性表出【图片】线性方程组【图片】有解.参考答案:正确70.若两个向量组等价且所含向量个数不同, 则参考答案:两者中所含向量个数多的向量组必线性相关71.设A与B均为n阶矩阵, 下列有关矩阵的秩的结论中正确的有参考答案:__72.设【图片】均为n阶矩阵,则下列叙述不正确的是参考答案:若,且,则73.设【图片】均为n阶矩阵,则必有参考答案:或不可逆,必有不可逆74.对于同一个二次型,利用配方法、正交替换法和初等变换法三种不同方式所得的标准形中,不同的可能是().参考答案:各平方项对应的系数之和75.当齐次线性方程组有基础解系时,它的基础解系一定不唯一,且任意两个基础解系所含解向量的个数必相同。
参考答案:正确76.当向量组有极大线性无关组时,它的极大线性无关组一定是不唯一的参考答案:错误77.设3阶矩阵的特征值为-1,-2,1,则矩阵【图片】的行列式为()参考答案:78.实矩阵的特征值一定是实数。
参考答案:错误79.设【图片】,【图片】是矩阵A的两个的特征值,对应的特征向量分别为【图片】,则下列结论中正确的是( )参考答案:若,则不可能是矩阵A的特征向量。
80.设【图片】均为【图片】阶矩阵,则下列结论中正确的是参考答案:若则81.实数域R上的n元齐次线性方程组的解集构成【图片】的一个线性子空间参考答案:正确82.在本节视频中,应用克拉默法则求解线性方程组【图片】时,符号【图片】的含义是参考答案:用常数项矩阵替换系数矩阵的第j列得到的矩阵83.当下列哪些条件成立时, 齐次线性方程组一定有非零解参考答案:系数矩阵的行数小于列数_系数矩阵的秩小于未知量个数84.将两个同解线性方程组联立所组成的新方程组的解集与这两个方程组的解集相同。
参考答案:正确85.对于非齐次线性方程组, 下列结论中正确的有参考答案:当它的系数矩阵为满秩方阵时,该方程组一定有唯一解_当它的系数矩阵为方阵且行列式为零时,该方程组一定无解86.设4阶实矩阵A对称,满足【图片】=0,且【图片】,则与A相似的对角阵个数为()参考答案:687.设3阶实矩阵A对称,满足【图片】且【图片】,则【图片】()参考答案:188.设A为3阶矩阵,向量【图片】,【图片】构成齐次线性方程组(A-E)X=0的基础解系, 【图片】, 则下列说法中正确的是()参考答案:线性无关89.设3阶实矩阵A的特征值为-1,-2,1,【图片】,则【图片】的行列式为().参考答案:490.矩阵A,B相似的充分条件是( )参考答案:A和B与同一矩阵C相似91.设A,B都是可逆矩阵, 且A与B相似, 则下列结论错误的是( )参考答案:与相似92.设【图片】为三维列向量, 【图片】, E为三阶单位矩阵, 则矩阵【图片】的秩为( )参考答案:293.已知A是n阶非零矩阵,且【图片】, 则下列结论不正确的是( )参考答案:A只有一个线性无关的特征向量94.若一个线性方程组的解集中没有零解,则该线性方程组一定不是齐次线性方程组。
参考答案:正确95.对于实对称矩阵A,它的属于不同特征值的特征向量一定正交。
参考答案:正确96.任意一个实对称矩阵都与某对角矩阵相似。
参考答案:正确97.若线性方程组的系数矩阵为列满秩矩阵,则该方程组必有解。
参考答案:错误98.线性方程组【图片】的系数矩阵【图片】的行数与列数一定要相等.参考答案:错误99.实对称矩阵的特征值一定都是实数。
参考答案:正确。