(2021年整理)圆锥曲线高考真题
- 格式:doc
- 大小:433.00 KB
- 文档页数:6
专题22:圆锥曲线高考真题江苏卷(解析版)一、填空题1.在平面直角坐标系xOy 中,若双曲线2221(0)y x b b-=>经过点(3,4),则该双曲线的渐近线方程是_____.【答案】y =. 【分析】根据条件求b ,再代入双曲线的渐近线方程得出答案. 【详解】由已知得222431b-=,解得b =b =因为0b >,所以b =因为1a =,所以双曲线的渐近线方程为y =. 【点睛】双曲线的标准方程与几何性质,往往以小题的形式考查,其难度一般较小,是高考必得分题.双曲线渐近线与双曲线标准方程中的,a b 密切相关,事实上,标准方程中化1为0,即得渐近线方程.2.在平面直角坐标系xOy 中,若双曲线22x a﹣25y =1(a >0)的一条渐近线方程为y=2x ,则该双曲线的离心率是____. 【答案】32【分析】根据渐近线方程求得a ,由此求得c ,进而求得双曲线的离心率. 【详解】双曲线22215x y a -=,故b =由于双曲线的一条渐近线方程为y x =,即22b a a =⇒=,所以3c ===,所以双曲线的离心率为32c a =.故答案为:32【点睛】本小题主要考查双曲线的渐近线,考查双曲线离心率的求法,属于基础题.3.在平面直角坐标系xOy 中,若双曲线22221(0,0)x y a b a b-=>>的右焦点(c,0)F 到一,则其离心率的值是________. 【答案】2 【解析】分析:先确定双曲线的焦点到渐近线的距离,再根据条件求离心率. 详解:因为双曲线的焦点(c,0)F 到渐近线,by x a=±即0bx ay ±=的距离为,bcb c ==所以b =,因此22222231,44a c b c c c =-=-=1, 2.2a c e ==点睛:双曲线的焦点到渐近线的距离为b ,焦点在渐近线上的射影到坐标原点的距离为a .4.在平面直角坐标系xOy 中,双曲线2213x y -= 的右准线与它的两条渐近线分别交于点P ,Q ,其焦点是F 1 ,F 2 ,则四边形F 1 P F 2 Q 的面积是________.【答案】【解析】右准线方程为10x ==,渐近线方程为3y x =±,设(1010P ,则(1010Q,1(F,2F,则10S == 点睛:(1)已知双曲线方程22221x y a b -=求渐近线:22220x y b y x a b a -=⇒=±;(2)已知渐近线y mx =可设双曲线方程为222m x y λ-=;(3)双曲线的。
2021年高考数学二轮复习 专题5 第2讲 圆锥曲线素能训练(文、理)一、选择题1.已知方程x 22-k +y 22k -1=1表示焦点在y 轴上的椭圆,则实数k 的取值范围是( )A .(12,2)B .(1,+∞)C .(1,2)D .(12,1)[答案] C[解析] 由题意可得,2k -1>2-k >0, 即⎩⎨⎧2k -1>2-k ,2-k >0,解得1<k <2,故选C.2.(文)(xx·合肥市第一次质检)过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点作实轴的垂线,交双曲线于A 、B 两点,若线段AB 的长度恰等于焦距,则双曲线的离心率为( )A.5+12 B.102 C.17+14D.224[答案] A[解析] 依题意得2b 2a =2c ,c 2-ac -a 2=0,即e 2-e -1=0,(e -12)2=54,又e >1,因此e -12=52,e =5+12,故选A.(理)(xx·新课标Ⅰ理,4)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为52,则C的渐近线方程为( )A .y =±14xB .y =±13xC .y =±12xD .y =±x[答案] C[解析] e =c a =52 ∴c 2a 2=54∴b 2=54a 2-a 2=a 24∴b a =12,即渐近线方程为y =±12x . 3.(文)(xx·湛江测试)从抛物线y 2=8x 上一点P 引抛物线准线的垂线,垂足为M ,且|PM |=5,设抛物线的焦点为F ,则△PFM 的面积为( )A .5 6B .6 5C .10 2D .5 2[答案] A[解析] 抛物线的焦点F (2,0),准线方程为x =-2.设P (m ,n ),则|PM |=m +2=5,解得m =3.代入抛物线方程得n 2=24,故|n |=26,则S △PFM =12|PM |·|n |=12×5×26=5 6.(理)(xx·德州模拟)设F 1、F 2分别是椭圆E :x 2+y 2b2=1(0<b <1)的左、右焦点,过F 1的直线l 与椭圆相交于A 、B 两点,且|AF 2|,|AB |,|BF 2|成等差数列,则|AB |的长为( )A.23 B .1 C.43 D.53[答案] C[解析] 由条件知,|AF 2|+|BF 2|=2|AB |, |AF 1|+|AF 2|=|BF 1|+|BF 2|=2,∴|AB |+|AF 2|+|BF 2|=4,∴|AB |=43.4.(xx·河北名师名校俱乐部模拟)设抛物线x 2=8y 的焦点为F ,准线为l ,P 为抛物线上一点,PA ⊥l ,A 为垂足,如果直线AF 的倾斜角等于60°,那么|PF |等于( )A .2 3B .4 3 C.83 D .4[答案] C[解析] 在△APF 中,|PA |=|PF |,|AF |sin60°=4,∴|AF |=833,又∠PAF =∠PFA=30°,过P 作PB ⊥AF 于B ,则|PF |=|BF |cos30°=2|AF |cos30°=83.5.(文)(xx·广东理,7)已知中心在原点的双曲线C 的右焦点为F (3,0),离心率等于32,则C 的方程是( )A.x 24-y 25=1 B.x 24-y 25=1 C.x 22-y 25=1 D.x 22-y 25=1 [答案] B[解析] e =32,c =3,∴a =2,∴b 2=c 2-a 2=5即双曲线的标准方程为x 24-y 25=1.(理)(xx·保定市二模)已知点F 1、F 2分别为双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,P 为双曲线左支上的任意一点,若|PF 2|2|PF 1|的最小值为9a ,则双曲线的离心率为( )A .2B .5C .3D .2或5[答案] B[解析] 由双曲线定义得|PF 2|=2a +|PF 1|, ∴|PF 2|2|PF 1|=2a +|PF 1|2|PF 1|=|PF 1|+4a2|PF 1|+4a ,其中|PF 1|≥c -a .当c -a ≤2a 时,y =x+4a 2x 在[c -a ,+∞)上为减函数,没有最小值,故c -a >2a ,即c >3a ⇒e >3,y =x +4a 2x在[c -a ,+∞)上为增函数,故f (x )min =f (c -a )=c -a +4a 2c -a+4a =9a ,化简得10a 2-7ac+c 2=0,两边同除以a 2可得e 2-7a +10=0,解得e =5或e =2(舍去).6.(xx·新乡、许昌、平顶山二调)若双曲线x 2a -y 2b =1(a >0,b >0)和椭圆x 2m +y 2n=1(m >n >0)有共同的焦点F 1、F 2,P 是两条曲线的一个交点,则|PF 1|·|PF 2| ( )A .m 2-a 2B.m -aC.12(m -a ) D. (m -a )[答案] D[解析] 不妨设F 1、F 2分别为左、右焦点,P 在双曲线的右支上,由题意得|PF 1|+|PF 2|=2m ,|PF 1|-|PF 2|=2a ,∴|PF 1|=m +a ,|PF 2|=m -a ,故|PF 1|·|PF 2|=m -a .二、填空题7.(xx·安徽理,13)已知直线y =a 交抛物线y =x 2于A 、B 两点,若该抛物线上存在点C ,使得∠ACB 为直角,则a 的取值范围为________.[答案] a ≥1[解析] 显然a >0,不妨设A (a ,a ),B (-a ,a ),C (x 0,x 20),则CB →=(-a -x 0,a -x 20),CA →=(a -x 0,a -x 20),∵∠ACB =90°.∴CA →·CB →=(a -x 0,a -x 20)·(-a -x 0,a -x 20)=0. ∴x 20-a +(a -x 20)2=0,则x 20-a ≠0. ∴(a -x 20)(a -x 20-1)=0,∴a -x 20-1=0. ∴x 20=a -1,又x 20≥0. ∴a ≥1.8.(xx·长沙市模拟)设点P 是双曲线x 2a 2-y 2b2=1(a >0,b >0)与圆x 2+y 2=a 2+b 2在第一象限的交点,其中F 1、F 2分别是双曲线的左、右焦点,且|PF 1|=2|PF 2|,则双曲线的离心率为________.[答案]5[解析] 设|PF 2|=m ,则|PF 1|=2m ,|F 1F 2|=|PF 1|2|PF 2|2=5m ,因此双曲线的离心率为|F 1F 2||PF 2|-|PF 1|= 5.9.(xx·湖南理,15)如图,正方形ABCD 和正方形DEFG 的边长分别为a 、b (a <b ),原点O 为AD 的中点,抛物线y 2=2px (p >0)经过C 、F 两点,则b a=________.[答案]2+1[解析] 由题可得C (a 2,-a ),F (a2+b ,b ),∵C 、F 在抛物线y 2=2px 上,∴⎩⎪⎨⎪⎧a 2=pa ,b 2=2p a2+b ,∴ab=2+1,故填2+1. 三、解答题10.(文)(xx·厦门质检)已知双曲线的方程是16x 2-9y 2=144. (1)求这双曲线的焦点坐标、离心率和渐近线方程;(2)设F 1和F 2是双曲线的左、右焦点,点P 在双曲线上,且|PF 1|·|PF 2|=32,求∠F 1PF 2的大小.[解析] (1)由16x 2-9y 2=144得x 29-y 216=1,∴a =3,b =4,c =5,∴焦点坐标F 1(-5,0),F 2(5,0),离心率e =53,渐近线方程为y =±43x .(2)由(1)知||PF 1|-|PF 2||=6, cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|=|PF 1|-|PF 2|2+2|PF 1||PF 2|-|F 1F 2|22|PF 1||PF 2|=36+64-10064=0,∵∠F 1PF 2∈(0,180°),∴∠F 1PF 2=90°.(理)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,并且直线y =x +b 是抛物线y 2=4x的一条切线.(1)求椭圆的方程;(2)过点S (0,-13)的动直线l 交椭圆C 于A 、B 两点,试问:在坐标平面上是否存在一个定点T ,使得以AB 为直径的圆恒过点T ?若存在,求出点T 的坐标;若不存在,请说明理由.[解析] (1)由⎩⎪⎨⎪⎧y =x +b ,y 2=4x消去y 得x 2+(2b -4)x +b 2=0,因为直线y =x +b 与抛物线y 2=4x 相切, 所以Δ=(2b -4)2-4b 2=0,解得b =1.因为e =c a =22,∴c 2a 2=a 2-1a 2=12,∴a 2=2.故所求椭圆方程为x 22+y 2=1.(2)当l 与x 轴平行时,以AB 为直径的圆的方程为x 2+(y +13)2=(43)2.当l 与y 轴平行时,以AB 为直径的圆的方程为x 2+y 2=1. 由⎩⎪⎨⎪⎧x 2+y +132=432,x 2+y 2=1,解得⎩⎪⎨⎪⎧x =0,y =1.即两圆相切于点(0,1),因此,所求的点T 如果存在,只能是(0,1). 事实上,点T (0,1)就是所求的点,证明如下:当直线l 垂直于x 轴时,以AB 为直径的圆过点T (0,1). 若直线l 不垂直于x 轴,可设直线l 的方程为y =kx -13,由⎩⎪⎨⎪⎧y =kx -13,x 22+y 2=1消去y 得(18k 2+9)x 2-12kx -16=0.设点A (x 1,y 1),B (x 2,y 2), 则⎩⎪⎨⎪⎧x 1+x 2=12k18k 2+9,x 1x 2=-1618k 2+9.又因为TA →=(x 1,y 1-1),TB →=(x 2,y 2-1),所以TA →·TB →=x 1x 2+(y 1-1)(y 2-1) =x 1x 2+(kx 1-43)(kx 2-43)=(1+k 2)x 1x 2-43k (x 1+x 2)+169=(1+k 2)·-1618k 2+9-43k ·12k 18k 2+9+169=0, 所以TA ⊥TB ,即以AB 为直径的圆恒过点T (0,1), 所以在坐标平面上存在一个定点T (0,1)满足条件.一、选择题11.(文)(xx·唐山市一模)双曲线x 2-y 2=4左支上一点P (a ,b )到直线y =x 的距离为2, 则a +b = ( ) A .-2 B .2 C .-4 D .4[答案] A[解析] 解法1:如图,双曲线x 24-y 24=1的左顶点(-2,0)到直线y =x 的距离为2,又∵点(a ,b )为双曲线左支上的点,∴a =-2,b =0,∴a +b =-2.解法2:由题意得⎩⎪⎨⎪⎧a -b =-2,a 2-b 2=4.∴a +b =-2.(理)已知点F 是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左焦点,点E 是该双曲线的右顶点,过点F 且垂直于x 轴的直线与双曲线交于A 、B 两点,△ABE 是直角三角形,则该双曲线的离心率是( )A .3B .2 C. 2 D. 3[答案] B[解析] 因为AB ⊥x 轴,又已知△ABE 是直角三角形,且显然AE =BE ,所以△ABE 是等腰直角三角形.所以∠AEB =90°.所以∠AEF =45°.所以AF =EF .易知A (-c ,b 2a)(不妨设点A 在x 轴上方),故b 2a=a +c .即b 2=a (a +c ).得c 2-ax -2a 2=0, 即e 2-e -2=0,解得e =2,或e =-1(舍去).故选B.12.直线l 经过抛物线y 2=4x 的焦点,且与抛物线交于A ,B 两点,若AB 的中点横坐标为3,则线段AB 的长为( )A .5B .6C .7D .8[答案] D[解析] 焦点F (1,0),设l :x =my +1,代入y 2=4x 中得,y 2-4my -4=0,∴y 1+y 2=4m ,∵AB 中点横坐标为3,∴x 1+x 2=m (y 1+y 2)+2=4m 2+2=6,∴m =±1,当m =1时,l :y =x -1,代入y 2=4x 中得x 2-6x +1=0,∴x 1=3-22,x 2=3+22,∴|AB |=2|x 1-x 2|=8,由对称性知m =-1时,结论相同.13.(文)已知有公共焦点的椭圆与双曲线的中心为原点,焦点在x 轴上,左、右焦点分别为F 1、F 2,且它们在第一象限的交点为P ,△PF 1F 2是以PF 1为底边的等腰三角形.若|PF 1|=10,双曲线的离心率的取值范围为(1,2).则该椭圆的离心率的取值范围是( )A .(13,12)B .(25,12)C .(13,25)D .(12,1)[答案] C[解析] 设椭圆的半焦距为c ,长半轴长为a ,由椭圆的定义及题意知,|PF 1|=2a -|PF 2|=2a -2c =10,得到a -c -5=0,因为双曲线的离心率的取值范围为(1,2),所以1<c5-c<2,∴52<c <103,∵椭圆的离心率e =c a =c c +5=1-5c +5,且13<1-5c +5<25,∴该椭圆的离心率的取值范围是(13,25).(理)已知P 是椭圆x 225+y 2b 2=1,(0<b <5)上除顶点外的一点,F 1是椭圆的左焦点,若|OP →+OF 1→|=8,则点P 到该椭圆左焦点的距离为( )A .6B .4C .2 D.52[解析] 如图,H 为PF 1的中点,F 2为右焦点,由|OF 1→+OP →|=8知,OH =4,∴PF 2=8, ∴PF 1=10-PF 2=2,故选C.14.(文)(xx·乌鲁木齐诊断)已知直线y =k (x +2)(k >0)与抛物线C :y 2=8x 相交于A 、B 两点,F 为C 的焦点,若|FA |=2|FB |,则k 的值为( )A.13B.23 C.23 D.223[答案] D[解析] 设A (x 1,y 1),B (x 2,y 2),则x 1>0,x 2>0, ∴|FA |=x 1+2,|FB |=x 2+2,∴x 1+2=2x 2+4, ∴x 1=2x 2+2.由⎩⎪⎨⎪⎧y 2=8x y =k x +2,得k 2x 2+(4k 2-8)x +4k 2=0,∴x 1x 2=4,x 1+x 2=8-4k2k2=8k2-4.由⎩⎪⎨⎪⎧x 1=2x 2+2x 1x 2=4,得x 22+x 2-2=0,∴x 2=1,∴x 1=4,∴8k 2-4=5,∴k 2=89,k =233. (理)(xx·唐山市二模)已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)与圆C 2:x 2+y 2=b 2,若在椭圆C 1上存在点P ,使得由点P 所作的圆C 2的两条切线互相垂直,则椭圆C 1的离心率的取值范围是( )A .[12,1)B .[22,32]C .[22,1) D .[32,1)[解析] 如图,设切点为A、B,则OA⊥PA,OB⊥PB,∵∠APB=90°,连结OP,则∠APO=45°,∴AO=PA=b,OP=2b,∴a≥2b,∴a2≤2c2,∴c2a2≥12,∴e≥22,又∵e<1,∴22≤e<1.二、填空题15.(xx·安徽理,14)若F1、F2分别是椭圆E:x2+y2b2=1(0<b<1)的左、右焦点,过点F1的直线交椭圆E于A、B两点.若|AF1|=3|F1B|,AF2⊥x轴,则椭圆E的方程为________.[答案] x2+32y2=1[解析] 如图,由题意,A点横坐标为c,∴c2+y2b2=1,又b2+c2=1,∴y2=b4,∴|AF2|=b2,又∵|AF1|=3|BF1|,∴B点坐标为(-53c,-13b2),代入椭圆方程得,⎩⎪⎨⎪⎧-53c2+-13b22b2=1,b2=1-c2,∴⎩⎪⎨⎪⎧c 2=13,b 2=23方程为x 2+32y 2= 1.三、解答题16.(xx·银川一中检测)抛物线y 2=4px (p >0)的准线与x 轴交于点M ,过点M 作直线l 交抛物线于A 、B 两点.(1)若线段AB 的垂直平分线交x 轴于N (x 0,0),求证:x 0>3p ;(2)若直线l 的斜率分别为p ,p 2,p 3,…时,相应线段AB 的垂直平分线与x 轴的交点依次为N 1,N 2,N 3,…,当0<p <1时,求1|N 1N 2|+1|N 2N 3|+…+1|N 10N 11|的值. [解析] (1)设直线l 的方程为y =k (x +p ),代入y 2=4px 中消去y 得,k 2x 2+(2k 2p -4p )x +k 2p 2=0,Δ=4(k 2p -2p )2-4k 2·k 2p 2>0,得0<k 2<1. 令A (x 1,y 1)、B (x 2,y 2),则x 1+x 2=-2k 2p -4pk 2,y 1+y 2=k (x 1+x 2+2p )=4pk2,AB 的中点坐标为(2p -k 2p k 2,2p k ),AB 的垂直平分线方程为y -2p k =-1k (x -2p -k 2pk2), 令y =0,得x 0=k 2p +2p k 2=p +2p k2, 由上可知0<k 2<1,∴x 0>p +2p =3p ,∴x 0>3p .(2)∵l 的斜率分别为p ,p 2,p 3,…时,对应线段AB 的中垂线与x 轴交点依次为N 1,N 2,N 3,…(0<p <1),∴点N n 的坐标为(p +2p2n -1,0), 那么|N n N n +1|=⎪⎪⎪⎪⎪⎪p +2p2n -1-p +2p2n +1=21-p2p 2n +1,则1|N n N n +1|=p 2n +121-p2, ∴1|N 1N 2|+1|N 2N 3|+…+1|N 10N 11|=121-p2(p 3+p 5+…+p 21)=121-p2·p 3[1-p 210]1-p2=p 31-p 2021-p22. 17.(文)如图,椭圆x 2a 2+y 2b2=1(a >b >0)的上、下顶点分别为A 、B ,已知点B 在直线l :y =-1上,且椭圆的离心率e =32.(1)求椭圆的标准方程;(2)设P 是椭圆上异于A 、B 的任意一点,PQ ⊥y 轴,Q 为垂足,M 为线段PQ 的中点,直线AM 交直线l 于点C ,N 为线段BC 的中点,求证:OM ⊥MN .[解析] (1)依题意,得b =1. ∵e =c a =32,a 2-c 2=b 2=1,∴a 2=4. ∴椭圆的标准方程为x 24+y 2=1.(2)证明:设P (x 0,y 0),x 0≠0,则Q (0,y 0),且x 204+y 20=1.∵M 为线段PQ 中点,∴M (x 02,y 0).又A (0,1),∴直线AM 的方程为y =2y 0-1x 0x +1.∵x 0≠0,∴y 0≠1,令y =-1,得C (x 01-y 0,-1).又B (0,-1),N 为线段BC 的中点, ∴N (x 021-y 0,-1).∴NM →=(x 02-x 021-y 0,y 0+1).∴OM →·NM →=x 02(x 02-x 021-y 0)+y 0·(y 0+1)=x 204-x 2041-y 0+y 20+y 0=(x 204+y 2)-x 2041-y 0+y 0=1-(1+y 0)+y 0=0,∴OM ⊥MN .(理)已知椭圆C :x 2a2+y 2=1(a >1)的上顶点为A ,右焦点为F ,直线AF 与圆M :(x -3)2+(y -1)2=3相切.(1)求椭圆C 的方程;(2)若不过点A 的动直线l 与椭圆C 交于P 、Q 两点,且AP →·AQ →=0.求证:直线l 过定点,并求出该定点的坐标.[解析] (1)A (0,1),F (a 2-1,0), 直线AF :xa 2-1+y =1, 即x +y a 2-1-a 2-1=0,∵AF 与⊙M 相切,圆心M (3,1),半径r =3, ∴3a 2=3,∴a =3,∴椭圆的方程为x 23+y 2=1.(2)由AP →·AQ →=0知AP ⊥AQ ,从而直线AP 与坐标轴不垂直,故可设直线AP 的方程为y =kx +1,直线AQ 的方程为y =-1kx +1,将y =kx +1代入椭圆C 的方程, 整理得(1+3k 2)x 2+6kx =0, 解得x =0或x =-6k1+3k2,故点P 的坐标为(-6k 1+3k 2,1-3k21+3k 2).同理,点Q 的坐标为(6k k 2+3,k 2-3k 2+3).所以直线l 的斜率为k 2-3k 2+3-1-3k 21+3k 26k k 2+3--6k 1+3k 2=k 2-14k.则直线l 的方程为y =k 2-14k (x -6k k 2+3)+k 2-3k 2+3,即y =k 2-14k x -12.所以直线l 过定点(0,-12).W 726156 662C 昬y21160 52A8 动32491 7EEB 绫38127 94EF 铯tc22499 57E3 埣29197 720D 爍32322 7E42 繂395519A7F 驿€。
高考数学复习考点题型专题讲解专题21 圆锥曲线的基本问题高考定位 圆锥曲线的方程与几何性质是高考的重点,多以选择题、填空题或解答题的一问的形式命题,难度较小.1.(2021·新高考Ⅰ卷)已知F 1,F 2是椭圆C :x 29+y 24=1的两个焦点,点M 在C 上,则|MF 1|·|MF 2|的最大值为( )A.13B.12C.9D.6 答案 C解析 由椭圆C :x 29+y 24=1,得|MF 1|+|MF 2|=2×3=6,则|MF 1|·|MF 2|≤⎝⎛⎭⎪⎫|MF 1|+|MF 2|22=32=9,当且仅当|MF 1|=|MF 2|=3时等号成立.故选C.2.(2022·全国乙卷)设F 为抛物线C :y 2=4x 的焦点,点A 在C 上,点B (3,0),若|AF |=|BF |,则|AB |=( )A.2B.2 2C.3D.3 2 答案 B解析 法一 由题意可知F (1,0), 抛物线的准线方程为x =-1.设A (y 204,y 0),则由抛物线的定义可知|AF |=y 204+1,又|BF |=3-1=2,故由|AF|=|BF|,可得y24+1=2,解得y0=±2,所以A(1,2)或A(1,-2). 不妨取A(1,2),故|AB|=(1-3)2+(2-0)2=22,故选B.法二由题意可知F(1,0),故|BF|=2,所以|AF|=2.又抛物线通径长为4,所以|AF|=2为通径长的一半,所以AF⊥x轴,所以|AB|=(-2)2+22=22,故选B.3.(2022·全国甲卷)椭圆C:x2a2+y2b2=1(a>b>0)的左顶点为A,点P,Q均在C上,且关于y轴对称.若直线AP,AQ的斜率之积为14,则C的离心率为( )A.32B.22C.12D.13答案 A解析设P(m,n)(n≠0),则Q(-m,n),易知A(-a,0),所以k AP·k AQ=nm+a·n-m+a=n2a2-m2=14(*).因为点P在椭圆C上,所以m 2a 2+n 2b 2=1,得n 2=b 2a2(a 2-m 2),代入(*)式,得b 2a 2=14,所以e =ca=1-b 2a 2=32.故选A.4.(2022·北京卷)已知双曲线y 2+x 2m =1的渐近线方程为y =±33x ,则m =________.答案 -3解析法一 依题意得m <0,双曲线的方程化为标准方程为y 2-x 2-m=1,此时双曲线的渐近线的斜率为±1-m=±33,解得m =-3.法二 依题意得m <0,令y 2-x 2-m =0,得y =±1-m x ,则±1-m=±33,解得m =-3.5.(2022·新高考Ⅰ卷)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),C 的上顶点为A ,两个焦点为F 1,F 2,离心率为12.过F 1且垂直于AF 2的直线与C 交于D ,E 两点,|DE |=6,则△ADE 的周长是________. 答案 13解析 如图,连接AF 1,DF 2,EF 2,因为C 的离心率为12,所以c a =12,所以a =2c ,所以b 2=a 2-c 2=3c 2.因为|AF 1|=|AF 2|=a =2c =|F 1F 2|, 所以△AF 1F 2为等边三角形,又DE ⊥AF 2,所以直线DE 为线段AF 2的垂直平分线, 所以|AD |=|DF 2|,|AE |=|EF 2|,且∠EF 1F 2=30°, 所以直线DE 的方程为y =33(x +c ),代入椭圆C 的方程x 24c 2+y 23c 2=1,得13x 2+8cx -32c 2=0.设D (x 1,y 1),E (x 2,y 2), 则x 1+x 2=-8c 13,x 1x 2=-32c 213,所以|DE |=⎝⎛⎭⎪⎫1+13[(x 1+x 2)2-4x 1x 2]=43⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-8c 132-4×⎝ ⎛⎭⎪⎫-32c 213=48c 13=6, 解得c =138,所以a =2c =134, 所以△ADE 的周长为|AD |+|AE |+|DE |=|DF 2|+|EF 2|+|DE |=4a =13.热点一 圆锥曲线的定义与标准方程1.圆锥曲线的定义(1)椭圆:|PF 1|+|PF 2|=2a (2a >|F 1F 2|).(2)双曲线:||PF 1|-|PF 2||=2a (0<2a <|F 1F 2|).(3)抛物线:|PF |=|PM |,l 为抛物线的准线,点F 不在定直线l 上,PM ⊥l 于点M . 2.求圆锥曲线标准方程“先定型,后计算”所谓“定型”,就是确定曲线焦点所在的坐标轴的位置;所谓“计算”,就是指利用待定系数法求出方程中的a 2,b 2,p 的值.例1 (1)已知A ,B 分别是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右顶点与虚轴的上端点,F (2,0)是双曲线C 的右焦点,直线AB 与双曲线C 的一条渐近线垂直,则双曲线C 的标准方程为________.(2)(2022·成都二诊)已知抛物线C 以坐标原点O 为顶点,以⎝ ⎛⎭⎪⎫p 2,0为焦点,直线x -my-2p =0与抛物线C 交于两点A ,B ,直线AB 上的点M (1,1)满足OM ⊥AB ,则抛物线C 的方程为________.答案 (1)x 22-y 22=1 (2)y 2=2x解析 (1)由题意得A (a ,0),B (0,b ),双曲线的渐近线方程为y =±ba x ,而k AB =-b a,∴-b 2a2=-1,∴a =b ,又F (2,0),∴c 2=a 2+b 2=2a 2=4, ∴a 2=b 2=2,∴双曲线C 的标准方程为x 22-y 22=1.(2)由已知直线OM 的斜率为1,则AB 的斜率为-1,所以m =-1,又M (1,1)在直线AB 上, ∴1+1-2p =0,∴p =1. ∴抛物线C 的方程为y 2=2x .易错提醒 求圆锥曲线的标准方程时的常见错误:(1)双曲线的定义中忽略“绝对值”致错;(2)椭圆与双曲线中参数的关系式弄混,椭圆中的关系式为a 2=b 2+c 2,双曲线中的关系式为c 2=a 2+b 2;(3)圆锥曲线方程确定时还要注意焦点位置.训练1 (1)(2022·武汉模拟)抛物线y 2=2px (p >0)上一点M (3,y )到焦点F 的距离|MF |=4,则抛物线的方程为( ) A.y 2=8x B.y 2=4x C.y 2=2x D.y 2=x(2)(2022·怀仁二模)若双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)上任意一点到两焦点的距离之差的绝对值为6,且离心率为2,则双曲线C 的标准方程为________. 答案 (1)B (2)x 29-y 227=1解析 (1)由抛物线y 2=2px (p >0)上一点M (3,y )到焦点F 的距离|MF |=4, 可得3+p2=4,解得p =2,所以抛物线的方程为y 2=4x ,故选B.(2)由双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)上任意一点到两焦点的距离之差的绝对值为6,可得a =3,离心率为2,所以c =6,则b 2=c 2-a 2=62-32=27.所以双曲线C 的标准方程为x 29-y 227=1.热点二 椭圆、双曲线的几何性质1.求离心率通常有两种方法(1)椭圆的离心率e =ca =1-b 2a 2(0<e <1),双曲线的离心率e =c a =1+b 2a2(e >1). (2)根据条件建立关于a ,b ,c 的齐次式,消去b 后,转化为关于e 的方程或不等式,即可求得e 的值或取值范围.2.与双曲线x 2a 2-y 2b 2=1(a >0,b >0)共渐近线的双曲线方程为x 2a 2-y 2b 2=λ(λ≠0).考向1 离心率问题例2 (1)(2022·济南模拟)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,以F 1F 2为边作正三角形,若椭圆恰好平分正三角形的另两条边,则椭圆的离心率为( ) A.3-1 B.32C.12D.22(2)(2022·浙江卷)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点为F ,过F 且斜率为b4a 的直线交双曲线于点A (x 1,y 1),交双曲线的渐近线于点B (x 2,y 2)且x 1<0<x 2.若|FB |=3|FA |,则双曲线的离心率是________. 答案 (1)A (2)364解析 (1)可画出如图所示图形.△MF 1F 2为等边三角形,F 1(-c ,0),F 2(c ,0),QF 1⊥MF 2,∠F 1F 2Q =60°, ∵|F 1F 2|=2c ,∴|QF 2|=c ,|QF 1|=3c , ∴|QF 1|+|QF 2|=(3+1)c =2a ,∴ca=3-1, 即e =3-1.故选A.(2)结合题意作出图形如图所示,由题意知,过左焦点F (-c ,0)且斜率为b 4a 的直线方程为y =b4a(x +c ), 由⎩⎪⎨⎪⎧y =b 4a (x +c ),y =b a x 解得⎩⎪⎨⎪⎧x =c3,y =bc 3a ,所以B ⎝ ⎛⎭⎪⎫c 3,bc 3a .因为|FB |=3|FA |,所以FB →=3FA →, 即⎝ ⎛⎭⎪⎫4c 3,bc 3a =3(x 1+c ,y 1),得⎩⎪⎨⎪⎧x 1=-5c9,y 1=bc9a ,所以A ⎝ ⎛⎭⎪⎫-5c 9,bc 9a .将⎝ ⎛⎭⎪⎫-5c 9,bc 9a 代入双曲线方程x 2a 2-y 2b 2=1,可得⎝ ⎛⎭⎪⎫-5c 92a 2-⎝ ⎛⎭⎪⎫bc 9a 2b 2=1,结合离心率e =c a得e 2=8124, 又e >1,所以双曲线的离心率为364. 考向2 椭圆、双曲线的几何性质例3 (1)双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,P 是双曲线C 上一点,PF 2⊥x 轴,tan∠PF 1F 2=34,则双曲线的渐近线方程为( )A.x ±2y =0B.2x ±y =0C.3x ±y =0D.x ±3y =0(2)(2022·南通质检)椭圆C :x 218+y 2b 2=1(b 2<18且b >0)的上、下顶点分别为A ,C ,如图,点B 在椭圆上(异于椭圆顶点),点D 在椭圆内,平面四边形ABCD 满足∠BAD =∠BCD =90°,且S △ABC =2S △ADC ,则该椭圆的短轴长为________.答案 (1)C (2)6解析 (1)因为点P 在双曲线上,且PF 2⊥x 轴,所以点P 的横坐标为c ,代入双曲线的方程可得P ⎝ ⎛⎭⎪⎫c ,±b 2a ,则|PF 2|=b 2a,|F 1F 2|=2c ,所以tan∠PF 1F 2=|PF 2||F 1F 2|=b 2a 2c =b 22ac =34,整理得2b 2=3ac , 所以4⎝ ⎛⎭⎪⎫b a 4-9⎝ ⎛⎭⎪⎫b a 2-9=0,解得ba=3,所以双曲线的渐近线方程为y =±3x ,即3x ±y =0,故选C. (2)根据题意可得A (0,b ),C (0,-b ),设B (x 1,y 1),D (x 2,y 2).连接BD ,由∠BAD =∠BCD =90°可得,点A ,B ,C ,D 均在以BD 为直径的圆E (E 为BD 中点)上,又原点O 为圆E 上的弦AC 的中点,所以圆心E 在AC 的垂直平分线上,即圆心E 在x 轴上, 所以y 1+y 2=0. 又S △ABC =2S △ADC , 所以x 1=-2x 2,故圆心E 的坐标为⎝ ⎛⎭⎪⎫x 14,0,所以圆E 的方程为⎝⎛⎭⎪⎫x -x 142+y 2=916x 21+y 21,将(0,b )代入圆E 的方程,结合x 2118+y 21b 2=1可得b 2=9,所以b =3,短轴长为6.规律方法 1.确定椭圆和双曲线的离心率的值或范围,其关键就是确立一个关于a ,b ,c 的等量关系或不等关系,然后用a ,c 代换b ,进而求ca的值或范围.2.求双曲线渐近线方程的关键在于求b a 或ab 的值,也可将双曲线方程中等号右边的“1”变为“0”,然后因式分解得到.训练2 (1)双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点M 在y 轴上,且△MF 1F 2为正三角形.若线段MF 2的中点恰好在双曲线E 的渐近线上,则E 的离心率等于( ) A.5B.2 C.3D. 2(2)(2022·张家口一模)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,过原点O 的直线l交椭圆C 于点A ,B ,且2|FO |=|AB |,若∠BAF =π6,则椭圆C 的离心率是________. 答案 (1)B (2)3-1解析 (1)不妨设M 在y 轴的正半轴上, 设M (0,t ),t >0,由于△MF 1F 2为正三角形,所以t =3c ,故M (0,3c ),则MF 2的中点为N ⎝ ⎛⎭⎪⎫c 2,3c 2, 因为N 在渐近线y =b ax 上,所以3c 2=b a ×c 2,即b a =3,e =ca=1+⎝ ⎛⎭⎪⎫b a 2=2,故选B. (2)因为直线AB 过原点,由椭圆及直线的对称性可得|OA |=|OB |, 所以|AB |=2|OA |,设右焦点F ′,连接BF ′,AF ′, 又因为2|OF |=|AB |=2c , 可得四边形AFBF ′为矩形,在Rt△ABF 中,|AF |=2c ·cos∠BAF =2c ·32=3c , |BF |=2c ·sin∠BAF =2c ·12=c ,∴|AF ′|=|BF |=c ,由椭圆定义|AF |+|AF ′|=3c +c =2a , ∴e =c a=3-1.热点三 抛物线的几何性质抛物线的焦点弦的几个常见结论:设AB 是过抛物线y 2=2px (p >0)的焦点F 的弦,若A (x 1,y 1),B (x 2,y 2),α是弦AB 的倾斜角,则(1)x 1x 2=p 24,y 1y 2=-p 2.(2)|AB |=x 1+x 2+p =2psin 2α. (3)1|FA |+1|FB |=2p.(4)以线段AB 为直径的圆与准线x =-p2相切.例4 (1)(2022·泰安模拟)已知抛物线C :y 2=2px (p >0)的焦点为F ,点M 在抛物线C 上,射线FM 与y 轴交于点A (0,2),与抛物线C 的准线交于点N ,FM →=55MN →,则p 的值等于( ) A.18B.2 C.14D.4 (2)(多选)已知抛物线C :y 2=2px (p >0)的焦点为F ,直线l 的斜率为3且经过点F ,直线l 与抛物线C 交于A ,B 两点(点A 在第一象限),与抛物线的准线交于点D ,若|AF |=8,则以下结论正确的是( ) A.p =4 B.DF →=FA → C.|BD |=2|BF | D.|BF |=4 答案 (1)B (2)ABC解析 (1)依题意F 点的坐标⎝ ⎛⎭⎪⎫p 2,0,设M 在准线上的射影为K , 由抛物线的定义知|MF |=|MK |, ∵FM →=55MN →,∴|FM ||MN |=55, 可得|MK ||MN |=55, 则|KN |∶|KM |=2∶1, ∴k FN =0-2p 2-0=-4p ,∴-4p=-2,求得p =2.故选B.(2)如图所示,分别过点A ,B 作准线的垂线,垂足分别为E ,M ,连接EF .设抛物线C 的准线交x 轴于点P ,则|PF |=p ,由于直线l 的斜率为3,则其倾斜角为60°.又AE ∥x 轴,∴∠EAF =60°,由抛物线的定义可知,|AE |=|AF |,则△AEF 为等边三角形, ∴∠EFP =∠AEF =60°,则∠PEF =30°,∴|AF |=|EF |=2|PF |=2p =8,解得p =4,故A 正确;∵|AE |=|EF |=2|PF |,PF ∥AE ,∴F 为线段AD 的中点,则DF →=FA →,故B 正确; ∵∠DAE =60°,∴∠ADE =30°,∴|BD|=2|BM|=2|BF|(抛物线定义),故C正确;∵|BD|=2|BF|,∴|BF|=13|DF|=13|AF|=83,故D错误.规律方法利用抛物线的几何性质解题时,要注意利用定义构造与焦半径相关的几何图形(如三角形、直角梯形等)来沟通已知量与p的关系,灵活运用抛物线的焦点弦的特殊结论,使问题简单化且减少数学运算.训练3 (1)(2022·济南模拟)已知抛物线y2=4x的焦点为F,直线l经过F与抛物线交于A,B两点,点P在抛物线的准线上,且PF⊥AB,线段AB的中点为Q.若|PQ|=4,则|AB|=( )A.4B.4 2C.8D.8 2(2)(2022·广州模拟)过抛物线y2=4x焦点F的直线与该抛物线及其准线都相交,交点从左到右依次为A,B,C.若AB→=2BF→,则线段BC的中点到准线的距离为( )A.3B.4C.5D.6答案(1)C (2)B解析(1)由A,B向准线作垂线,垂足分别为C,D,因为PF⊥AB,可知P是线段CD的中点,PQ 是梯形ABDC 的中位线,又由抛物线的定义可知|AB |=2|PQ |=8,故选C. (2)由抛物线的方程可得焦点F (1,0),渐近线的方程为:x =-1, 由AB →=2BF →, 可得|AB ||BF |=2, 如图所示:作BB ′垂直于准线于B ′, 而|BB ′||AB |=22,∴∠ABB ′=45°, 所以直线AB 的斜率为1, 所以直线AB 的方程为x =y +1, 设B (x 1,y 1),C (x 2,y 2),联立⎩⎨⎧y 2=4x ,x =y +1,整理可得:x 2-6x +1=0,可得x 1+x 2=6,所以线段BC 的中点到准线的距离为x 1+x 22+1=4,故选B.一、基本技能练1.(2022·温州模拟)双曲线y 2-2x 2=1的离心率是( )A.52B.62C.3D. 5 答案 B解析 双曲线方程化为y 21-x 212=1,则a 2=1,b 2=12,从而e =1+b 2a 2=62,故选B. 2.设经过点F (1,0)的直线与抛物线y 2=4x 相交于A ,B 两点.若线段AB 中点的横坐标为2,则|AB |=( ) A.4 B.5 C.6 D.7 答案 C解析 因为抛物线为y 2=4x ,所以p =2, 设A ,B 两点横坐标为x 1,x 2, 因为线段AB 中点的横坐标为2, 则x 1+x 22=2,即x 1+x 2=4,故|AB |=x 1+x 2+p =4+2=6,故选C.3.(2022·烟台一模)已知点F 为抛物线y 2=2px (p >0)的焦点,点P 在抛物线上且横坐标为8,O 为坐标原点,若△OFP 的面积为22,则该抛物线的准线方程为( ) A.x =-12B.x =-1C.x =-2D.x =-4 答案 B解析 由抛物线的方程可得F ⎝ ⎛⎭⎪⎫p 2,0,不妨设P 在x 轴上方,则y 2=2p ×8,可得y p =4p , 则S △OFP =12|OF |·y p =12×p2×4p =22,解得p =2,所以准线方程为x =-p2=-1,故选B.4.“1<k <5”是方程“x 2k -1+y 25-k=1表示椭圆”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 答案 B解析 因为k =3时,x 2k -1+y 25-k=1表示圆,故充分性不成立.若x 2k -1+y 25-k=1表示椭圆,则⎩⎨⎧k -1>0,5-k >0,k -1≠5-k ,∴1<k <5且k ≠3,∴必要性成立. 故“1<k <5”是“方程x 2k -1+y 25-k=1表示椭圆”的必要不充分条件.故选B.5.已知双曲线C :y 2a 2-x 2b 2=1(a >0,b >0)的一条渐近线与x 轴正半轴所成夹角为π3,则C的离心率为( )A.233B.2C.3D.3 答案 A解析 双曲线C 的渐近线方程为y =±ab x ,由题意可得a b =tanπ3=3, 则b a =33, 所以e =ca =c 2a 2=1+⎝ ⎛⎭⎪⎫b a 2=233,故选A.6.(2022·西安二模)直线y =kx (k >0)与双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)在第一、第三象限分别交于P ,Q 两点,F 2是C 的右焦点,有|PF 2|∶|QF 2|=1∶3,且PF 2⊥QF 2,则C 的离心率是( ) A.3B. 6 C.3+1 D.6+1 答案 C解析 由对称性可知四边形PF 1QF 2为平行四边形, 又由PF 2⊥QF 2得四边形PF 1QF 2为矩形, ∴|PQ |=|F 1F 2|=2c , 又|PF 2|∶|QF 2|=1∶3, ∴|QF 2|-|PF 2|=(3-1)c =2a , ∴e =c a=23-1=3+1,故选C.7.(2022·石家庄模拟)已知椭圆M:x2a2+y2=1(a>1)的中心为O,过焦点F的直线l与M交于A,B两点,线段AF的中点为P,若|OP|=|PF|=32,则M的方程为( )A.x22+y2=1 B.x23+y2=1C.x24+y2=1 D.x25+y2=1答案 B解析不妨设F为椭圆M的右焦点,则其左焦点为F1,连接AF1,∵O为FF1中点,P为AF中点.∴OP为△AFF1的中位线.∴|AF1|=2|OP|=3,|AF|=2|PF|= 3.∴|AF1|+|AF|=23=2a,∴a= 3.∴椭圆M的方程为x23+y2=1,故选B.8.(2022·南京调研)已知F1,F2分别为双曲线x2a2-y2b2=1(a>0,b>0)的左焦点和右焦点,过F2的直线l与双曲线的右支交于A,B两点,△AF1F2的内切圆半径为r1,△BF1F2的内切圆半径为r2,若r1=2r2,则直线l的斜率为( )A.1B. 2C.2D.2 2答案 D解析记△AF1F2的内切圆圆心为C,△BF1F2的内切圆圆心为D,边AF 1,AF 2,F 1F 2上的切点分别为M ,N ,E ,易知C ,E 横坐标相等,|AM |=|AN |,|F 1M |=|F 1E |,|F 2N |=|F 2E |,由|AF 1|-|AF 2|=2a ,即|AM |+|MF 1|-(|AN |+|NF 2|)=2a ,得|MF 1|-|NF 2|=2a , 即|F 1E |-|F 2E |=2a ,记C 的横坐标为x 0,则E (x 0,0), 于是x 0+c -(c -x 0)=2a ,得x 0=a , 同样圆心D 的横坐标也为a ,则有CD ⊥x 轴,设直线l 的倾斜角为θ,则∠OF 2D =θ2,∠CF 2O =90°-θ2,在△CEF 2中,tan∠CF 2O =tan ⎝ ⎛⎭⎪⎫90°-θ2=r 1|EF 2|,在△DEF 2中,tan∠OF 2D =tan θ2=r 2|EF 2|,由r 1=2r 2,可得2tan θ2=tan ⎝⎛⎭⎪⎫90°-θ2=1tanθ2,解得tan θ2=22,则直线l 的斜率为tan θ=2tanθ21-tan 2θ2=21-12=22,故选D.9.(多选)(2022·福州模拟)已知椭圆C :x 24+y 23=1的左、右焦点分别为F 1,F 2,P 为C上一点,则( )A.C 的离心率为22B.△PF 1F 2的周长为5C.∠F 1PF 2<90°D.1≤|PF 1|≤3 答案 CD解析 对于A ,由椭圆方程知:a =2,c =4-3=1,∴离心率e =c a =12,A 错误;对于B ,由椭圆定义知:|PF 1|+|PF 2|=2a =4,|F 1F 2|=2c =2, ∴△PF 1F 2的周长为4+2=6,B 错误;对于C ,当P 为椭圆短轴端点时,tan ∠F 1PF 22=c b =33,∴tan∠F 1PF 2=2tan∠F 1PF 221-tan 2∠F 1PF 22=2331-13=3,∴∠F 1PF 2=60°,即(∠F 1PF 2)max =60°, ∴∠F 1PF 2<90°,C 正确;对于D ,∵|PF 1|min =a -c =1,|PF 1|max =a +c =3, ∴1≤|PF 1|≤3,D 正确. 故选CD.10.(多选)(2022·菏泽模拟)设抛物线C:y2=8x的焦点为F,准线为l,点M为C上一动点,E(3,1)为定点,则下列结论正确的有( )A.准线l的方程是y=-2B.以线段MF为直径的圆与y轴相切C.|ME|+|MF|的最小值为5D.|ME|-|MF|的最大值为2答案BC解析抛物线C:y2=8x的焦点为F(2,0),准线为l:x=-2,故A错误;设M(m,n),MF的中点为N,可得|MF|=m+2=2·m+2 2,即N到y轴的距离是|MF|的一半,则以线段MF为直径的圆与y轴相切,故B正确;设M在准线上的射影为H,由|ME|+|MF|=|ME|+|MH|,当E,M,H三点共线时,|ME|+|MH|取得最小值,为3+2=5,故C正确;由|ME|-|MF|≤|EF|,当M为EF的延长线与抛物线的交点时,取得最大值|EF|,为(3-2)2+(1-0)2=2,故D错误.故选BC.11.已知抛物线y2=2px的准线方程为x=-1,则p=________.答案 2解析 y 2=2px 准线方程为x =-p2,则-p2=-1,∴p =2.12.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为5,且其虚轴长大于1,则双曲线C的一个标准方程可以为________. 答案x 2-y 24=1(答案不唯一)解析 依题意,不妨取b =2,由题意可得⎩⎪⎨⎪⎧c a =5,b =2,c 2=a 2+b 2,解得a =1,b =2,c = 5.所以满足题设的一个标准方程为x 2-y 24=1.二、创新拓展练13.(多选)(2022·南通适考)在平面直角坐标系xOy 中,已知F 1,F 2分别是椭圆C :x 24+y 22=1的左、右焦点,点A ,B 是椭圆C 上异于长轴端点的两点,且满足AF 1→=λF 1B →,则( ) A.△ABF 2的周长为定值B.AB 的长度最小值为1 C.若AB ⊥AF 2,则λ=3D.λ的取值范围是[1,5] 答案 AC解析 AF 1→=λF 1B →,则A ,B ,F 1三点共线,△ABF 2周长=4a =8是定值,A 正确.AB min =2·b 2a=2≠1,B 错误;∵AB ⊥AF 2,则AF 1⊥AF 2,A 在上、下顶点处,不妨设A (0,2),则AB ∶y =x +2,⎩⎨⎧y =x +2,x 24+y 22=1.解得⎩⎨⎧x =0,y =2或⎩⎪⎨⎪⎧x =-423,y =-23,B ⎝ ⎛⎭⎪⎫-423,-23,λ=-2-23=3,C 正确; 令AB :x =my -2,A (x 1,y 1),B (x 2,y 2),⎩⎨⎧x =my -2,x 24+y 22=1消x 可得(m 2+2)y 2-22my -2=0,则y 1+y 2=22mm 2+2, y 1y 2=-2m 2+2,-y 1=λy 2,当m =0时,λ=1,当m ≠0时,λ(1-λ)2=m 2+24m 2>14,∴3-22<λ<3+22,D 错误.故选AC.14.(多选)(2022·济宁模拟)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,左、右顶点分别为A 1,A 2,点P 是双曲线C 上异于顶点的一点,则( ) A.||PA 1|-|PA 2||=2aB.若焦点F 2关于双曲线C 的渐近线的对称点在C 上,则C 的离心率为 5C.若双曲线C 为等轴双曲线,则直线PA 1的斜率与直线PA 2的斜率之积为1D.若双曲线C 为等轴双曲线,且∠A 1PA 2=3∠PA 1A 2,则∠PA 1A 2=π10答案 BCD解析 对于A :在△PA 1A 2中,根据三角形两边之差小于第三边, 故||PA 1|-|PA 2||<|A 1A 2|=2a ,故A 错误; 对于B ,焦点F 2(c ,0),渐近线不妨取y =bax ,即bx -ay =0, 设焦点F 2关于双曲线C 的渐近线的对称点为(m ,n ),则⎩⎪⎨⎪⎧n m -c ×b a =-1,b ×m +c 2-a ×n 2=0,解得⎩⎪⎨⎪⎧m =a 2-b 2c ,n =2abc,即F 2关于双曲线C 的渐近线的对称点为⎝⎛⎭⎪⎫a 2-b 2c ,2ab c , 由题意该对称点在双曲线上,故(a 2-b 2)2a 2c 2-(2ab )2b 2c 2=1,将c 2=a 2+b 2代入,化简整理得b 4-3a 2b 2-4a 4=0,即b 2=4a 2, 所以e =1+b 2a2=5, ∴e =5,故B 正确;对于C :双曲线C 为等轴双曲线, 即C :x 2-y 2=a 2(a >0),设P (x 0,y 0)(y 0≠0),则x 20-y 20=a 2,所以x 20-a 2=y 20, 故k PA 1·k PA 2=y 0x 0+a ·y 0x 0-a =y 20x 20-a2=1,故C 正确;对于D :双曲线为等轴双曲线,即C :x 2-y 2=a 2(a >0), 且∠A 1PA 2=3∠PA 1A 2, 设∠PA 1A 2=θ,∠A 1PA 2=3θ, 则∠PA 2x =4θ,根据C 项中的结论kPA 1·kPA 2=1, 即有tan θ·tan 4θ=1,在三角形中,只有两角互余时,它们的正切值才互为倒数, 故θ+4θ=π2,所以θ=π10,即∠PA 1A 2=π10,故D 正确.故选BCD.15.(多选)(2022·济南模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)左、右焦点分别为F 1,F 2,点P 为C 上任意一点,△PF 1F 2的内切圆的圆心为I ,圆I 与PF 1的切点为M ,PI 与x 轴的交点为N ,则以下结论正确的有( ) A.PF 1→·PF 2→有最大值a 2 B.内切圆I 面积有最大值πb 2c 2(a +c )2C.若|PM |=12|F 1F 2|,则椭圆C 的离心率为 12D.若∠F 1PF 2=2π3,则1|PF 1|+1|PF 2|=1|PN |答案 BCD解析 对A :PF 1→·PF 2→=PO →2-c 2≤b 2,故A 不正确;对B :由等面积法,内切圆I 的半径r =S △PF 1F 2a +c ≤bca +c ,所以内切圆面积有最大值πb 2c 2(a +c )2,故B 正确;对C :|PM |=12|F 1F 2|=c ,2|PM |+2c =4c =2a ,椭圆C 的离心率为12,故C 正确;对D :若∠F 1PF 2=2π3,由角平分线性质得则1|PF 1|+1|PF 2|=1|PN |,故D 正确.故选BCD. 16.(多选)(2022·无锡模拟)已知双曲线C 1:x 2a 21-y 2b 21=1(a 1>0,b 1>0)的一条渐近线的方程为y =3x ,且过点⎝⎛⎭⎪⎫1,32,椭圆C 2:x 2a 2+y 2b 2=1的焦距与双曲线C 1的焦距相同,且椭圆C 2的左、右焦点分别为F 1,F 2,过点F 1的直线交C 2于A ,B 两点,若点A (1,y 1),则下列说法中正确的有( ) A.双曲线C 1的离心率为2 B.双曲线C 1的实轴长为12C.点B 的横坐标的取值范围为(-2,-1)D.点B 的横坐标的取值范围为(-3,-1) 答案 AD解析 双曲线C 1:x 2a 21-y 2b 21=1(a 1>0,b 1>0)的一条渐近线的方程为y =3x ,则可设双曲线C 1的方程为x 2-y 23=λ,∵过点⎝⎛⎭⎪⎫1,32,∴1-34=λ,解得λ=14,∴双曲线C 1方程为4x 2-43y 2=1,即x 214-y234=1,可知双曲线C 1的离心率e =ca=2,实轴的长为1,故选项A 正确,选项B 错误; 由14+34=1,可知椭圆C 2:x 2a 2+y 2b2=1的焦点F 1(-1,0),F 2(1,0), 不妨设A (1,y 1)(y 1>0),代入x 2a 2+y 2b 2=1,得1a 2+y 21b 2=1,∴y 1=b 2a ,直线AB 的方程为y =b 22a(x +1),联立⎩⎪⎨⎪⎧y =b 22a (x +1),x2a 2+y2b 2=1,消去y 并整理得(a 2+3)x 2+2(a 2-1)x -3a 2-1=0, 根据韦达定理可得1·x B =-3a 2+1a 2+3,可得x B =-3a 2+1a 2+3=-3+8a 2+3,又a 2>1,∴a 2+3>4,0<8a 2+3<2, ∴-3<x B <-1,故选项C 错误,选项D 正确,故选AD.17.(2022·北京石景山区一模)设点F 1,F 2分别为椭圆C :x 24+y 2=1的左、右焦点,点P是椭圆C 上任意一点,若使得PF 1→·PF 2→=m 成立的点恰好是4个,则实数m 的一个取值可以为________. 答案 0(答案不唯一)解析 当m =0时,PF 1→·PF 2→=0,则PF 1→⊥PF 2→,由椭圆方程可知a 2=4,b 2=1,c 2=3,因为c >b ,所以以F 1F 2为直径的圆与椭圆有4个交点. 使得PF 1→·PF 2→=0成立的点恰好有4个. 所以实数m 的一个取值可以为0.18.(2022·湖州质检)已知F 1,F 2是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且∠F 1PF 2=π3,设椭圆、双曲线的离心率分别为e 1,e 2,则e 21+e 22的最小值为________.答案 1+32解析 由题意,可设椭圆长半轴为a 1,双曲线的实半轴为a 2, 不妨设P 为双曲线右支上一点,由椭圆和双曲线的定义可知 ⎩⎨⎧|PF 1|+|PF 2|=2a 1,|PF 1|-|PF 2|=2a 2,则|PF 1|=a 1+a 2,|PF 2|=a 1-a 2, 又∠F 1PF 2=π3,由余弦定理可得(2c )2=(a 1+a 2)2+(a 1-a 2)2-2(a 1+a 2)(a 1-a 2)cosπ3, 整理得4c 2=a 21+3a 22,即1e 21+3e 22=4,则14e 21+34e 22=1, 所以e 21+e 22=⎝ ⎛⎭⎪⎫14e 21+34e 22(e 21+e 22)=1+e 224e 21+3e 214e 22≥1+2e 224e 21·3e 214e 22=1+32. 当且仅当e 224e 21=3e 214e 22,即e 2=43e 1时取等号.。
2021年高考数学理试题分类汇编:圆锥曲线(含答案)2021年高考数学理试题分类汇编——圆锥曲线一、选择题1.【2021年四川高考】设O为坐标原点,P是以F为焦点的抛物线y=2px(p>0)上任意一点,M是线段PF上的点,且PM=2MF,那么直线OM的斜率的最大值为?答案】C2.【2021年天津高考】双曲线x^2/a^2-y^2/b^2=1(b>0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A、B、C、D四点,四边形ABCD的面积为2b,那么双曲线的方程为?答案】D3.【2021年全国I高考】方程x^2/4-y^2/n^2=1表示双曲线,且该双曲线两焦点间的距离为4,那么n的取值范围是?答案】A4.【2021年全国I高考】以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点,|AB|=42,|DE|=25,那么C的焦点到准线的距离为?答案】B5.【2021年全国II高考】圆x+y-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,那么a=?答案】A6.【2021年全国II高考】圆F_1,F_2是双曲线E: x^2/4-y^2/9=1的左、右焦点,点M在E上,MF_1与x轴垂直,F_1F_2=b/a*sin∠MF_1F_2,那么E的离心率为?答案】A7.【2021年全国III高考】O为坐标原点,F是椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的左焦点,A、B分别为C的左、右顶点。
P为C上一点,且PF⊥x轴。
过点A的直线l与线段PF交于点M,与y轴交于点E。
假设直线BM经过OE的中点,那么C的离心率为?答案】A8.【2021年浙江高考】椭圆C_1: x^2/4+y^2/m^2=1(m>1)与双曲线C_2: x^2/4-y^2/n^2=1(n>0)的焦点重合,e_1,e_2分别为C_1,C_2的离心率,且e_1>e_2,那么m、n的大小关系是?答案】m>n2y-1由AN·BM = (x-a)(y-b)(x+c)(y+c) = (x+c)(y+c)得证。
直线与圆锥曲线的位置关系第一部分真题分类1.(2021·天津高考真题)已知双曲线22221(0,0)x y a b a b-=>>的右焦点与抛物线22(0)y px p =>的焦点重合,抛物线的准线交双曲线于A ,B 两点,交双曲线的渐近线于C 、D 两点,若|CD AB =.则双曲线的离心率为()AB C .2D .3【答案】A【解析】设双曲线22221(0,0)x y a b a b-=>>与抛物线22(0)y px p =>的公共焦点为(),0c ,则抛物线22(0)y px p =>的准线为x c =-,令x c =-,则22221c y a b -=,解得2b y a =±,所以22b AB a=,又因为双曲线的渐近线方程为b y x a =±,所以2bcCD a=,所以2bc a =c =,所以222212a c b c =-=,所以双曲线的离心率ce a==故选:A.2.(2021·全国高考真题(文))已知12,F F 为椭圆C :221164x y +=的两个焦点,P ,Q 为C上关于坐标原点对称的两点,且12PQ F F =,则四边形12PFQF 的面积为________.【答案】8【解析】因为,P Q 为C 上关于坐标原点对称的两点,且12||||PQ F F =,所以四边形12PFQF 为矩形,设12||,||PF m PF n ==,则228,48m n m n +=+=,所以22264()2482m n m mn n mn =+=++=+,8mn =,即四边形12PFQF 面积等于8.故答案为:8.3.(2021·江苏高考真题)已知椭圆()2222:10x y C a b a b +=>>.(1)证明:a =;(2)若点9,10M ⎛ ⎝⎭在椭圆C 的内部,过点M 的直线l 交椭圆C 于P 、Q 两点,M 为线段PQ 的中点,且OP OQ ⊥.①求直线l 的方程;②求椭圆C 的标准方程.【答案】(1)证明见解析;(20y -=;②2213x y +=.【解析】(1)3c e a =====,3b a ∴=,因此,a =;(2)①由(1)知,椭圆C 的方程为222213x y b b+=,即22233x y b +=,当9,10⎛ ⎝⎭在椭圆C的内部时,2229331010b ⎛⎫⎛⎫+⋅-< ⎪ ⎪ ⎪⎝⎭⎝⎭,可得10b >.设点()11,P x y 、()22,Q x y,则12129210210x x y y +⎧=⎪⎪⎨+⎪=-⎪⎩,所以,1212y y x x +=+由已知可得22211222223333x y b x y b ⎧+=⎨+=⎩,两式作差得()()()()1212121230x x x x y y y y +-++-=,所以()12121212133y y x x x x y y -+⎛=-=-⨯= -+⎝,所以,直线l方程为910y x ⎛⎫-=- ⎪ ⎭⎝⎭,即y =所以,直线l0y -=;②联立)222331x y by x ⎧+=⎪⎨=-⎪⎩,消去y 可得221018930x x b -+-=.()222184093120360b b ∆=--=->,由韦达定理可得1295x x +=,2129310b x x -=,又OP OQ ⊥ ,而()11,OP x y = ,()22,OQ x y =,))()12121212121211433OP OQ x x y y x x x x x x x x ∴⋅=+=--=-++()22293271566055b b --+-===,解得21b =合乎题意,故2233a b ==,因此,椭圆C 的方程为2213x y +=.4.(2021·天津高考真题)已知椭圆()222210x y a b a b+=>>的右焦点为F ,上顶点为B ,,且BF =(1)求椭圆的方程;(2)直线l 与椭圆有唯一的公共点M ,与y 轴的正半轴交于点N ,过N 与BF 垂直的直线交x 轴于点P .若//MP BF ,求直线l 的方程.【答案】(1)2215x y +=;(2)0x y -=.【解析】(1)易知点(),0F c 、()0,B b,故BF a ===因为椭圆的离心率为c e a ==2c =,1b ==,因此,椭圆的方程为2215x y +=;(2)设点()00,M x y 为椭圆2215xy +=上一点,先证明直线MN 的方程为0015x xy y +=,联立00221515x xy y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,消去y 并整理得220020x x x x -+=,2200440x x ∆=-=,因此,椭圆2215x y +=在点()00,M x y 处的切线方程为0015x x y y +=.在直线MN 的方程中,令0x =,可得01y y =,由题意可知00y >,即点010,N y ⎛⎫⎪⎝⎭,直线BF 的斜率为12BF b k c =-=-,所以,直线PN 的方程为012y x y =+,在直线PN 的方程中,令0y =,可得012x y =-,即点01,02P y ⎛⎫-⎪⎝⎭,因为//MP BF ,则MPBF k k =,即20000002112122y y x y x y ==-++,整理可得()20050x y +=,所以,005x y =-,因为222000615x y y +==,00y ∴>,故06y =,06x =-,所以,直线l的方程为166x y +=,即0x y -=.5.(2021·全国高考真题)已知椭圆C 的方程为22221(0)x y a b a b+=>>,右焦点为F ,且离心率为3.(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线222(0)x y b x +=>相切.证明:M ,N ,F三点共线的充要条件是||MN .【答案】(1)2213x y +=;(2)证明见解析.【解析】(1)由题意,椭圆半焦距c =3c e a ==,所以a 又2221b a c =-=,所以椭圆方程为2213x y +=;(2)由(1)得,曲线为221(0)x y x +=>,当直线MN 的斜率不存在时,直线:1MN x =,不合题意;当直线MN 的斜率存在时,设()()1122,,,M x y N x y ,必要性:若M ,N ,F三点共线,可设直线(:MN y k x =-即0kx y -=,由直线MN 与曲线221(0)x y x +=>1=,解得1k =±,联立(2213y x x y ⎧=±⎪⎨⎪+=⎩可得2430x -+=,所以1212,324x x x x +=⋅=,所以MN =所以必要性成立;充分性:设直线():,0MN y kx b kb =+<即0kx y b -+=,由直线MN 与曲线221(0)x y x +=>1=,所以221b k =+,联立2213y kx b x y =+⎧⎪⎨+=⎪⎩可得()222136330k x kbx b +++-=,所以2121222633,1313kb b x x x x k k -+=-⋅=++,所以MN ==213k=+=化简得()22310k -=,所以1k =±,所以1k b =⎧⎪⎨=⎪⎩或1k b =-⎧⎪⎨=⎪⎩,所以直线:MN y x =y x =-,所以直线MN 过点F ,M ,N ,F 三点共线,充分性成立;所以M ,N,F 三点共线的充要条件是||MN =6.(2021·全国高考真题)在平面直角坐标系xOy 中,已知点()10F、)2122F MF MF -=,,点M 的轨迹为C .(1)求C 的方程;(2)设点T 在直线12x =上,过T 的两条直线分别交C 于A 、B 两点和P ,Q 两点,且TA TB TP TQ ⋅=⋅,求直线AB 的斜率与直线PQ 的斜率之和.【答案】(1)()221116y x x -=≥;(2)0.【解析】因为12122MF MF F F -=<=所以,轨迹C 是以点1F 、2F 为左、右焦点的双曲线的右支,设轨迹C 的方程为()222210,0x y a b a b -=>>,则22a =,可得1a =,4b ==,所以,轨迹C 的方程为()221116y x x -=≥;(2)设点1,2T t ⎛⎫⎪⎝⎭,若过点T 的直线的斜率不存在,此时该直线与曲线C 无公共点,不妨直线AB 的方程为112y t k x ⎛⎫-=-⎪⎝⎭,即1112y k x t k =+-,联立1122121616y k x t k x y ⎧=+-⎪⎨⎪-=⎩,消去y 并整理可得()()222111111621602k x k t k x t k ⎛⎫-+-+-+= ⎪⎝⎭,设点()11,A x y 、()22,B x y ,则112x >且212x >.由韦达定理可得2111221216k k t x x k -+=-,211221116216t k x x k ⎛⎫-+ ⎪⎝⎭=-,所以,()()()()22122121121122112111111222416t k x x TA TB k x x k x x k +++⎛⎫⋅=+⋅-⋅-=+⋅-+= ⎪-⎝⎭,设直线PQ 的斜率为2k ,同理可得()()2222212116tk TP TQ k ++⋅=-,因为TA TB TP TQ ⋅=⋅,即()()()()22221222121211211616tk t k k k ++++=--,整理可得2212k k =,即()()12120k k k k -+=,显然120k k -≠,故120k k +=.因此,直线AB 与直线PQ 的斜率之和为0.7.(2021·全国高考真题(理))已知抛物线()2:20C x py p =>的焦点为F ,且F 与圆22:(4)1M x y ++=上点的距离的最小值为4.(1)求p ;(2)若点P 在M 上,,PA PB 是C 的两条切线,,A B 是切点,求PAB △面积的最大值.【答案】(1)2p =;(2)【解析】(1)抛物线C 的焦点为0,2p F ⎛⎫ ⎪⎝⎭,42pFM =+,所以,F 与圆22:(4)1M x y ++=上点的距离的最小值为4142p+-=,解得2p =;(2)抛物线C 的方程为24x y =,即24x y =,对该函数求导得2x y '=,设点()11,A x y 、()22,B x y 、()00,P x y ,直线PA 的方程为()1112x y y x x -=-,即112x xy y =-,即11220x x y y --=,同理可知,直线PB 的方程为22220x x y y --=,由于点P 为这两条直线的公共点,则10102020220220x x y y x x y y --=⎧⎨--=⎩,所以,点A 、B 的坐标满足方程00220x x y y --=,所以,直线AB 的方程为00220x x y y --=,联立0022204x x y y x y --=⎧⎪⎨=⎪⎩,可得200240x x x y -+=,由韦达定理可得1202x x x +=,1204x x y =,所以,AB ==,点P 到直线AB的距离为d =,所以,()3220011422PABS AB d x y =⋅==-△,()()2222000000041441215621x y y y y y y -=-+-=---=-++ ,由已知可得053y -≤≤-,所以,当05y =-时,PAB△的面积取最大值321202⨯=8.(2020·海南高考真题)已知椭圆C :22221(0)x y a b a b+=>>过点M (2,3),点A 为其左顶点,且AM 的斜率为12,(1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.【答案】(1)2211612x y +=;(2)18.【解析】(1)由题意可知直线AM 的方程为:13(2)2y x -=-,即24-=-x y .当y =0时,解得4x =-,所以a =4,椭圆()2222:10x y C a b a b+=>>过点M (2,3),可得249116b +=,解得b 2=12.所以C 的方程:2211612x y +=.(2)设与直线AM 平行的直线方程为:2x y m -=,如图所示,当直线与椭圆相切时,与AM 距离比较远的直线与椭圆的切点为N ,此时△AMN 的面积取得最大值.联立直线方程2x y m -=与椭圆方程2211612x y+=,可得:()2232448m y y ++=,化简可得:2216123480y my m ++-=,所以()221444163480m m ∆=-⨯-=,即m 2=64,解得m =±8,与AM 距离比较远的直线方程:28x y -=,直线AM 方程为:24-=-x y ,点N 到直线AM 的距离即两平行线之间的距离,利用平行线之间的距离公式可得:5514d ==+,由两点之间距离公式可得22||(24)335AM ++=.所以△AMN 的面积的最大值:1125351825⨯.9.(2020·江苏高考真题)在平面直角坐标系xOy 中,已知椭圆22:143x y E +=的左、右焦点分别为F 1,F 2,点A 在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求△AF 1F 2的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP QP ⋅的最小值;(3)设点M 在椭圆E 上,记△OAB 与△MAB 的面积分别为S 1,S 2,若S 2=3S 1,求点M 的坐标.【答案】(1)6;(2)-4;(3)()2,0M 或212,77⎛⎫-- ⎪⎝⎭.【解析】(1)∵椭圆E 的方程为22143x y +=∴()11,0F -,()21,0F 由椭圆定义可得:124AF AF +=.∴12AF F △的周长为426+=(2)设()0,0P x ,根据题意可得01x ≠.∵点A 在椭圆E 上,且在第一象限,212AF F F ⊥∴31,2A ⎛⎫⎪⎝⎭∵准线方程为4x =∴()4,QQ y ∴()()()()200000,04,4244Q OP QP x x y x x x ⋅=⋅--=-=--≥-,当且仅当02x =时取等号.∴OP QP ⋅的最小值为4-.(3)设()11,M x y ,点M 到直线AB 的距离为d .∵31,2A ⎛⎫⎪⎝⎭,()11,0F -∴直线1AF 的方程为()314y x =+∵点O 到直线AB 的距离为35,213S S =∴2113133252S S AB AB d==⨯⨯⨯=⋅∴95d =∴113439x y -+=①∵2211143x y +=②∴联立①②解得1120x y =⎧⎨=⎩,1127127x y ⎧=-⎪⎪⎨⎪=-⎪⎩.∴()2,0M 或212,77⎛⎫-- ⎪⎝⎭.第二部分模拟训练一、单选题1.已知抛物线26y x =的焦点为F ,过点F 的直线交抛物线于A ,B 两点,且12FA FB ⋅=,则AB =()A .6B .7C .8D .9【答案】C【解析】由26y x =得3p =,所以3(,0)2F ,准线为32x =-,设直线3:2AB x ty =+,联立2326x ty y x⎧=+⎪⎨⎪=⎩,消去x 并整理得2690y ty --=,设1122(,),(,)A x y B x y ,则126y y t +=,129y y =-,所以21212()363x x t y y t +=++=+,222121212()966364y y y y x x =⨯==,因为13||2AF x =+,23||2BF x =+,12FA FB ⋅=,所以1233()()1222x x ++=,所以()1212391224x x x x +++=,所以()1293912424x x +++=,所以125x x +=,所以121233||||||3822AB AF BF x x x x =+=+++=++=.故选:C2.已知过抛物线2y =焦点F 的直线与抛物线交于A ,B 两点,且2AF FB =,则AOB (O 为坐标原点)的面积为()A .32B.2C .3D.【答案】D【解析】由题意,抛物线2y =的焦点坐标为F ,设直线AB为x my =,()11,A x y ,()22,B x y ,因为2AF FB =,可得122y y =-,由2y x my ⎧=⎪⎨=+⎪⎩280y --=,所以128y y =-,又由121282y y y y =-⎧⎨=-⎩,可得224y =,解得22y =-或22y =,当22y =-时,14y =,可得1211||622AOB S OF y y ∆=⨯⨯-==;当22y =时,14y =-,可得1211||622AOB S OF y y ∆=⨯⨯-==.故选:D.3.已知抛物线()2:20C y px p =>的焦点为F ,直线(2)y k x =+与抛物线C 交于点()1,2A ,B ,则FB =()A .3B .4C .5D .6【答案】C【解析】由点()1,2A 在抛物线C 上得2p =,设2,4t B t ⎛⎫ ⎪⎝⎭,由直线过定点()2,0-得()()221224tk t==----,解得4t =(舍去2),()4,4B ,所以||452pFB =+=.故选:C .4.已知点()15,0F -,()25,0F .设点P 满足126PF PF -=,且12MF =,21NF =,则PM PN -的最大值为()A .7B .8C .9D .10【答案】C【解析】解:因为12610PF PF -=<,所以点P 在以1F ,2F 为焦点,实轴长为6,焦距为10的双曲线的右支上,则双曲线的方程为221916x y -=.由题意知M 在圆()221:54F x y ++=上,N 在圆()222:51F x y -+=上,如图所示,12PM PF ≤+,21PN PF ≥-,则()()12122139PM PN PF PF PF PF -≤+--=-+=.当M 是1PF 延长线与圆1F 的交点,N 是2PF 与圆2F 的交点时取等号.故选:C .5.已知双曲线C 的方程为2214y x -=,点P ,Q 分别在双曲线的左支和右支上,则直线PQ 的斜率的取值范围是()A .()2,2-B .11,22⎛⎫-⎪⎝⎭C .()(),22,-∞-+∞ D .11,,22⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭【答案】A【解析】由双曲线的方程2214y x -=可得其渐近线方程为2y x =±,故当点P ,Q 分别在双曲线的左支和右支上时,直线PQ 的斜率的取值范围是()2,2-.故选:A.6.已知F 是抛物线()2:20C y px p =>的焦点,M 是抛物线C 上一点,MF 的延长线交y 轴于点N .若:2:1MF NF =,2NF =,则抛物线C 的方程为()A .2y x =B .24y x =C .28y x =D .216y x=【答案】B【解析】由题意,抛物线()2:20C y px p =>,可得焦点,02p F ⎛⎫⎪⎝⎭,准线方程为2p x =-,作MA 垂直于y 轴交y 轴于点A ,因为:2:1MF NF =,2NF =,所以F 为线段MN 的三等分点,且24MF NF ==,由NFO NMA △△∽,得13OF MA =,即332p MA OF ==,所以32422p pMF p =+==,所以抛物线C 的方程为24y x =.故选:B.二、填空题7.过抛物线22y px =(0p >)的焦点作与抛物线对称轴垂直的直线交抛物线于A 、B 两点,且||4AB =,则p =___________.【答案】2【解析】设抛物线的焦点坐标为,02p F ⎛⎫⎪⎝⎭,由条件可知2A B F p x x x ===,所以222A B p pAB AF BF x x p =+=+++=,又AB 4=,所以2p =,故答案为:2.8.已知抛物线C :y 2=x ,过C 的焦点的直线与C 交于A ,B 两点.弦AB 长为2,则线段AB 的中垂线与x 轴交点的横坐标为__________.【答案】54【解析】抛物线的焦点为1,04⎛⎫⎪⎝⎭,则可设直线AB 为:()104x ky k =+≠,联立2y x =,消x 得,2104y ky --=,设()()1122,,,A x y B x y ,12y y k +=,212121111122442AB x x ky ky k ⎛⎫⎛⎫=++=++++=+= ⎪ ⎪⎝⎭⎝⎭得1k =±,当1k =时,得12122y y +=,所以AB 中点坐标为31,42⎛⎫ ⎪⎝⎭,则AB 的中垂线方程为1324y x ⎛⎫-=-- ⎪⎝⎭,则与x 轴的交点的横坐标为54;同理,当1k =-时,线段AB 的中垂线与x 轴交点的横坐标为54.故答案为:549.已知双曲线()222210,0x y a b a b-=>>的右顶点为A ,若以点A 为圆心、双曲线的实半轴长为半径的圆与双曲线的一条渐近线交于点B ,与x 轴正半轴交于点D ,且线段BD 交双曲线于点C ,3DC CB =,则双曲线的离心率是______.【解析】由题意知(),0A a 、()2,0D a ,以点A 为圆心、双曲线的实半轴长为半径的圆的方程为()222x a y a -+=.不妨设点B 在第一象限,联立()2220x a y a b y x a x ⎧-+=⎪⎪=⎨⎪>⎪⎩,解得322222a x ca by c ⎧=⎪⎪⎨⎪=⎪⎩,即点322222,a a b B cc ⎛⎫⎪⎝⎭,设点(),C m n ,()2,DC m a n =- ,322222,a a bCB m n c c ⎛⎫=-- ⎪⎝⎭ ,可得322222323a m a m c a b n n c ⎧⎛⎫-=-⎪ ⎪⎪⎝⎭⎨⎛⎫⎪=- ⎪⎪⎝⎭⎩,解得2231232a m e bn e ⎧⎛⎫=+ ⎪⎪⎪⎝⎭⎨⎪=⎪⎩,根据点C 在双曲线()222210,0x y a b a b -=>>上,得22223314e e ⎛⎫⎛⎫+-= ⎪ ⎪⎝⎭⎝⎭,得22e =,所以,e =..10.已知椭圆()222210x y a b a b+=>>右顶点为()2,0A ,上顶点为B ,该椭圆上一点P 与A 的连线的斜率114k =-,中点为E ,记OE 的斜率为OE k ,且满足140OE k k +=.若C 、D 分别是x 轴、y 轴负半轴上的动点,且四边形ABCD 的面积为2,则三角形COD 面积的最大值是______.【答案】3-【解析】解:设()11,P x y ,()22,A x y ,PA 中点()00,E x y ,则有2211221x y a b +=,2222221x y a b+=,两式相减得()()()()12121212220x x x x y y y y a b +-+-+=,即2121221212y y y y b x x x x a+-⋅=-+-,则212OEb k k a⋅=-,由()2,0A 为椭圆右顶点,所以2a =,又114k =-,140OE k k +=,得到1OE k =,1b =.设(),0C m -,()0,D n -,0m >,0n >,则由四边形ABCD 的面积为2,又B 为上顶点,则()()12122m n ++=,即22mn m n ++=,由基本不等式得2mn ≥+2≤,所以三角形COD 的面积(2112322S mn =≤=-,当且仅当2m n =,即2m =-,1n =时取等号.故答案为:3-。
专题21:圆锥曲线高考真题浙江卷(解析版)一、单选题1.渐近线方程为0x y ±=的双曲线的离心率是( )A .2B .1C D .2【答案】C 【分析】本题根据双曲线的渐近线方程可求得a b =,进一步可得离心率.容易题,注重了双曲线基础知识、基本计算能力的考查. 【详解】根据渐近线方程为x ±y =0的双曲线,可得a b =,所以c =则该双曲线的离心率为 e ca==, 故选C . 【点睛】理解概念,准确计算,是解答此类问题的基本要求.部分考生易出现理解性错误.2.已知点O (0,0),A (–2,0),B (2,0).设点P 满足|PA |–|PB |=2,且P 为函数y =图像上的点,则|OP |=( )A .2B .5C D【答案】D 【分析】根据题意可知,点P 既在双曲线的一支上,又在函数y =的图象上,即可求出点P 的坐标,得到OP 的值. 【详解】因为||||24PA PB -=<,所以点P 在以,A B 为焦点,实轴长为2,焦距为4的双曲线的右支上,由2,1c a ==可得,222413b c a =-=-=,即双曲线的右支方程为试卷第2页,总15页()22103y x x -=>,而点P还在函数y =的图象上,所以,由()22103y x x y ⎧⎪⎨->==⎪⎩,解得22x y ⎧=⎪⎪⎨⎪=⎪⎩,即OP == 故选:D. 【点睛】本题主要考查双曲线的定义的应用,以及二次曲线的位置关系的应用,意在考查学生的数学运算能力,属于基础题.3.椭圆2x 9+2y 4=1的离心率是( )A.3B.3C .23D .59【答案】B 【解析】椭圆22194x y +=中22222945a b c a b ===-=,,.离心率e c a ==,故选B. 4.双曲线221 3x y -=的焦点坐标是( )A.(),)B .()2,0-,()2,0 C.(0,,( D .()0,2-,()0,2【答案】B 【分析】根据双曲线方程确定焦点位置,再根据222c a b =+求焦点坐标. 【详解】因为双曲线方程为2213x y -=,所以焦点坐标可设为(,0)c ±,因为222314,2c a b c =+=+==,所以焦点坐标为(20),选B.【点睛】由双曲线方程22221(0,0)x y a b a b-=>>可得焦点坐标为22(,0)()c c a b ±=+,顶点坐标为(,0)a ±,渐近线方程为by x a=±. 5.如图,设抛物线24y x =的焦点为 F ,不经过焦点的直线上有三个不同的点A ,B ,C ,其中点 A ,B 在抛物线上,点 C 在y 轴上,则 BCF ∆与ACF ∆的面积之比是( )A .11BF AF -- B .2211BF AF -- C .11BF AF ++ D .2211BF AF ++【答案】A 【解析】,故选A.考点:抛物线的标准方程及其性质6.双曲线2214y x -=的焦距是( )A 3B .23C 5D .5【答案】D 【解析】 【分析】该双曲线的焦点在y 轴,利用222c a b =+可求得双曲线的焦距. 【详解】试卷第4页,总15页双曲线22221y x a b-=的焦距为2c ===故选D.【点睛】双曲线中222c a b =+,椭圆中222c a b =-,要注意区别并判断焦点在x 轴上还是在y 轴上.7.双曲线2221y x -=的一个顶点坐标是( )A .( 2,0)B .(-2,0) C .(0)D .(0,2) 【答案】D 【解析】 【分析】先将双曲线方程化为标准方程,即可得到顶点坐标. 【详解】双曲线2221y x -=化为标准方程为:22112y x -=,∴2a =12,且实轴在y 轴上,∴顶点坐标是(0,,故选D. 【点睛】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,比较基础.8.已知双曲线2222:1x y C a a-=,则C 的离心率是( )A.2BC .2D【答案】B 【分析】由题意知双曲线为等轴双曲线,由此得离心率. 【详解】∵双曲线方程为2222:1x y C a a-=,∴双曲线为等轴双曲线,. 故选B. 【点睛】本题考查了等轴双曲线的特点,考查了双曲线的性质,属于基础题.9.已知P 是双曲线2222:1(0,0)x y C a b a b-=>>渐近线上的点,则双曲线C 的离心率是( )A .2BCD 【答案】A 【分析】由(P 在双曲线C 的渐近线上,得b a 计算可得. 【详解】因为双曲线2222x y C :1(a 0,b 0)a b-=>>的渐近线方程为y=b x a ± ,(P 在渐近线上,所以b a ,则=2. 故选A. 【点睛】本题考查了双曲线的离心率求法,也考查了渐近线方程的应用,属于基础题.二、双空题10.设直线:(0)l y kx b k =+>与圆221x y +=和圆22(4)1x y -+=均相切,则k =_______;b =______.3- 【分析】由直线与两圆相切建立关于k ,b 的方程组,解方程组即可. 【详解】设221:1C x y +=,222:(4)1C x y -+=,由题意,12,C C 到直线的距离等于半径,试卷第6页,总15页即2211k =+,2211k =+,所以||4b k b =+,所以0k =(舍)或者2b k =-,解得323,33k b ==-. 故答案为:323;-【点晴】本题主要考查直线与圆的位置关系,考查学生的数学运算能力,是一道基础题.三、解答题11.如图,已知点(10)F ,为抛物线22(0)y px p =>的焦点,过点F 的直线交抛物线于,A B 两点,点C 在抛物线上,使得ABC 的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 右侧.记,AFG CQG △△的面积为12,S S .(1)求p 的值及抛物线的准线方程;(2)求12S S 的最小值及此时点G 的坐标.【答案】(1)2,1x =-;(2)312+,()2,0G . 【分析】(1)由焦点坐标确定p 的值和准线方程即可;(2)设出直线方程,联立直线方程和抛物线方程,结合韦达定理求得面积的表达式,最后结合均值不等式的结论即可求得12S S 的最小值和点G 的坐标.【详解】(1)由题意可得12p=,则2,24p p ==,抛物线方程为24y x =,准线方程为1x =-. (2)设()()1122,,,A x y B x y ,设直线AB 的方程为()1,0y k x k =->,与抛物线方程24y x =联立可得:()2222240k x k x k -++=,故:2222242,1k x x x x +=+=, ()12121242,4y y k x x y y k+=+-==-⨯=-,设点C 的坐标为()33,C x y ,由重心坐标公式可得:1233G x x x x ++=321423x k ⎛⎫++ ⎝=⎪⎭,1233G y y y y ++=3143y k =⎛⎫+ ⎪⎝⎭, 令0G y =可得:34y k =-,则233244y x k==.即222144123382G k x k k ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝=⎭=,由斜率公式可得:131322311313444AC y y y y k y y x x y y --===-+-,直线AC 的方程为:()33134y y x x y y -=-+,令0y =可得:()()231331331334444Q y y y y y y y y yx x -+-+=+=+=-,故()11112218121323118223G F y S x x y y k k ⎡⎤⎛⎫⎛⎫+-⨯=⨯- ⎪=⨯-⨯ ⎪⎢⎥⎝⎭⎝=⨯⎭⎣⎦, 且()()32213311822423Q G y y y S x x y k ⎛⎫+ ⎪⎝⎭⎡⎤=⨯-⨯-=---⎢⎥⎣⎦,由于34y k=-,代入上式可得:12222833y S k k k ⎛⎫=-- ⎪⎝⎭,由12124,4y y y y k+==-可得1144y y k -=,则12144y k y =-,则()()()2211122121112281233222284433y y S y S y y k k k y k -==⎛⎫-+--⎛⎫⨯- ⎭⎪⎝⎭⎪⎝()212142488168y y =--++-试卷第8页,总15页()21213214828168yy ≥-=+-⨯+-.当且仅当21214888y y -=-,即21843y =+,162y =+时等号成立. 此时121424y k y ==-,281223G x k ⎛⎫+= ⎪⎝⎭=,则点G 的坐标为()2,0G . 【点睛】直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系,本题主要考查了抛物线准线方程的求解,直线与抛物线的位置关系,三角形重心公式的应用,基本不等式求最值的方法等知识,意在考查学生的转化能力和计算求解能力.12.如图,已知椭圆221:12x C y +=,抛物线22:2(0)C y px p =>,点A 是椭圆1C 与抛物线2C 的交点,过点A 的直线l 交椭圆1C 于点B ,交抛物线2C 于M (B ,M 不同于A ).(Ⅰ)若116=p ,求抛物线2C 的焦点坐标; (Ⅱ)若存在不过原点的直线l 使M 为线段AB 的中点,求p 的最大值. 【答案】(Ⅰ)1(,0)32;10【详解】 (Ⅰ)当116=p 时,2C 的方程为218y x =,故抛物线2C 的焦点坐标为1(,0)32;(Ⅱ)设()()()112200,,,,,,:A x y B x y M x y I x y m λ=+,由()22222222220x y y my m x y mλλλ⎧+=⇒+++-=⎨=+⎩, 1200022222,,222m m my y y x y m λλλλλλ--∴+===+=+++, 由M 在抛物线上,所以()222222244222m pm mp λλλλλ=⇒=+++, 又22222()220y pxy p y m y p y pm x y mλλλ⎧=⇒=+⇒--=⎨=+⎩, 012y y p λ∴+=,2101022x x y m y m p m λλλ∴+=+++=+,2122222mx p m λλ∴=+-+.由2222142,?22x y x px y px ⎧+=⎪⇒+=⎨⎪=⎩即2420x px +-=12x p ⇒==-+222221822228162p p p m p p p λλλλλ+⇒-=+⋅=++≥+,18p ≥,21160p ≤,40p ≤, 所以,p,此时A . 法2:设直线:(0,0)l x my t m t =+≠≠,()00,A x y .将直线l 的方程代入椭圆221:12x C y +=得:()2222220m y mty t +++-=,所以点M 的纵坐标为22M mty m =-+. 将直线l 的方程代入抛物线22:2C y px =得:2220y pmy pt --=,所以02M y y pt =-,解得()2022p m y m+=,因此()220222p m xm+=,由220012x y +=解得22212242160m m p m m ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,所以当10 2,m t==时,p取到最大值为1040.【点晴】本题主要考查直线与圆锥曲线的位置关系的综合应用,涉及到求函数的最值,考查学生的数学运算能力,是一道有一定难度的题.13.如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y2=4x上存在不同的两点A,B满足PA,PB的中点均在C上.(Ⅰ)设AB中点为M,证明:PM垂直于y轴;(Ⅱ)若P是半椭圆x2+24y=1(x<0)上的动点,求△PAB面积的取值范围.【答案】(Ⅰ)证明见解析;(Ⅱ)151062,⎡⎢⎣⎦.【分析】分析: (Ⅰ)设P,A,B的纵坐标为012,y y y,,根据中点坐标公式得P A,PB的中点坐标,代入抛物线方程,可得1202y y y+=,即得结论;(Ⅱ)由(Ⅰ)可得△P AB面积为1212PM y y-,利用根与系数的关系可表示12PM y y-,为y的函数,根据半椭圆范围以及二次函数性质确定面积取值范围.【详解】详解:(Ⅰ)设()00,P x y,2111,4A y y⎛⎫⎪⎝⎭,2221,4B y y⎛⎫⎪⎝⎭.因为PA,PB的中点在抛物线上,所以1y,2y为方程2214422y xy y++⎛⎫=⋅⎪⎝⎭,即22000280y y y x y-+-=的两个不同的实数根.试卷第10页,总15页所以1202y y y +=. 因此,PM 垂直于y 轴.(Ⅱ)由(Ⅰ)可知120212002,8,y y y y y x y +=⎧⎨=-⎩所以()2221200013384PM y y x y x =+-=-,()21200224y y y x -=-. 因此,PAB △的面积()3221200132424PABSPM y y y x =⋅-=-.因为220001(0)4y x x +=<,所以[]22000044444,5y x x x -=--+∈.因此,PAB △面积的取值范围是151062,⎡⎤⎢⎥⎣⎦. 点睛:求范围问题,一般利用条件转化为对应一元函数问题,即通过题意将多元问题转化为一元问题,再根据函数形式,选用方法求值域,如二次型利用对称轴与定义区间位置关系,分式型可以利用基本不等式,复杂性或复合型可以利用导数先研究单调性,再根据单调性确定值域. 14.如图,设抛物线的焦点为F ,抛物线上的点A 到y 轴的距离等于|AF|–1.(Ⅰ)求p 的值;(Ⅱ)若直线AF 交抛物线于另一点B ,过B 与x 轴平行的直线和过F 与AB 垂直的直线交于点N ,AN 与x 轴交于点M.求M 的横坐标的取值范围. 【答案】(Ⅰ)p=2;(Ⅱ).【解析】试题分析:本题主要考查抛物线的几何性质、直线与抛物线的位置关系等基础知识,同时考查解析几何的基本思想方法和综合解题能力.试题解析:(Ⅰ)由题意可得,抛物线上点A 到焦点F 的距离等于点A 到直线x=–1的距离,由抛物线的定义得,即p=2.(Ⅱ)由(Ⅰ)得,抛物线的方程为,可设.因为AF不垂直于y轴,可设直线AF: x=sy+1,,由消去x 得,故,所以,.又直线AB 的斜率为,故直线FN 的斜率为.从而得直线FN:,直线BN:.所以.设M(m,0),由A,M,N 三点共线得,于是.所以m<0或m>2.经检验,m<0或m>2满足题意.综上,点M 的横坐标的取值范围是.【考点】抛物线的几何性质、直线与抛物线的位置关系.【思路点睛】(Ⅰ)当题目中出现抛物线上的点到焦点的距离时,一般会想到转化为抛物线上的点到准线的距离.解答本题时转化为抛物线上的点到准线的距离,进而可得点到轴的距离;(Ⅱ)通过联立方程组可得点的坐标,进而可得点的坐标,再利用,,三点共线可得用含有的式子表示,进而可得的横坐标的取值范围.15.已知椭圆2212xy+=上两个不同的点A,B关于直线12y mx=+对称.试卷第12页,总15页(1)求实数m 的取值范围;(2)求AOB ∆面积的最大值(O 为坐标原点). 【答案】(1)63m <-或63m >;(2)22. 【解析】(1)可设直线AB 的方程为1y x b m=-+,从而可知有两个不同的解,再由AB 中点也在直线上,即可得到关于m 的不等式,从而求解;(2)令1t m=,可将AOB ∆表示为t 的函数,从而将问题等价转化为在给定范围上求函数的最值,从而求解.试题解析:(1)由题意知0m ≠,可设直线AB 的方程为1y x b m=-+,由,消去y ,得,∵直线1y x b m=-+与椭圆2212x y +=有两个不同的交点,∴224220b m ∆=-++>,①,将AB 中点2222(,)22mb m bM m m ++代入直线方程12y mx=+解得2222mbm+=-,②.由①②得63m<-或6m>;(2)令166(,0)(0,)tm=∈-⋃,则42223222112t tAB tt-++=+⋅+,且O到直线AB 的距离为22121tdt+=+,设AOB∆的面积为()S t,∴221112()2()22222S t AB d t=⋅=--+≤,当且仅当212t=时,等号成立,故AOB∆面积的最大值为22.考点:1.直线与椭圆的位置关系;2.点到直线距离公式;3.求函数的最值.16.如图,已知抛物线211C4x:y=,圆222C(y1)1x:,过点P(t,0)(t>0)作不过原点O的直线PA,PB分别与抛物线1C和圆2C相切,A,B为切点.(1)求点A,B的坐标;(2)求PAB∆的面积.注:直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则该直线与抛物线相切,称该公共点为切点.【答案】(1)222222(2,),(,)11t tA t t Bt t++;(2)32t【解析】(1)设定直线PA的方程,通过联立方程,判别式为零,得到点A的坐标;根据圆的性质,利用点关于直线对称,得到点B的坐标;(2)利用两点求距离及点到直线的距离试卷第14页,总15页公式,得到三角形的底边长与底边上的高,由此计算三角形的面积.试题解析:(1)由题意可知,直线PA 的斜率存在,故可设直线PA 的方程为()y k x t =-.所以2(){14y k x t y x=-=消去y ,整理得:2440x kx kt -+=.因为直线PA 与抛物线相切,所以216160k kt ∆=-=,解得k t =. 所以2x t =,即点2(2,)A t t .设圆2C 的圆心为(0,1)D ,点B 的坐标为00(,)x y ,由题意知,点B ,O 关于直线D P 对称,故有00001{220y xt x t y =-+-=, 解得2002222,11t t x y t t ==++.即点22222(,)11t t B t t++. (2)由(1)知,,直线PA 的方程为20tx y t --=, 所以点B 到直线PA 的距离为221d t=+所以PAB △的面积为3122t S AP d =⋅=.考点:1.抛物线的几何性质;2.直线与圆的位置关系;3.直线与抛物线的位置关系.。
专题14 圆锥曲线中的定值定点问题1.(2022·全国·高考真题(文))已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过()30,2,,12A B ⎛--⎫⎪⎝⎭两点.(1)求E 的方程;(2)设过点()1,2P -的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT TH =.证明:直线HN 过定点.【答案】(1)22143y x +=(2)(0,2)- 【解析】 【分析】(1)将给定点代入设出的方程求解即可;(2)设出直线方程,与椭圆C 的方程联立,分情况讨论斜率是否存在,即可得解. (1)解:设椭圆E 的方程为221mx ny +=,过()30,2,,12A B ⎛--⎫⎪⎝⎭,则41914n m n =⎧⎪⎨+=⎪⎩,解得13m =,14n =,所以椭圆E 的方程为:22143y x +=.(2)3(0,2),(,1)2A B --,所以2:23+=AB y x ,①若过点(1,2)P -的直线斜率不存在,直线1x =.代入22134x y+=,可得(1,M,N ,代入AB 方程223y x =-,可得(3,T ,由MT TH =得到(5,H -.求得HN 方程:(22y x =+-,过点(0,2)-. ①若过点(1,2)P -的直线斜率存在,设1122(2)0,(,),(,)kx y k M x y N x y --+=.联立22(2)0,134kx y k x y --+=⎧⎪⎨+=⎪⎩得22(34)6(2)3(4)0k x k k x k k +-+++=, 可得1221226(2)343(4)34k k x x k k k x x k +⎧+=⎪⎪+⎨+⎪=⎪+⎩,12222228(2)344(442)34k y y k k k y y k -+⎧+=⎪⎪+⎨+-⎪=⎪+⎩,且1221224(*)34kx y x y k -+=+联立1,223y y y x =⎧⎪⎨=-⎪⎩可得111113(3,),(36,).2y T y H y x y ++- 可求得此时1222112:()36y y HN y y x x y x x --=-+--,将(0,2)-,代入整理得12121221122()6()3120x x y y x y x y y y +-+++--=, 将(*)代入,得222241296482448482436480,k k k k k k k +++---+--= 显然成立,综上,可得直线HN 过定点(0,2).-2.(2021·全国·高考真题)已知椭圆C 的方程为22221(0)x y a b a b +=>>,右焦点为F ,.(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线222(0)x y b x +=>相切.证明:M ,N ,F 三点共线的充要条件是||MN =【答案】(1)2213x y +=;(2)证明见解析.【解析】 【分析】(1)由离心率公式可得a =2b ,即可得解;(2)必要性:由三点共线及直线与圆相切可得直线方程,联立直线与椭圆方程可证MN 充分性:设直线():,0MN y kx b kb =+<,由直线与圆相切得221b k =+,联立直线与椭圆方程结合弦长公=1k =±,即可得解. 【详解】(1)由题意,椭圆半焦距c =c e a ==a = 又2221b a c =-=,所以椭圆方程为2213x y +=;(2)由(1)得,曲线为221(0)x y x +=>,当直线MN 的斜率不存在时,直线:1MN x =,不合题意; 当直线MN 的斜率存在时,设()()1122,,,M x y N x y , 必要性:若M ,N ,F三点共线,可设直线(:MN y k x =即0kx y -=, 由直线MN 与曲线221(0)x y x +=>1=,解得1k =±,联立(2213y x x y ⎧=±⎪⎨⎪+=⎩可得2430x -+=,所以121234x x x x +=⋅=,所以MN所以必要性成立;充分性:设直线():,0MN y kx b kb =+<即0kx y b -+=, 由直线MN 与曲线221(0)x y x +=>1=,所以221b k =+,联立2213y kx b x y =+⎧⎪⎨+=⎪⎩可得()222136330k x kbx b +++-=, 所以2121222633,1313kb b x x x x k k -+=-⋅=++,所以MN化简得()22310k -=,所以1k =±,所以1k b =⎧⎪⎨=⎪⎩1k b =-⎧⎪⎨=⎪⎩:MN y x=y x =-所以直线MN 过点F ,M ,N ,F 三点共线,充分性成立; 所以M ,N ,F 三点共线的充要条件是||MN =3.(2022·青海·海东市第一中学模拟预测(理))已知椭圆M :22221x y a b +=(a >b>0AB为过椭圆右焦点的一条弦,且AB 长度的最小值为2. (1)求椭圆M 的方程;(2)若直线l 与椭圆M 交于C ,D 两点,点()2,0P ,记直线PC 的斜率为1k ,直线PD 的斜率为2k ,当12111k k +=时,是否存在直线l 恒过一定点?若存在,请求出这个定点;若不存在,请说明理由.【答案】(1)22142x y += (2)存在,()2,4-- 【解析】 【分析】(1)由题意求出,,a b c ,即可求出椭圆M 的方程.(2)设直线l 的方程为m (x -2)+ny =1,()11,C x y ,()22,D x y ,联立直线l 的方程与椭圆方程()()222242x y x -+=--,得()22214420x x m n y y ⎛⎫--+++= ⎪⎝⎭,则12114114n k k m +=-=+,化简得14m n +=-,即可求出直线l 恒过的定点. (1)因为22221x y a b +=(a >b >0222b a =, 所以a =2,c =b M 的方程为22142x y +=.(2)设直线l 的方程为m (x -2)+ny =1,()11,C x y ,()22,D x y , 由椭圆的方程2224x y +=,得()()222242x y x -+=--.联立直线l 的方程与椭圆方程,得()()()2222422x y x m x ny ⎡⎤⎣⎦-+=---+,即()()()221424220m x n x y y +-+-+=,()22214420x x m n y y ⎛⎫--+++= ⎪⎝⎭, 所以12121222114114x x nk k y y m--+=+=-=+, 化简得14m n +=-,代入直线l 的方程得()1214m x m y ⎛⎫-+--= ⎪⎝⎭, 即()1214m x y y ---=,解得x =-2,y =-4,即直线l 恒过定点()2,4--. 4.(2022·上海松江·二模)已知椭圆2222:1(0)x y a b a bΓ+=>>的右顶点坐标为(2,0)A ,左、右焦点分别为1F 、2F ,且122F F =,直线l 交椭圆Γ于不同的两点M 和N . (1)求椭圆Γ的方程;(2)若直线l 的斜率为1,且以MN 为直径的圆经过点A ,求直线l 的方程; (3)若直线l 与椭圆Γ相切,求证:点1F 、2F 到直线l 的距离之积为定值.【答案】(1)22143x y +=;(2)2y x =-或27y x =-; (3)证明见解析. 【解析】 【分析】(1)根据焦距及椭圆的顶点求出,a b 即可得出;(2)设直线l 的方程为 y x b =+,联立方程,由根与系数的关系及0AM AN ⋅=求解即可;(3)分直线斜率存在与不存在讨论,当斜率不存在时直接计算可得,当斜率存在时,设直线l 的方程为y kx b =+,根据相切求出,b k 关系,再由点到直线的距离直接计算即可得解.(1)①1222F F c == ①1c =,①2a =,由222a b c =+ 得241=+b ,①22=34=b a ,所以椭圆Γ的方程:22143x y +=;(2)①直线l 的斜率为1,故可设直线l 的方程为 y x b =+, 设1(M x ,1)y ,2(N x ,2)y由22143y x bx y =+⎧⎪⎨+=⎪⎩ 可得22784120x bx b ++-=, 则1287b x x +=-,2124127b x x -=,①以MN 为直径的圆过右顶点A ,①0AM AN ⋅=,①1212(2)(2)0x x y y --+= ①21212122211))2()4((2(2)()4b b x x x x x x x x b x x b -+++=+-+++++2241282(2)4077b bb b -=⋅--⋅++=,整理可得271640b b ++=,①2b =-或27b =-,①2226447(412)16(213)b b b ∆=-⋅⋅-=⋅-, 当2b =-或27b =-时,均有0∆>所以直线l 的方程为2y x =-或27y x =-. (3)椭圆Γ左、右焦点分别为1(1,0)F -、2(1,0)F①当直线l 平行于y 轴时,①直线l 与椭圆Γ相切,①直线l 的方程为2x =±, 此时点1F 、2F 到直线l 的到距离分别为121,3d d ==,①123d d ⋅=. ①直线l 不平行于y 轴时,设直线l 的方程为 y kx b =+,联立2234120y kx b x y =+⎧⎨+-=⎩,整理得222(34)84120k x kbx b +++-=, 222222644(34)(412)16(9123)k b k b k b ∆=-+-=⋅+-,①直线l 与椭圆Γ相切,①0∆=,①2234b k =+ ①1(1,0)F -到直线l的距离为1d ,2(1,0)F -到直线l的距离为2=d①2222212222(34)33111k bk k k d d k k k --++⋅=====+++, ①点1F 、2F 到直线l 的距离之积为定值由3.5.(2022·上海浦东新·二模)已知12F F 、分别为椭圆E :22143x y+=的左、右焦点, 过1F 的直线l 交椭圆E于,A B 两点.(1)当直线l 垂直于x 轴时,求弦长AB ; (2)当2OA OB ⋅=-时,求直线l 的方程;(3)记椭圆的右顶点为T ,直线AT 、BT 分别交直线6x =于C 、D 两点,求证:以CD 为直径的圆恒过定点,并求出定点坐标. 【答案】(1)3(2))1y x =+(3)证明见解析;定点()()4080,,,【解析】 【分析】(1)将1x =-代入椭圆方程求解即可;(2)由(1)知当直线l 的斜率存在,设直线l 的方程为:()1y k x =+,联立直线与椭圆的方程,得出()22223484120k xk x k +++-=,设()()1122A x y B x y ,,,可得韦达定理,代入2OA OB ⋅=-计算可得斜率;(3)分析当直线l 的斜率不存在时,由椭圆的对称性知若以CD 为直径的圆恒过定点则定点在x 轴上,再以CD 为直径的圆的方程,令0y =,代入韦达定理化简可得定点 (1)由题知()110F -,,将1x =-代入椭圆方程得332y AB =±∴=, (2)由(1)知当直线l 的斜率不存在时,331122A B ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭,,,,此时14OA OB =,不符合题意,舍去∴直线l 的斜率存在,设直线l 的方程为:()1y k x =+,联立()221431x y y k x ⎧+=⎪⎨⎪=+⎩得()22223484120k x k x k +++-=,设()()1122A x y B x y ,,,,则2122212283441234k x x k k x x k ⎧-+=⎪⎪+⎨-⎪=⎪+⎩, 由()()()()2222222221212121212122224128512111()1343434k k k OA OB x x y y x x k x k x k x xk x x k kk k k k k ----=+=+++=++++=+++=+++,解得22k k ==,∴直线l 的方程为)1y x =+..(3)①当直线l 的斜率不存在时,()33112022A B T ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭,,,,,,直线AT 的方程为112y x =-+,C 点坐标为()62-,, 直线BT 的方程为112y x =-,D 点坐标为()62,,以CD 为直径的圆方程为()2264x y -+=,由椭圆的对称性知若以CD 为直径的圆恒过定点则定点在x 轴上,令0y =,得48x x ==,.即圆过点()()4080,,,. ①当直线l 的斜率存在时,同(2)联立,直线AT 的方程为()1122y y x x =--, C 点坐标为11462y x ⎛⎫ ⎪-⎝⎭,,同理D 点坐标为22462y x ⎛⎫⎪-⎝⎭,,以CD 为直径的圆的方程为()()12124466022y y x x y y x x ⎛⎫⎛⎫--+--= ⎪⎪--⎝⎭⎝⎭,令0y =,得()2121212161236024y y x x x x x x -++=-++,由()()()()22222121222121212122241281611611343416441282424243434k k k k x k x k k y y k k x x x x x x x x k k ⎛⎫--++ ⎪++++⎝⎭===----++-++-+++, 得212320x x -+=,解得48x x ==,,即圆过点()()4080,,,. 综上可得,以CD 为直径的圆恒过定点()()4080,,,. 6.(2022·上海长宁·二模)已知,A B 分别为椭圆222Γ:1(1)x y a a+=>的上、下顶点,F 是椭圆Γ的右焦点,M 是椭圆Γ上异于,A B 的点.(1)若π3AFB ∠=,求椭圆Γ的标准方程 (2)设直线:2l y =与y 轴交于点P ,与直线MA 交于点Q ,与直线MB 交于点R ,求证:PQ PR ⋅的值仅与a 有关(3)如图,在四边形MADB 中,MA AD ⊥,MB BD ⊥,若四边形MADB 面积S 的最大值为52,求a 的值.【答案】(1)2214x y +=(2)证明见解析 (3)2a = 【解析】 【分析】(1)根据已知判断AFB △形状,然后可得;(2)设()11,M x y ,表示出直线AM 、BM 的方程,然后求Q 、R 的坐标,直接表示出所求可证; (3)设()11,M x y ,()44,D x y ,根据已知列方程求解可得14,x x 之间关系,表示出面积,结合已知可得. (1)因为AF BF =,π3AFB ∠=,所以AFB △是等边三角形, 因为2AB =,AF a =,所以2a =,得椭圆的标准方程为2214x y +=.(2)设()11,M x y ,()2,2R x ,()3,2Q x , 因为()0,1A ,()0,1B -所以直线AM 、BM 的方程分别为 111:1AM y l y x x -=+, 111:1BM y l y x x +=-, 所以12131x x y =+,1311x x y =-, 又221121x y a-=所以2211221331x PQ PR x x a y ⋅===-,所以PQ PR ⋅的值仅与a 有关. (3)设()11,M x y ,()44,D x y , 因为MA DA ⊥,MB DB ⊥,所以()()1414110x x y y +--=,()()1414110x x y y +++= 两式相减得41y y =-,带回原式得214110x x y +-=,因为221121x y a+=,所以142x x a =-, 1412111MAB DABS SSx x x a a a ⎛⎫=+=+=+≤+ ⎪⎝⎭因为S 的最大值为52 ,所以152a a += ,得2a =.7.(2022·福建省福州格致中学模拟预测)圆O :224x y +=与x 轴的两个交点分别为()12,0A -,()22,0A ,点M 为圆O 上一动点,过M 作x 轴的垂线,垂足为N ,点R 满足12NR NM = (1)求点R 的轨迹方程;(2)设点R 的轨迹为曲线C ,直线1x my =+交C 于P ,Q 两点,直线1A P 与2A Q 交于点S ,试问:是否存在一个定点T ,当m 变化时,2A TS 为等腰三角形【答案】(1)2214x y +=(2)存在,证明见解析 【解析】 【分析】(1)设点()00,M x y 在圆224x y +=上,故有22004x y +=,设(),R x y ,根据题意得0x x =,012y y =,再代入圆224x y +=即可求解;(2)先判断斜率不存在的情况;再在斜率存在时,设直线l 的方程为1x my =+,与椭圆联立得:()224230m y my ++-=,12224m y y m -+=+,12234y y m -=+,再根据题意求解判断即可. (1)设点()00,M x y 在圆224x y +=上,故有22004x y +=,设(),R x y ,又12NR NM =,可得0x x =,012y y =, 即0x x =,02y y =代入22004x y +=可得()2224x y +=,化简得:2214x y +=,故点R 的轨迹方程为:2214x y +=.(2)根据题意,可设直线l 的方程为1x my =+, 取0m =,可得P ⎛ ⎝⎭,1,Q ⎛ ⎝⎭, 可得直线1A P的方程为y x =+,直线2A Q的方程为y x =-联立方程组,可得交点为(1S ;若1,P ⎛ ⎝⎭,Q ⎛ ⎝⎭,由对称性可知交点(24,S , 若点S 在同一直线上,则直线只能为l :4x =上,以下证明:对任意的m ,直线1A P 与直线2A Q 的交点S 均在直线l :4x =上. 由22114x my x y =+⎧⎪⎨+=⎪⎩,整理得()224230m y my ++-= 设()11,P x y ,()22,Q x y ,则12224m y y m -+=+,12234y y m -=+ 设1A P 与l 交于点()004,S y ,由011422y y x =++,可得10162y y x =+ 设2A Q 与l 交于点()004,S y ',由022422y y x '=--,可得20222y y x '=-,因为()()()()122112102126123622222y my y my y y y y x x x x --+'-=-=+-+- ()()()()()22121211121212464402222m mmy y y y m m x x x x ----+++===+-+-, 因为00y y '=,即0S 与0S '重合, 所以当m 变化时,点S 均在直线l :4x =上,因为()22,0A ,()4,S y ,所以要使2A TS 恒为等腰三角形,只需要4x =为线段2A T 的垂直平分线即可,根据对称性知,点()6,0T . 故存在定点()6,0T 满足条件.8.(2022·全国·模拟预测)已知椭圆()2222:10x y C a b a b +=>>的离心率为12,椭圆C 的左、右顶点分别为A ,B ,上顶点为D ,1AD BD ⋅=-. (1)求椭圆C 的方程;(2)斜率为12的动直线l 与椭圆C 相交于M ,N 两点,是否存在定点P (直线l 不经过点P ),使得直线PM 与直线PN 的倾斜角互补,若存在这样的点P ,请求出点P 的坐标;若不存在,请说明理由.【答案】(1)22143x y +=(2)存在,点P 的坐标为31,2⎛⎫ ⎪⎝⎭或31,2⎛⎫-- ⎪⎝⎭【解析】 【分析】(1)利用数量积公式及离心率可得a ,b ,c 从而得到椭圆方程; (2)设直线l 的方程为12y x m =+,与椭圆方程联立,写出韦达定理,由题意可得直线PM 与直线PN 的斜率之和为零,利用韦达定理化简可得结果. (1)设椭圆C 的焦距为2c ,由题意知(),0A a -,(),0B a ,()0,D b ,所以(),AD a b =,(),BD a b =-,所以2221AD BD a b c ⋅=-+=-=-,解得1c =. 又椭圆C 的离心率为12,所以22a c ==,b故椭圆C 的方程为22143x y +=.(2)假设存在这样的点P ,设点P 的坐标为()00,x y ,点M ,N 的坐标分别为()11,x y ,()22,x y ,设直线l 的方程为12y x m =+. 联立方程221,4312x y y x m ⎧+=⎪⎪⎨⎪=+⎪⎩消去y 后整理得2230x mx m ++-=.()222431230m m m ∆=--=->,得22m -<<, 有12212,3.x x m x x m +=-⎧⎨=-⎩ 若直线PM 与直线PN 的倾斜角互补,则直线PM 与直线PN 的斜率之和为零,所以01020102010201021122y x m y x m y y y y x x x x x x x x ⎛⎫⎛⎫-+-+ ⎪ ⎪--⎝⎭⎝⎭+=+---- ()()()()()()()()()()010*********0102010222222222222y m x x x y m x x x y m x y m x x x x x x x x x ---+---⎡⎤⎡⎤----⎣⎦⎣⎦=+=----()()()()()()()()()()20000012121200102010222223222222y m x m m mx y m x x x x x x x x x x x x x x x x -++-+--++-+⎡⎤⎣⎦==----()()()()()()()()0000000001020102462322323022x y y x m x y y x mx x x x x x x x -+--+-===----.所以0000230,230,x y y x -=⎧⎨-=⎩解得001,32x y =⎧⎪⎨=⎪⎩或001,3.2x y =-⎧⎪⎨=-⎪⎩故存在点P 符合条件,点P 的坐标为31,2⎛⎫ ⎪⎝⎭或31,2⎛⎫-- ⎪⎝⎭.9.(2022·内蒙古·海拉尔第二中学模拟预测(文))已知椭圆()2222:10x y C a b a b +=>>的两个焦点分别为1F 和2F ,椭圆C 上一点到1F 和2F 的距离之和为4,且椭圆C(1)求椭圆C 的方程;(2)过左焦点1F 的直线l 交椭圆于A 、B 两点,线段AB 的中垂线交x 轴于点D (不与1F 重合),是否存在实数λ,使1AB DF λ=恒成立?若存在,求出λ的值;若不存在,请说出理由.【答案】(1)2214x y +=(2)存在,λ=【解析】 【分析】(1)由椭圆的定义可求得a 的值,根据椭圆的离心率求得c 的值,再求出b 的值,即可得出椭圆C 的方程; (2)分析可知,直线l 不与x 轴垂直,分两种情况讨论,一是直线l 与x 轴重合,二是直线l 的斜率存在且不为零,设出直线l 的方程,与椭圆方程联立,求出AB 、1DF ,即可求得λ的值. (1)解:由椭圆的定义可得24a =,则2a =,因为c ea ==c∴=1b ==, 因此,椭圆C 的方程为2214x y +=.(2)解:若直线l 与x 轴垂直,此时,线段AB 的垂直平分线为x 轴,不合乎题意; 若直线l 与x 轴重合,此时,线段AB 的垂直平分线为y 轴,则点D 与坐标原点重合,此时,143AB DF λ==若直线l 的斜率存在且不为零时,设直线l 的方程为)0x my m =≠,设点()11,A x y 、()22,B x y , 联立2244x my x y ⎧=⎪⎨+=⎪⎩()22410m y +--=,()()22212441610m m m ∆=++=+>,由韦达定理可得12y y +=,12214y y m =-+, 则()121222m y y x x ++= 所以,线段AB的中点为M ⎛ ⎝⎭, 所以,线段AB的垂直平分线所在直线的方程为y m x ⎛=- ⎝⎭,在直线方程y m x ⎛=- ⎝⎭中,令0y =可得x =,故点D ⎛⎫ ⎪ ⎪⎝⎭,所以,)21214m DF m +==+,由弦长公式可得()22414m AB m +==+,因此,()2221414m ABDF m λ+===+综上所述,存在λ=1AB DF λ=恒成立. 10.(2022·河南安阳·模拟预测(文))已知椭圆2222:1(0)C b b x a a y +>>=上一个动点N 到椭圆焦点(0,)F c 的距离的最小值是2,且长轴的两个端点12,A A 与短轴的一个端点B 构成的12A A B △的面积为2.(1)求椭圆C 的标准方程;(2)如图,过点4(0,)M -且斜率为k 的直线l 与椭圆C 交于P ,Q 两点.证明:直线1A P 与直线2A Q 的交点T 在定直线上.【答案】(1)2214y x +=(2)证明见解析 【解析】 【分析】(1)根据题意得到22221222a c ab a b c ⎧-=⎪⎪⨯=⎨⎪=+⎪⎩,再解方程组即可.(2)首先设直线:4l y kx =-,()11,P x y ,()22,Q x y ,与椭圆联立,利用韦达定理得到12284kx x k +=+,122124x x k =+.1112:2PA y l y x x ++=,2222:2QA y l y xx --=,根据2123y y +=--,即可得到1y =-,从而得到直线1A P 与直线2A Q 的交点T 在定直线1y =-上. (1)由题知:22221222a c ab a b c⎧-=⎪⎪⨯=⎨⎪=+⎪⎩,解得21a b c ⎧=⎪=⎨⎪⎩,即:椭圆22:14+=y C x(2)设直线:4l y kx =-,()11,P x y ,()22,Q x y ,()10,2A -,()20,2A ,()222214812044y x k x kx y kx ⎧+=⎪⇒+-+=⎨⎪=-⎩. 12284k x x k +=+,122124x x k =+. 则1112:2PA y l y x x ++=,2222:2QA y l y x x --=, 则()()()()1212122212112122222266y x kx x kx x x y y y x kx x kx x x +--+===----, 因为()1212212342k kx x x x k ==++, 所以()()12212121213232123293362x x x x x y y x x x x x +--+===---++-,解得1y =-. 所以直线1A P 与直线2A Q 的交点T 在定直线1y =-上.11.(2022·安徽省舒城中学三模(理))已知椭圆22:184x y Γ+=,过原点O 的直线交该椭圆Γ于A ,B 两点(点A 在x 轴上方),点()4,0E ,直线AE 与椭圆的另一交点为C ,直线BE 与椭圆的另一交点为D .(1)若AB 是Γ短轴,求点C 坐标;(2)是否存在定点T ,使得直线CD 恒过点T ?若存在,求出T 的坐标;若不存在,请说明理由.【答案】(1)82(,)33;(2)存在,8(,0)3T .【解析】 【分析】(1)两点式写出直线AE ,联立椭圆方程并结合韦达定理求出C 坐标; (2)设00(,)A x y 有00:(4)4=--y AE y x x ,联立椭圆求C 坐标,同理求D 坐标,讨论00x ≠、00x =,判断直线CD 恒过定点即可. (1)由题设,(0,2)A ,而()4,0E ,故直线AE 为240x y +-=,联立22:184x y Γ+=并整理得:23840y y -+=,故83A C y y +=,而2A y =,所以23C y =,代入直线AE 可得284233C x =-⨯=,故C 坐标为82(,)33.(2)设00(,)A x y ,则00:(4)4=--y AE y x x , 由()00224428y y x x x y ⎧=-⎪-⎨⎪+=⎩,故2220202(4)8(4)+-=-y x x x , 由韦达定理有20222222000000002220000020328(4)328(4)16(8)8(4)64242(4)22482481(4)C y x y x x x x x x x y x y x x x --------====-+--+-, 所以00833C x x x -=-,故003C y y x =-,同理得:00833D x x x +=+,003D y y x -=+,当00x ≠时,取8(,0)3T ,则0000003383833TCy x yk x x x -==----,同理003TD y k x =-, 故,,T C D 共线,此时CD 过定点8(,0)3T .当00x =时,83C D x x ==,此时CD 过定点8(,0)3T .综上,CD 过定点8(,0)3T .12.(2022·广东茂名·二模)已知圆O :x 2+y 2=4与x 轴交于点(2,0)A -,过圆上一动点M 作x 轴的垂线,垂足为H ,N 是MH 的中点,记N 的轨迹为曲线C . (1)求曲线C 的方程;(2)过6(,0)5-作与x 轴不重合的直线l 交曲线C 于P ,Q 两点,设直线AP ,AS 的斜率分别为k 1,k 2.证明:k 1=4k 2.【答案】(1)2212x y +=;(2)证明见解析. 【解析】 【分析】(1)运用相关点法即可求曲线C 的方程;( 2)首先对直线l 的斜率是否存在进行讨论,再根据几何关系分别求出P 、Q 、S 三点的坐标,进而表示出直线AP , AS 的斜率12,k k ,再根据斜率的表达式进行化简运算,得出结论. (1)设N (x 0,y 0),则H (x 0,0), ①N 是MH 的中点,①M (x 0,2y 0),又①M 在圆O 上,2200(2)4y x +=∴,即220014x y +=; ①曲线C 的方程为:2214x y +=;(2)①当直线l 的斜率不存在时,直线l 的方程为:65x =-,若点P 在轴上方,则点Q 在x 轴下方,则6464(,),(,)5555P Q ---,直线OQ 与曲线C 的另一交点为S ,则S 与Q 关于原点对称,①64(,)55S ,1244001551,,6642255APAS k k k k --======-++124k k ∴=;若点P 在x 轴下方,则点Q 在x 轴上方, 同理得:646464(,),(,),(,)555555P Q S ----,1244001551,6642255APAS k k k k ----===-∴===--++,①k 1=4k 2;①当直线l 的斜率存在时,设直线l 的方程为:6,5x my =-,由6,5x my =-与2214x y +=联立可得221264(4)0525m m y y +--=, 其中22144644(4)02525m m ∆=+⨯+⨯>,设1122(,),(,)P x y Q x y ,则22(,)S x y --,则1212221264525,44m y y y y m m -+==++,①112212112200,,2222AP AS k y y y y k k k x x x x ---======++-+- 则121122121216()2542()5y my k y x k x y my y --=⋅=++121112212121112226464161616252554545444641216()4445525525454545my y y y y m m my y y y y m m y y m m m -----++====++---+⋅--+++,①k 1=4k 2. 13.(2022·安徽·合肥市第八中学模拟预测(文))生活中,椭圆有很多光学性质,如从椭圆的一个焦点出发的光线射到椭圆镜面后反射,反射光线经过另一个焦点.现椭圆C 的焦点在y 轴上,中心在坐标原点,从下焦点1F 射出的光线经过椭圆镜面反射到上焦点2F ,这束光线的总长度为4,且反射点与焦点构成的三角e < (1)求椭圆C 的标准方程;(2)若从椭圆C 中心O 出发的两束光线OM 、ON ,分别穿过椭圆上的A 、B 点后射到直线4y =上的M 、N两点,若AB 连线过椭圆的上焦点2F ,试问,直线BM 与直线AN 能交于一定点吗?若能,求出此定点:若不能,请说明理由.【答案】(1)22143y x +=(2)能,定点为(0,85)【解析】 【分析】(1)由条件列方程求,,a b c 可得椭圆方程; (2)联立方程组,利用设而不求法结论完成证明. (1)由已知可设椭圆方程为22221(0)y x a b a b+=>>,则24a =,122c b ⨯⨯222a b c =+又e <所以21a b c ===,,故椭圆C 的标准方程为22143y x +=(2)设AB 方程为1y kx =+,由221431y x y kx ⎧+=⎪⎨⎪=+⎩,得22(34)690k x kx ++-=, 222(6)36(34)1441440k k k ∆=++=+>设()()1122A x y B x y ,,,,则121222693434k x x x x k k --+==++,.. 由对称性知,若定点存在,则直线BM 与直线AN 交于y 轴上的定点,由114y y x x y ⎧=⎪⎨⎪=⎩得1144x M y ⎛⎫ ⎪⎝⎭,,则直线BM 方程为211121444()4y x y x x y x y --=--, 令0x =,则 122114(4)44x y y x y x -=+-()()112211414114x x kx x kx x ⎡⎤-+=+⎢⎥+-⎢⎥⎣⎦112211234(1)4x kx x x x kx x -=+-+2121124()4x x x x kx x -=-+又12123()2x x kx x +=, 则21212112214()4()83554()()22x x x x y x x x x x x --===-++-,所以,直线BM 过定点(0,85),同理直线AN 也过定点8(0,)5.则点(0,85)即为所求点.14.(2022·全国·模拟预测)设椭圆()222:10416x y C b b+=<<的右焦点为F ,左顶点为A .M 是C 上异于A的动点,过F 且与直线AM 平行的直线与C 交于P ,Q 两点(Q 在x 轴下方),且当M 为椭圆的下顶点时,2AM FQ =.(1)求椭圆C 的标准方程;(2)设点S ,T 满足PS SQ =,FS ST =,证明:平面上存在两个定点,使得T 到这两定点距离之和为定值. 【答案】(1)22116x = (2)证明见解析 【解析】 【分析】(1)由向量的坐标运算用,b c 表示出Q 点坐标,代入椭圆方程求得参数b ,得椭圆方程; (2)设(), 0F c ,直线PQ 的斜率不为0,设其方程为 x m y c =+,设1122(,),(,)P x y Q x y .直线方程代入椭圆方程应用韦达定理得12y y +,利用向量相等的坐标表示求得T 点坐标,得出T 点坐标满足一个椭圆方程,然后再由椭圆定义得两定点坐标. (1)当M 为椭圆的下顶点时,(4,)AM b =-,则12,22b FQ AM ⎛⎫==- ⎪⎝⎭. 设C 的焦距为2c ,则2,2b Q c ⎛⎫+- ⎪⎝⎭,即2,2b Q ⎫-⎪⎭.因为Q 在C上,故)2211164+=,解得()22162b =-=则椭圆C的标准方程为22116x =. (2)设(), 0F c ,直线PQ 的斜率不为0,设其方程为 x m y c =+,设1122(,),(,)P x y Q x y .联立直线PQ 和C 的方程,消x得()22220y +-.12y y +=1212()2x x m y y c +=++= 由PS SQ =得S 为弦PQ的中点,故S ⎛.由FS ST =得S 是线段FT的中点,故T .设T 的坐标为(), x y,则x c =,y c =,故2211x y c c ⎛⎫⎫=== ⎪⎪⎝⎭⎝⎭,即2221x c =, 这表明T 在中心为原点,(,0)c ±为长轴端点,0,⎛⎫ ⎪ ⎪⎝⎭为短轴端点的椭圆上运动,故T到两焦点,0⎛⎫ ⎪ ⎪⎝⎭的距离之和为定值.代入得两焦点坐标为(()4,0±-.综上所述,平面上存在两定点()4-,()4-+,使得T 到这两定点距离之和为定值.15.(2022·上海交大附中模拟预测)已知椭圆221214x y F F Γ+=:,,是左、右焦点.设M 是直线()2l x t t =>:上的一个动点,连结1MF ,交椭圆Γ于()0N N y ≥.直线l 与x 轴的交点为P ,且M 不与P 重合.(1)若M 的坐标为58⎫⎪⎪⎝⎭,,求四边形2PMNF 的面积; (2)若PN 与椭圆Γ相切于N 且1214NF NF ⋅=,求2tan PNF ∠的值; (3)作N 关于原点的对称点N ',是否存在直线2F N ,使得1F N '上的任一点到2F N求出直线2F N 的方程和N 的坐标,若不存在,请说明理由. 【答案】(3)存在;y x =;126N ⎫⎪⎪⎝⎭【解析】 【分析】(1)根据点斜式方程可得1:MF l y x =,再联立椭圆方程得到12N ⎫⎪⎭,再根据2112PMNF PF M NF F S S S =-△△求解即可;(2)设:()PN l y k x t =-,根据相切可知,直线与椭圆方程联立后判别式为0,得到2214k t =-,再根据1214NF NF ⋅=,化简可得t =12N ⎫⎪⎭,再根据直角三角形中的关系求解2tan PNF ∠的值即可;(3)设()00,N x y ,表达出2NF l,再根据22O NF d -=列式化简可得2148k =,结合k =程即可求得N 和直线2F N 的方程 (1)由题意,()1F,故15MF k ==,所以1:MF l y x =与椭圆方程联立2214x y y x ⎧+=⎪⎪⎨⎪=⎪⎩,可得:213450x +-=,即(130x x +=,又由题意N x >,故解得x =12N ⎫⎪⎭,故121122NF F S =⋅=△且11528PF M S ==△则2112PMNF PF M NF F S S S =-=△△(2)由于直线PN 的斜率必存在,则设:()PN l y k x t =-与椭圆方程联立2214()x y y k x t ⎧+=⎪⎨⎪=-⎩,可得:()22222148440k x k tx k t +-+-=由相切,()22216140k k t∆=+-=,则2214kt =-同时有韦达定理21228214N k t x x x k +==+,代入2214k t =-有2244414Nt t x t -=+-,化简得4N x t =,故2222414N Nx t y t-=-=而222122122134N Nt NF NF x y t -⋅=+-==,解得2t =>则12N ⎫⎪⎭,所以2NF x ⊥轴,故在直角三角形2PNF中,2223tan 12PF PNF NF ∠===(3)由于N 与N ',1F 与2F 是两组关于原点的对称点,由对称性知 四边形12F NF N '是平行四边形,则2NF 与1N F '是平行的, 故1F N '上的任一点到2F N 的距离均为两条平行线间的距离d .设()00,N x y,其中0(x ∈,易验证,当0x 时,2NF 与1N F '之间的距离为k =2(:NF y l k x =,即0kx y -=,发现当0x22O NF d d -==221914k k =+,整理得2148k =代入k =(220048y x =,代入220014x y =-整理得20013450x --=,即(00130x x -=由于0(x ∈,所以0x =126N ⎫⎪⎪⎝⎭,故1k =, 则2F N l的直线方程为y x =16.(2022·全国·模拟预测(理))已知椭圆C :()222210x y a b a b +=>>的右顶点为A ,上顶点为B ,直线AB的斜率为O 到直线AB(1)求C 的方程;(2)直线l 交C 于M ,N 两点,90MBN ∠=︒,证明:l 恒过定点.【答案】(1)22143x y +=(2)证明见解析【解析】 【分析】(1)题意得(,0),(0,)A a B b ,根据AB斜率,可得b a =AB 的方程,根据点到直线距离公式,可求得a 值,进而可得b 值,即可得答案.(2)分析得直线l 的斜率存在,设1122,(,),(,)y kx m M x y N x y =+,与椭圆联立,可得关于x 的一元二次方程,根据韦达定理,可得1212,x x x x +表达式,进而可得12y y 、12y y +的表达式,根据90MBN ∠=︒,可得0MB NB ⋅=,根据数量积公式,化简计算,可得m 值,分析即可得证(1)由题意得(,0),(0,)A a B b , 所以直线AB的斜率为b a =-b a = 又直线AB的方程为)y x a =-20y +=, 所以原点O 到直线AB的距离d ==,解得2a =,所以b =22143x y +=.(2)由椭圆的对称性可得,直线l 的斜率一定存在,设直线l 的方程为1122,(,),(,)y kx m M x y N x y =+,联立方程22143x y y kx m ⎧+=⎪⎨⎪=+⎩,消去y 可得222(34)84120k x kmx m +++-=, 所以21212228412,3434km m x x x x k k --+==++, 所以22221212122312()34m k y y k x x km x x m k -=+++=+,121226()234m y y k x x m k +=++=+, 因为90MBN ∠=︒,所以MB BN ⊥,因为B,所以1122(,3),()MB x yNB x y =--=-,所以22212121222241263123)30343434m m m k MB NB x x y y y y k k k --⋅=+++=++=+++, 整理得2730m --=,解得m =或7m =-,因为B ,所以m舍去, 所以直线l 的方程为y kx =0,⎛ ⎝⎭,得证17.(2022·全国·模拟预测(理))已知椭圆2222:1(0)x y C a b a b +=>>的左、右焦点分别为1F ,2F ,1A ,2A 分别为左、右顶点,1B ,2B 分别为上、下顶点.若四边形1122B F B F212F F ,212B B ,212A A 成等差数列.(1)求椭圆C 的标准方程;(2)过椭圆外一点P (P 不在坐标轴上)连接1PA ,2PA ,分别与椭圆C 交于M ,N 两点,直线MN 交x 轴于点Q .试问:P ,Q 两点横坐标之积是否为定值?若为定值,求出定值;若不是,说明理由. 【答案】(1)22132x y +=;(2)32P Q x x =为定值,理由见解析. 【解析】 【分析】(1)应用菱形面积公式、等差中项的性质及椭圆参数关系求椭圆参数,写出椭圆标准方程.(2)由题意分析知1PA ,2PA 所在直线斜率均存在且不为0、斜率和差均不为0,设直线1PA ,2PA 联立椭圆求M ,N 的坐标及P 点横坐标,应用点斜式写出直线MN ,令0y =求Q 横坐标,即可得结论. (1)由题设知:2222222844bc b a c a b c ⎧=⎪⎪=+⎨⎪=+⎪⎩,可得22321a b ⎧=⎪⎨⎪=⎩, 所以椭圆标准方程为22132x y +=. (2)由题意,1PA ,2PA 所在直线斜率均存在且不为0、斜率和差均不为0,设1PA为(y k x =,联立椭圆方程整理得:22229(23)302k k x x +++-=,所以1M A x x +=1A x =M x == 设2PA为(y m x =,联立椭圆方程整理得:22229(23)302m m x x +-+-=,所以2N A x x +=2A x =N x ==所以M y k =⋅=Ny m =⋅=, 联立直线1PA 、2PA可得:P x =,直线MN为2()[23m k y x km +=⋅-,令0y =,则Q x =,所以32P Q x x ==为定值.18.(2022·山西·太原五中二模(文))已知椭圆2221x y +=,过原点的两条直线1l 和2l 分别与椭圆交于A B 、和C D 、,记得到的平行四边形ACBD 的面积为S .(1)设()()1122,,,A x y C x y ,用A C 、的坐标表示点C 到直线1l 的距离,并证明12212S x y x y =-; (2)请从①①两个问题中任选一个作答 ①设1l 与2l 的斜率之积12-,求面积S 的值.①设1l 与2l 的斜率之积为m .求m 的值,使得无论1l 与2l 如何变动,面积S 保持不变. 【答案】(1)(2)见解析 【解析】 【分析】(1)讨论10x ≠和10x =,分别写出直线1l 的方程,由距离公式即可求得点C 到直线1l 的距离,由面积公式即可证明12212S x y x y =-;(2)若选①,设出直线1l 和2l 的方程,联立椭圆求出A C 、的坐标,结合(1)中面积公式求解即可;若选①,设出直线1l 和2l 的方程,联立椭圆求出A C 、的坐标,结合(1)中面积公式得到S 的表达式,平方整理,由含42,k k 的项系数为0即可求解. (1)当10x ≠时,直线1l 的方程为:11y y x x =,则点C 到直线1l的距离为d ==当10x =时,直线1l 的方程为:0x =,则点C 到直线1l 的距离为2d x =,也满足d则点C 到直线1l2AB AO ==则1212112222S AB d x y x x x y y y =⋅==--=;(2)若选①,设1122121:,:,2l y k x l y k x k k ===-,设()()1122,,,A x y C x y ,直线1l 与椭圆联立12221y k x x y =⎧⎨+=⎩可得()221121k x+=,同理直线2l 与椭圆联立可得()222121k x +=,不妨令120,0x x >>,则11x y =,22x y ===,则12212S x y x y ==-== 若选①,设12:,:m l y kx l y x k ==,设()()1122,,,A x y C x y ,直线1l 与椭圆联立2221y kx x y =⎧⎨+=⎩可得()22121k x +=,则212112x k =+,同理可得2222221212k x k m m k ==+⎛⎫+ ⎪⎝⎭,则1221121221222m m x x x kx k x k S y x x k x y =-=-=-⋅⋅⋅1222m m k x x k k k ==-=-⋅,两边平方整理得()24222222224(48)240Sk S S m m k m S m -++++-=,由面积S 与k 无关,可得2222240480S S S m m ⎧-=⎨++=⎩,解得12S m ⎧=⎪⎨=-⎪⎩,故12m =-时,无论1l 与2l 如何变动,面积S 保持不变.19.(2022·福建·厦门一中模拟预测)已知A ,B 分别是椭圆2222:1(0)x y C a b a b +=>>的右顶点和上顶点,||AB =AB 的斜率为12-.(1)求椭圆的方程;(2)直线//l AB ,与x ,y 轴分别交于点M ,N ,与椭圆相交于点C ,D .证明: (i )OCM 的面积等于ODN △的面积;(ii )22||||CM MD +为定值.【答案】(1)2214x y +=(2)(i )证明见解析;(ii )证明见解析 【解析】【分析】(1)根据(,0)A a ,(0,)B b,由||AB =AB 的斜率为12-求解;(2)设直线l 的方程为12y x m =-+,得到(2,0)M m ,(0,)N m ,与椭圆方程联立,根据11|2|||2=OCM S m y ,21||||2=ODN S m x ,2222221122||||(2)(2)CM MD x m y x m y ∴+=-++-+利用韦达定理求解. (1) 解:A 、B 是椭圆22221(0)x y a b a b+=>>的两个顶点,且||AB =AB 的斜率为12-,由(,0)A a ,(0,)B b,得||AB == 又0102b b k a a -==-=--,解得2a =,1b =, ∴椭圆的方程为2214x y +=; (2)设直线l 的方程为12y x m =-+,则(2,0)M m ,(0,)N m ,联立方程221214y x m x y ⎧=-+⎪⎪⎨⎪+=⎪⎩消去y ,整理得222220x mx m -+-=.22248(4)3240m m m ∆=--=->, 得28m <设1(C x ,1)y ,2(D x ,2)y . 122x x m ∴+=,21222x x m =-.所以11|2|||2=OCM S m y ,21||||2=ODN S m x 则有112222|2||2|||1||||||-====OCMODNS y m x x Sx x x OCM ∴的面积等于ODN 的面积;2222221122||||(2)(2)CM MD x m y x m y ∴+=-++-+,2222221112221144()44()22x mx m x m x mx m x m =-++-++-++-+,()()221212125551042x x x x m x x m =+--++, ()2222552210102m m m m =---+5=. 20.(2022·北京市第十二中学三模)已知椭圆2222:1(0)x y M a b a b +=>>过点(2,0)A(1)求椭圆M 的方程;(2)已知直线(3)y k x =+在x 轴上方交椭圆M 于B ,C (异于点A )两个不同的点,直线AB ,AC 分别与y 轴交于点P 、Q ,O 为坐标原点,求()k OP OQ +的值.【答案】(1)22142x y +=(2)45【解析】 【分析】(1)直接由A 点坐标及离心率求得椭圆方程即可;(2)联立直线与椭圆求得2212122212184,2121k k x x x x k k --+==++,再表示出直线AB ,AC 的方程,求得P 、Q 坐标,再计算()k OP OQ +即可. (1)由题意知:2,c a a ==c =2222b a c =-=,则椭圆M 的方程为22142x y +=;(2)联立直线与椭圆22(3)142y k x x y =+⎧⎪⎨+=⎪⎩,整理得()222221121840k x k x k +++-=,()()422214442118440160k k k k ∆=-+-=-+>,即k <<(3)y k x =+在x 轴上方交椭圆M 于B ,C (异于点A)两点,则0k << 设1122(,),(,)B x y C x y ,则1222,22x x -<<-<<,2212122212184,2121k k x x x x k k --+==++,1122(3),(3)y k x y k x =+=+, 易得直线AB ,AC 斜率必然存在,则11:(2)2y AB y x x =--,令0x =,得11202y y x =>-,则112(0,)2y P x -,同理可得222(0,)2y Q x -,且22202y x >-, 则()()()()()112121212223222222()(32)22k x x y y x x x k x k x OP x OQ k k -++⎛⎫+==⋅ ⎪⎝⎭+-+----222212122212122218412422442()242121184122()4242121k k k k k kx x k x x k k k k k k k x x x x k k ---⋅-⋅+--++++=⋅=⋅---++-⋅+++45=.。
直线与圆锥曲线的位置关系问题典型例题分析编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(直线与圆锥曲线的位置关系问题典型例题分析)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为直线与圆锥曲线的位置关系问题典型例题分析的全部内容。
直线与圆锥曲线的位置关系问题典型例题分析河南省三门峡市卢氏一高(472200)赵建文 E-mail :zhaojw1968@tom 。
com直线与圆锥曲线的位置关系是高考考查的重点和热点,涉及交点个数问题、弦的问题、对称问题、最值问题、取值范围问题等,现将其分类总结如下,供同学们复习时参考.一、直线与圆锥曲线交点问题研究直线与圆锥曲线交点问题,通常将直线方程与圆锥曲线方程联立,将交点个数问题转化为一元二次方程解的问题,利用判别式讨论之.注意:(1)数形结合思想的运用;(2)在用到直线斜率时注意斜率不存在的情况;(3)在研究直线与双曲线时注意 直线与双曲线的渐近线平行的情况.例1 已知集合{(,)|1}M x y y kx ==-与集合22{(,)|99}N x y x y =-=,当k 为何值时①M ∩N 有两个元素.②M ∩N 只有一个元素.③M ∩N 没有元素.【解析】:由22199y kx x y =-⎧⎨-=⎩消去y 整理22(19)18180k x kx -+-= 若2190k -≠即13k ≠±,则22(18)418(19)k k ∆=+⨯-=236(29)k -①当0∆>即33k -<<且13k ≠±时,M ∩N 有两个元素.②当0∆=即k =±M ∩N 只有一个元素.③当0∆<即3k <-或3k >时,M ∩N 没有元素.若2190k -=即13k =±时,直线1y kx =-与双曲线2299x y -=的渐近线平行,直线1y kx =-与双曲线2299x y -=只有一个交点,即 M ∩N 只有一个元素. 综上所述当k <<13k ≠±时,M ∩N 有两个元素.当3k =±或13k =± 时,M ∩N 只有一个元素.当k <或k >时,M ∩N 没有元素【评析】 本题研究的是直线与圆锥曲线交点个数问题,将其转化为直线方程与圆锥曲线方程联立组成的方程组解的个数问题,注意数形结合和特殊情况。
圆锥曲线高考真题
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(圆锥曲线高考真题)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为圆锥曲线高考真题的全部内容。
圆锥曲线高考真题
1。
平面直角坐标系x Oy 中,过椭圆M :错误! =1(a 〉b >0)的右焦点的直线x + y 错误!= 0
交M 于A ,B 两点,P 为AB 的中点,且OP 的斜率为错误!。
(1)求M 的方程
(2)C ,D 为M 上的两点,若四边形ACBD 的对角线CD ⊥AB ,求四边形ACBD 的面积最大值.
2。
设1F ,2F 分别是椭圆()222210y x a b a b
+=>>的左右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N 。
(1)若直线MN 的斜率为34
,求C 的离心率;
(2)若直线MN 在y 轴上的截距为2,且15MN F N =,求a ,b .
3。
已知椭圆C :,直线不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为
M 。
(1) 证明:直线OM 的斜率与的斜率的乘积为定值;
(2)若过点(),延长线段OM 与C 交于点P ,四边形OAPB 能否平行四边行?若能,求此时的斜率,若不能,说明理由。
4。
已知抛物线C :22y x = 的焦点为F ,平行于x 轴的两条直线12,l l 分别交C 于A ,B 两点,交C 的准线于P ,Q 两点。
(1)若F 在线段AB 上,R 是PQ 的中点,证明AR ∥FQ ;
(2)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程.
5.已知抛物线C :y 2
=2x ,过点(2,0)的直线l 交C 与A ,B 两点,圆M 是以线段AB 为直径的圆.
(1)证明:坐标原点O 在圆M 上;
(2)设圆M 过点P (4,-2),求直线l 与圆M 的方程.
6。
已知斜率为k 的直线l 与椭圆22
143
x y C +=:交于A ,B 两点,线段AB 的中点为()()10M m m >,.
(1)证明:12
k <-;
(2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0.证明:FA ,FP ,FB 成等差数列,并求该数列的公差.
7。
已知椭圆2222:1(0)x y C a b a b
+=>>
(0,1),圆22221:C x y a b +=+。
(1)求椭圆C 的方程;
(2)直线:(0)l y km m k =+≠与椭圆C 有且只有一个公共点M ,且l 与圆1C 相交于,A B 两点,问是否存在这样的直线l ,使得AM MB =?若存在,求出l 的方程,若不存在,请说明理由。
8.已知椭圆1C 的中心和抛物线2C 的顶点都在坐标原点O ,1C 和2C 有公共焦点F ,点F 在x 轴正
半轴上,且1C 的长轴长、短轴长及点F 到1C 右准线的距离成等比数列。
(1)当2C 的准线与1C 的右准线间的距离为15时,求1C 及2C 的方程;
(2)设过点F 且斜率为1的直线l 交1C 于P,Q 两点,交2C 于M ,N 两点。
当36
7
PQ =时,求MN
的值。
9.如图,椭圆22
221(0)x y a b a b
+=>>的一个焦点是F (1,0),O 为坐标原点.
(1)已知椭圆短轴的两个三等分点与一个焦点构成正三角形,求椭圆的方程;
(2)设过点F 的直线l 交椭圆于A ,B 两点.
恒有2
2
2
OA OB AB +<,求a 的取值范围.
10。
设椭圆中心在坐标原点,(20)(01)A B ,,,是它的两个顶点,直线)0(>=k kx y 与AB 相交于点D ,与椭圆相交于E 、F 两点. (1)若6ED DF =,求k 的值;
(2)求四边形AEBF 面积的最大值.
11。
已知椭圆1C 的中心和抛物线2C 的顶点都在坐标原点O,1C 和2C 有公共焦点F ,点F 在x 轴正半轴上,且1C 的长轴长、短轴长及点F 到1C 右准线的距离成等比数列。
(1)当2C 的准线与1C 的右准线间的距离为15时,求1C 及2C 的方程;
(2)设过点F 且斜率为1的直线l 交1C 于P ,Q 两点,交2C 于M,N 两点.当36
7
PQ =时,求MN 的值。
12. 如图,在平面直角坐标系xOy 中,M 、N 分别是椭圆12
42
2=+y x 的顶点,过坐标原 的直线交椭圆于P 、A 两点,其中P 在第一象限,过P 作x 轴的垂线,垂足为C ,连接AC,并延长交椭圆于点B ,设直线PA 的斜率为k
(1)当直线PA 平分线段MN,求k 的值; (2)当k=2时,求点P 到直线AB 的距离d;
(3)对任意k>0,求证:PA⊥PB
13.平面内与两定点1(,0)A a -,2(,0)A a (0)a >连续的斜率之积等于非零常数m 的点的轨迹,加上1A 、2A 两点所成的曲线C 可以是圆、椭圆成双曲线. (1)求曲线C 的方程,并讨论C 的形状与m 值得关系;
(2)当1m =-时,对应的曲线为1C ;对给定的(1,0)(0,)m U ∈-+∞,对应的曲线为2C ,设1F 、2F 是
2C 的两个焦点。
试问:在1C 撒谎个,是否存在点N ,使得△1F N 2F 的面积2||S m a =。
若存在,
求tan 1F N 2F 的值;若不存在,请说明理由。
14。
如图7,椭圆22
122:1(0)x y C a b a b
+=>>的离心率32,x 轴被曲线22:C y x b =- 截得的线段长
等于C 1的长半轴长. (1)求C 1,C 2的方程;
(2)设C 2与y 轴的焦点为M ,过坐标原点O 的直线l 与C 2相交于点A ,B ,直线MA ,MB 分别与C 1相交与D ,E .(i )证明:MD ⊥ME;(ii)记△MAB,△MDE 的面积分别是12,S S .问:是否存在直线l ,使得
1217
32
S S =请说明理由. 15.如图,已知椭圆C 1的中心在原点O ,长轴左、右端点M ,N 在x
轴上,椭圆C 2的短轴为MN ,且C 1,C 2的离心率都为e ,直线l ⊥MN,l 与C 1交于两点,与C 2交于两点,这四点按纵坐标从大到小依次为A ,B ,C ,D . (1)设1
2
e =
,求BC 与AD 的比值; (2)当e 变化时,是否存在直线l ,使得BO ∥AN ,并说明
理由. 16.已知O 为坐标原点,F 为椭圆2
2
:12
y C x +=在y 轴正
半轴上 的焦点,过F 且斜率为-2的直线l 与C 交于A 、B 两点,点P
满足0.OA OB OP ++= (1)证明:点P 在C 上;
(2)设点P 关于点O 的对称点为Q ,证明:A 、P 、B 、Q 四点在同一圆上.
17。
在平面直角坐标系xOy 中, 已知点A (0,—1),B 点在直线3y =-上,M 点满足
//MB OA ,MA AB MB BA =,M 点的轨迹为曲线C .
(I)求C 的方程;
(II )P 为C 上动点,l 为C 在点P 处的切线,求O 点到l 距离的最小值.
18.已知动直线l 与椭圆C : 22
132x y +=交于P ()11,x y 、Q ()22,x y 两不同点,且△OPQ 的面积
OPQ S ∆=
6
2
,其中O 为坐标原点. (1)证明2212x x +和2212y y +均为定值;
(2)设线段PQ 的中点为M ,求||||OM PQ ⋅的最大值; (3)椭圆C 上是否存在点D ,E,G ,使得6
2
ODE ODG OEG S S S ∆∆∆===若存在,判断△DEG 的形状;若不存在,请说明理由.
19.如图,设P 是圆2225x y +=上的动点,点D 是P 在x 轴上的摄影,M 为PD 上一点,且
4
5
MD PD =
(Ⅰ)当P 在圆上运动时,求点M 的轨迹C 的方程;
(Ⅱ)求过点(3,0)且斜率为4
5
的直线被C 所截线段的长度
20.椭圆有两顶点A(-1,0)、B(1,0),过其焦点F(0,1)的直
线l与椭圆交于C、D两点,并与x轴交于点P.直线AC与直线BD交于点Q.
(I)当|CD |l的方程;
(II)当点P异于A、B两点时,求证:OP OQ
⋅为定值。
21。
已知斜率为1的直线l与双曲线C:
22
22
1(0,0)
x y
a b
a b
-=>>相交于B、D两点,且BD的中点
为M(1,3)
(Ⅰ)求C的离心率;
(Ⅱ)设C的右顶点为A,右焦点为F,||||17
DF BF
⋅=证明:过A、B、D三点的圆与x轴相切。