圆锥曲线高考大题
- 格式:docx
- 大小:36.29 KB
- 文档页数:1
【2023届新高考必刷】圆锥曲线大题综合1.(2023春·江苏扬州·高三统考开学考试)已知AB为抛物线G:y2=2px(p>0)的弦,点C在抛物线的准线l上.当AB过抛物线焦点F且长度为8时,AB中点M到y轴的距离为3.(1)求抛物线G的方程;(2)若∠ACB为直角,求证:直线AB过定点.2.(2023·江苏泰州·统考一模)已知双曲线C:x2a2-y2b2=1(a>0,b>0)的左顶点为A,过左焦点F的直线与C交于P,Q两点.当PQ⊥x轴时,PA=10,△PAQ的面积为3.(1)求C的方程;(2)证明:以PQ为直径的圆经过定点.3.(2023秋·浙江绍兴·高三期末)在平面直角坐标系xOy 中,已知点A (-2,0),B (2,0),直线PA 与直线PB 的斜率之积为-14,记动点P 的轨迹为曲线C .(1)求曲线C 的方程;(2)若直线l :y =kx +m 与曲线C 交于M ,N 两点,直线MA ,NB 与y 轴分别交于E ,F 两点,若EO=3OF ,求证:直线l 过定点.4.(2023秋·浙江·高三期末)已知点A 463,233 是双曲线x 2a 2-y 2b 2=1(a >0,b >0)上一点,B 与A 关于原点对称,F 是右焦点,∠AFB =π2.(1)求双曲线的方程;(2)已知圆心在y 轴上的圆C 经过点P (-4,0),与双曲线的右支交于点M ,N ,且直线MN 经过F ,求圆C 的方程.5.(2023春·广东揭阳·高三校考阶段练习)已知抛物线E:y2=2px p>0的焦点为F,点F关于直线y=12x+34的对称点恰好在y轴上.(1)求抛物线E的标准方程;(2)直线l:y=k x-2k≥6与抛物线E交于A,B两点,线段AB的垂直平分线与x轴交于点C,若D6,0,求ABCD的最大值.6.(2023·湖南邵阳·统考二模)已知双曲线C:x2a2-y2b2=10<a10,b的右顶点为A,左焦点F-c,0到其渐近线bx+ay=0的距离为2,斜率为13的直线l1交双曲线C于A,B两点,且AB=8103.(1)求双曲线C的方程;(2)过点T6,0的直线l2与双曲线C交于P,Q两点,直线AP,AQ分别与直线x=6相交于M,N 两点,试问:以线段MN为直径的圆是否过定点?若过定点,求出定点的坐标;若不过定点,请说明理由.7.(2023春·湖南长沙·高三雅礼中学校考阶段练习)定义:一般地,当λ>0且λ≠1时,我们把方程x2a2+y2b2=λ(a>b>0)表示的椭圆Cλ称为椭圆x2a2+y2b2=1(a>b>0)的相似椭圆.(1)如图,已知F1-3,0,F23,0,M为⊙O:x2+y2=4上的动点,延长F1M至点N,使得MN= MF1,F1N的垂直平分线与F2N交于点P,记点P的轨迹为曲线C,求C的方程;(2)在条件(1)下,已知椭圆Cλ是椭圆C的相似椭圆,M1,N1是椭圆Cλ的左、右顶点.点Q是Cλ上异于四个顶点的任意一点,当λ=e2(e为曲线C的离心率)时,设直线QM1与椭圆C交于点A,B,直线QN1与椭圆C交于点D,E,求AB+DE的值.8.(2023·湖北武汉·统考模拟预测)过坐标原点O 作圆C :(x +2)2+y 2=3的两条切线,设切点为P ,Q ,直线PQ 恰为抛物E :y 2=2px ,(p >0)的准线.(1)求抛物线E 的标准方程;(2)设点T 是圆C 上的动点,抛物线E 上四点A ,B ,M ,N 满足:TA =2TM ,TB =2TN ,设AB 中点为D .(i )求直线TD 的斜率;(ii )设△TAB 面积为S ,求S 的最大值.9.(2023·山东·潍坊一中校联考模拟预测)已知F 为抛物线C :y 2=2px (p >0)的焦点,O 为坐标原点,M 为C 的准线l 上的一点,直线MF 的斜率为-1,△OFM 的面积为1.(1)求C 的方程;(2)过点F 作一条直线l ,交C 于A ,B 两点,试问在l 上是否存在定点N ,使得直线NA 与NB 的斜率之和等于直线NF 斜率的平方?若存在,求出点N 的坐标;若不存在,请说明理由.10.(2023·山东菏泽·统考一模)如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的焦点分别为F 1-3,0,F 23,0 ,A 为椭圆C 上一点,△F 1AF 2的面积最大值为3.(1)求椭圆C 的方程;(2)若B 、D 分别为椭圆C 的上、下顶点,不垂直坐标轴的直线l 交椭圆C 于P 、Q (P 在上方,Q 在下方,且均不与B ,D 点重合)两点,直线PB ,QD 的斜率分别为k 1,k 2,且k 2=-3k 1,求△PBQ 面积的最大值.11.(2023·福建泉州·统考三模)已知椭圆C :x 24+y 23=1的左、右顶点分别为A ,B .直线l 与C 相切,且与圆O :x 2+y 2=4交于M ,N 两点,M 在N 的左侧.(1)若|MN |=455,求l 的斜率;(2)记直线AM ,BN 的斜率分别为k 1,k 2,证明:k 1k 2为定值.12.(2023·江苏南通·统考模拟预测)已知A x 1,y 1 ,B x 2,y 2 ,C x 3,y 3 三个点在椭圆x 22+y 2=1,椭圆外一点P 满足OP =2AO ,BP =2CP,(O 为坐标原点).(1)求x 1x 2+2y 1y 2的值;(2)证明:直线AC 与OB 斜率之积为定值.13.(2023·浙江嘉兴·统考模拟预测)已知抛物线C :y 2=2px p >0 ,过焦点F 的直线交抛物线C 于A ,B 两点,且AB =AF ⋅BF .(1)求抛物线C 的方程;(2)若点P 4,4 ,直线PA ,PB 分别交准线l 于M ,N 两点,证明:以线段MN 为直径的圆过定点.14.(2023·江苏连云港·统考模拟预测)已知椭圆E:x2a2+y2b2=1a>b>0的焦距为23,且经过点P-3,12.(1)求椭圆E的标准方程:(2)过椭圆E的左焦点F1作直线l与椭圆E相交于A,B两点(点A在x轴上方),过点A,B分别作椭圆的切线,两切线交于点M,求ABMF1的最大值.15.(2023春·江苏常州·高三校联考开学考试)已知点P2,-1在椭圆C:x2a2+y2b2=1(a>b>0)上,C的长轴长为42,直线l:y=kx+m与C交于A,B两点,直线PA,PB的斜率之积为14.(1)求证:k为定值;(2)若直线l与x轴交于点Q,求QA|2+QB|2的值.16.(2023春·江苏苏州·高三统考开学考试)已知抛物线y2=a2x的焦点也是离心率为32的椭圆x2a2+y2 b2=1a>b>0的一个焦点F.(1)求抛物线与椭圆的标准方程;(2)设过F的直线l交抛物线于A、B,交椭圆于C、D,且A在B左侧,C在D左侧,A在C左侧.设a=AC,b=μCD,c=DB.①当μ=2时,是否存在直线l,使得a,b,c成等差数列?若存在,求出直线l的方程;若不存在,说明理由;②若存在直线l,使得a,b,c成等差数列,求μ的范围.17.(2023秋·江苏无锡·高三统考期末)已知椭圆C1:x2a2+y2b2=1a>b>0的右焦点F和抛物线C2:y2=2px p>0的焦点重合,且C1和C2的一个公共点是23,263.(1)求C1和C2的方程;(2)过点F作直线l分别交椭圆于A,B,交抛物线C2于P,Q,是否存在常数λ,使1AB-λPQ为定值?若存在,求出λ的值;若不存在,说明理由.18.(2023秋·江苏·高三统考期末)如图,已知椭圆x24+y2=1的左、右顶点分别为A,B,点C是椭圆上异于A,B的动点,过原点O平行于AC的直线与椭圆交于点M,N,AC的中点为点D,直线OD与椭圆交于点P,Q,点P,C,M在x轴的上方.(1)当AC=5时,求cos∠POM;(2)求PQ⋅MN的最大值.19.(2023·浙江·校联考模拟预测)设双曲线C:x2a2-y2b2=1的右焦点为F3,0,F到其中一条渐近线的距离为2.(1)求双曲线C的方程;(2)过F的直线交曲线C于A,B两点(其中A在第一象限),交直线x=53于点M,(i)求|AF|⋅|BM||AM|⋅|BF|的值;(ii)过M平行于OA的直线分别交直线OB、x轴于P,Q,证明:MP=PQ.20.(2023春·浙江绍兴·高三统考开学考试)在平面直角坐标系xOy 中,已知椭圆C :x 24+y 2=1,B 1,0 .(1)设P 是椭圆C 上的一个动点,求PO ⋅PB的取值范围;(2)设与坐标轴不垂直的直线l 交椭圆C 于M ,N 两点,试问:是否存在满足条件的直线l ,使得△MB N 是以B 为直角顶点的等腰直角三角形?若存在,求出直线l 的方程,若不存在,请说明理由.21.(2023春·浙江·高三开学考试)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,且经过点M(-2,0),F 1,F 2为椭圆C 的左右焦点,Q x 0,y 0 为平面内一个动点,其中y 0>0,记直线QF 1与椭圆C 在x 轴上方的交点为A x 1,y 1 ,直线QF 2与椭圆C 在x 轴上方的交点为B x 2,y 2 .(1)求椭圆C 的标准方程;(2)①若AF 2∥BF 1,证明:1y 1+1y 2=1y 0;②若QF 1 +QF 2 =3,探究y 0,y 1,y 2之间关系.22.(2023春·浙江温州·高三统考开学考试)如图,椭圆x 24+y 2=1的左右焦点分别为F 1,F 2,点P x 0,y 0 是第一象限内椭圆上的一点,经过三点P ,F 1,F 2的圆与y 轴正半轴交于点A 0,y 1 ,经过点B (3,0)且与x 轴垂直的直线l 与直线AP 交于点Q .(1)求证:y 0y 1=1.(2)试问:x 轴上是否存在不同于点B 的定点M ,满足当直线MP ,MQ 的斜率存在时,两斜率之积为定值?若存在定点M ,求出点M 的坐标及该定值;若不存在,请说明理由.23.(2023春·广东·高三校联考阶段练习)已知双曲线E :x 2a 2-y 2b2=1(a >0,b >0)的右顶点为A 2,0 ,直线l 过点P 4,0 ,当直线l 与双曲线E 有且仅有一个公共点时,点A 到直线l 的距离为255.(1)求双曲线E 的标准方程;(2)若直线l 与双曲线E 交于M ,N 两点,且x 轴上存在一点Q t ,0 ,使得∠MQP =∠NQP 恒成立,求t .24.(2023·广东梅州·统考一模)已知动圆M经过定点F1-3,0,且与圆F2:x-32+y2=16内切.(1)求动圆圆心M的轨迹C的方程;(2)设轨迹C与x轴从左到右的交点为点A,B,点P为轨迹C上异于A,B的动点,设PB交直线x=4于点T,连结AT交轨迹C于点Q.直线AP、AQ的斜率分别为k AP、k AQ.(i)求证:k AP⋅k AQ为定值;(ii)证明直线PQ经过x轴上的定点,并求出该定点的坐标.25.(2023春·湖北武汉·高三华中师大一附中校考阶段练习)已知双曲线E:x24-y2=1与直线l:y=kx-3相交于A、B两点,M为线段AB的中点.(1)当k变化时,求点M的轨迹方程;(2)若l与双曲线E的两条渐近线分别相交于C、D两点,问:是否存在实数k,使得A、B是线段CD的两个三等分点?若存在,求出k的值;若不存在,说明理由.26.(2023·山东·日照一中校考模拟预测)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,斜率为-3的直线l 与双曲线C 交于A ,B 两点,点M (4,-22)在双曲线C 上,且MF 1 ⋅MF 2 =24.(1)求△MF 1F 2的面积;(2)若OB +OB=0(O 为坐标原点),点N 3,1 ,记直线NA ,NB 的斜率分别为k 1,k 2,问:k 1⋅k 2是否为定值?若是,求出该定值;若不是,请说明理由.27.(2023秋·山东泰安·高三统考期末)已知椭圆E :x 2a 2+y 2b2=1a >b >0 过A 1,62 ,B 3,22两点.(1)求椭圆E 的方程;(2)已知Q 4,0 ,过P 1,0 的直线l 与E 交于M ,N 两点,求证:MP NP=MQ NQ.28.(2023·浙江·模拟预测)已知双曲线E:x2a2-y2b2=1(a>0,b>0)的焦距为10,且经过点M(8,33).A,B为双曲线E的左、右顶点,P为直线x=2上的动点,连接PA,PB交双曲线E于点C,D(不同于A,B).(1)求双曲线E的标准方程.(2)直线CD是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.29.(2023·湖南·模拟预测)已知椭圆C:x2a2+y2b2=1a>b>0的上顶点为B,O为坐标原点,P-a2,0为椭圆C的长轴上的一点,若∠BPO=45°,且△OPB的面积为12.(1)求椭圆C的标准方程;(2)椭圆C与x轴负半轴交于点A,过点A的直线AM,AN分别与椭圆C交于M,N两点,直线AM,AN的斜率分别为k AM,k AN,且k AM⋅k AN=-112,求证:直线MN过定点,并求出该定点坐标,求出△AMN面积的最大值.30.(2023春·湖北·高三统考阶段练习)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为12.且经过点1,32 ,P ,Q 是椭圆C 上的两点.(1)求椭圆C 的方程;(2)若直线OP 与OQ 的斜率之积为-34(O 为坐标原点),点D 为射线OP 上一点,且OP =PD ,若线段DQ 与椭圆C 交于点E ,设QE =λED(λ>0).(i )求λ值;(ii )求四边形OPEQ 的面积.。
(一)数学全国1卷设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于,A B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMA OMB ∠=∠. 解:(1)由已知得(1,0)F ,l 的方程为x=1.由已知可得,点A 的坐标为或(1,.所以AM 的方程为y x =+y x =. (2)当l 与x 轴重合时,0OMA OMB ∠=∠=︒.当l 与x 轴垂直时,OM 为AB 的垂直平分线,所以OMA OMB ∠=∠.当l 与x 轴不重合也不垂直时,设l 的方程为(1)(0)y k x k =-≠,1221(,),(,)A y x y x B ,则12x x <<MA ,MB 的斜率之和为212122MA MB x x y yk k +=+--. 由1122,y k k x y k x k =-=-得121212(23()42)(2)MA MB x x x x k k x x kk k -+++=--.将(1)y k x =-代入2212x y +=得 2222(21)4220k x k x k +-+-=.所以,21221222422,2121x x x k k k x k -+==++.则3131322244128423()4021k k k k kk k k k x x x x --++-++==+. 从而0MA MB k k +=,故MA ,MB 的倾斜角互补,所以OMA OMB ∠=∠.综上,OMA OMB∠=∠.已知椭圆C:2222=1x ya b+(a>b>0),四点P1(1,1),P2(0,1),P3(–1,P4(1,C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.解:(1)由于3P,4P两点关于y轴对称,故由题设知C经过3P,4P两点.又由222211134a b a b+>+知,C不经过点P1,所以点P2在C上.因此222111314ba b⎧=⎪⎪⎨⎪+=⎪⎩,解得2241ab⎧=⎪⎨=⎪⎩.故C的方程为2214xy+=.(2)设直线P2A与直线P2B的斜率分别为k1,k2,如果l与x轴垂直,设l:x=t,由题设知0t≠,且||2t<,可得A,B的坐标分别为(t,),(t,).则121k k+-=-,得2t=,不符合题设.从而可设l:y kx m=+(1m≠).将y kx m=+代入2214xy+=得222(41)8440k x kmx m+++-=由题设可知22=16(41)0k m∆-+>.设A(x1,y1),B(x2,y2),则x1+x2=2841kmk-+,x1x2=224441mk-+.而12121211y y k k x x --+=+121211kx m kx m x x +-+-=+ 1212122(1)()kx x m x x x x +-+=.由题设121k k +=-,故1212(21)(1)()0k x x m x x ++-+=.即222448(21)(1)04141m kmk m k k --+⋅+-⋅=++.解得12m k +=-.当且仅当1m >-时,0∆>,欲使l :12m y x m +=-+,即11(2)2m y x ++=--,所以l 过定点(2,1-) 数学全国1卷设圆222150x y x ++-=的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E. (I )证明EA EB +为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线C1,直线l 交C1于M,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.【答案】(I )13422=+y x (0≠y );(II ))38,12[ 【解析】试题分析:(I )利用椭圆定义求方程;(II )把面积表示为关于斜率k 的函数,再求最值。
⾼考数学圆锥曲线⼤题集⼤全⾼考⼆轮复习专项:圆锥曲线⼤题集1. 如图,直线l1与l2是同⼀平⾯内两条互相垂直的直线,交点是A,点B、D在直线l1上(B、D 位于点A右侧,且|AB|=4,|AD|=1,M是该平⾯上的⼀个动点,M在l1上的射影点是N,且|BN|=2|DM|.2. (Ⅰ建⽴适当的坐标系,求动点M的轨迹C的⽅程.(Ⅱ过点D且不与l1、l2垂直的直线l交(Ⅰ中的轨迹C于E、F两点;另外平⾯上的点G、H满⾜:求点G的横坐标的取值范围.2. 设椭圆的中⼼是坐标原点,焦点在轴上,离⼼率,已知点到这个椭圆上的点的最远距离是4,求这个椭圆的⽅程.3. 已知椭圆的⼀条准线⽅程是其左、右顶点分别是A、B;双曲线的⼀条渐近线⽅程为3x-5y=0.(Ⅰ)求椭圆C1的⽅程及双曲线C2的离⼼率;(Ⅱ)在第⼀象限内取双曲线C2上⼀点P,连结AP交椭圆C1于点M,连结PB 并延长交椭圆C1于点N,若. 求证:4. 椭圆的中⼼在坐标原点O,右焦点F(c,0)到相应准线的距离为1,倾斜⾓为45°的直线交椭圆于A,B两点.设AB中点为M,直线AB与OM的夹⾓为 a.(1)⽤半焦距c表⽰椭圆的⽅程及tg;(2)若2 <3 ,求椭圆率⼼率 e 的取值范围 .5. 已知椭圆(a>b>0)的离⼼率,过点A(0,-b)和B(a,0)的直线与原点的距离为(1)求椭圆的⽅程(2)已知定点E(-1,0),若直线y=kx+2(k≠0)与椭圆交于C D两点问:是否存在k的值,使以CD为直径的圆过E点?请说明理由6. 在直⾓坐标平⾯中,的两个顶点的坐标分别为,,平⾯内两点同时满⾜下列条件:①;②;③∥(1)求的顶点的轨迹⽅程;(2)过点的直线与(1)中轨迹交于两点,求的取值范围7. 设,为直⾓坐标平⾯内x轴.y轴正⽅向上的单位向量,若,且(Ⅰ)求动点M(x,y的轨迹C的⽅程;(Ⅱ)设曲线C上两点A.B,满⾜(1直线AB过点(0,3),(2若,则OAPB为矩形,试求AB⽅程.8. 已知抛物线C:的焦点为原点,C的准线与直线的交点M在x轴上,与C交于不同的两点A、B,线段AB的垂直平分线交x轴于点N(p,0).(Ⅰ)求抛物线C的⽅程;(Ⅱ)求实数p的取值范围;(Ⅲ)若C的焦点和准线为椭圆Q的⼀个焦点和⼀条准线,试求Q的短轴的端点的轨迹⽅程.9. 如图,椭圆的中⼼在原点,长轴AA1在x轴上.以A、A1为焦点的双曲线交椭圆于C、D、D1、C1四点,且|CD|=|AA1|.椭圆的⼀条弦AC交双曲线于E,设,当时,求双曲线的离⼼率e的取值范围.10. 已知三⾓形ABC的三个顶点均在椭圆上,且点A是椭圆短轴的⼀个端点(点A在y轴正半轴上).若三⾓形ABC的重⼼是椭圆的右焦点,试求直线BC的⽅程;若⾓A为,AD垂直BC于D,试求点D的轨迹⽅程.11. 如图,过抛物线的对称轴上任⼀点作直线与抛物线交于两点,点是点关于原点的对称点.(1 设点分有向线段所成的⽐为,证明:;(2 设直线的⽅程是,过两点的圆与抛物线在点处有共同的切线,求圆的⽅程.12. 已知动点P(p,-1),Q(p,),过Q作斜率为的直线l,P Q中点M的轨迹为曲线C.(1)证明:l经过⼀个定点⽽且与曲线C⼀定有两个公共点;(2)若(1)中的其中⼀个公共点为A,证明:AP是曲线C的切线;(3)设直线AP的倾斜⾓为,AP与l的夹⾓为,证明:或是定值.13. 在平⾯直⾓坐标系内有两个定点和动点P,坐标分别为、,动点满⾜,动点的轨迹为曲线,曲线关于直线的对称曲线为曲线,直线与曲线交于A、B两点,O是坐标原点,△ABO的⾯积为,(1)求曲线C的⽅程;(2)求的值。
高中数学-高考圆锥曲线-难题-17道-教师版一、单选题1.(2011·湖北高考真题(文))(2011•湖北)将两个顶点在抛物线y 2=2px (p >0)上,另一个顶点是此抛物线焦点的正三角形个数记为n ,则( )A .n=0B .n=1C .n=2D .n≥3 【答案】C2.(2013·全国高考真题(理))已知点A (﹣1,0),B (1,0),C (0,1),直线y =ax +b (a >0)将△ABC 分割为面积相等的两部分,则b 的取值范围是( ) A .(0,1) B .112⎛⎫-⎪ ⎪⎝⎭, C .113⎛⎤-⎥ ⎝⎦, D .1132⎡⎫⎪⎢⎣⎭,【答案】B二、解答题3.(2014·上海高考真题(文)) 在平面直角坐标系中,对于直线:0ax by c和点记1122)().ax by c ax by c η=++++(若<0,则称点被直线分隔.若曲线C 与直线没有公共点,且曲线C上存在点被直线分隔,则称直线为曲线C 的一条分隔线.⑴求证:点被直线分隔;⑵若直线是曲线的分隔线,求实数的取值范围;⑶动点M 到点的距离与到轴的距离之积为1,设点M 的轨迹为E ,求E 的方程,并证明轴为曲线E的分割线.【答案】(1)证明见解析;(2)11(,][,)22k ∈-∞-⋃+∞;(3)证明见解析. 4.(2014·福建高考真题(文))已知曲线Γ上的点到点(0,1)F 的距离比它到直线3y =-的距离小2. (1)求曲线Γ的方程;(2)曲线Γ在点P 处的切线l 与x 轴交于点A .直线3y =分别与直线l 及y 轴交于点,M N ,以MN 为直径作圆C ,过点A 作圆C 的切线,切点为B ,试探究:当点P 在曲线Γ上运动(点P 与原点不重合)时,线段AB 的长度是否发生变化?证明你的结论.【答案】(1)24x y =.(2)当点P 在曲线Γ上运动时,线段AB 的长度不变,证明见解析.5.(2011·山东高考真题(文))在平面直角坐标系xOy中,已知椭圆.如图所示,斜率为k(k>0)且不过原点的直线l交椭圆C于A,B两点,线段AB的中点为E,射线OE交椭圆C于点G,交直线x=﹣3于点D(﹣3,m).(1)求m2+k2的最小值;(2)若|OG|2=|OD|∙|OE|,(i)求证:直线l过定点;(ii)试问点B,G能否关于x轴对称?若能,求出此时△ABG的外接圆方程;若不能,请说明理由.【答案】(1)2 (2)见解析6.(2013·浙江高考真题(理))图,点P(0,﹣1)是椭圆C1:+=1(a>b>0)的一个顶点,C1的长轴是圆C2:x2+y2=4的直径,l1,l2是过点P且互相垂直的两条直线,其中l1交圆C2于A、B两点,l2交椭圆C1于另一点D.(1)求椭圆C1的方程;(2)求△ABD面积的最大值时直线l1的方程.【答案】(1)(2)7.(2013·湖北高考真题(文))(2013•湖北)如图,已知椭圆C1与C2的中心在坐标原点O,长轴均为MN且在x 轴上,短轴长分别为2m,2n(m>n),过原点且不与x轴重合的直线l与C1,C2的四个交点按纵坐标从大到小依次为A,B,C,D,记,△BDM和△ABN的面积分别为S1和S2.(1)当直线l与y轴重合时,若S1=λS2,求λ的值;(2)当λ变化时,是否存在与坐标轴不重合的直线l ,使得S 1=λS 2?并说明理由.【答案】(1)(2)见解析8.(2011·广东高考真题(理))在平面直角坐标系xOy 中,给定抛物线21:4L y x =,实数,p q 满足240p q -≥,12,x x 是方程20x px q -+=的两根,记(){}12,max ,p q x x φ=(1)过点()20001,04A P P P ⎛⎫≠ ⎪⎝⎭作L 的切线交y 轴于点B ,证明:对线段AB 上的任一点(),Q p q ,均有()0,2P p q φ=; (2)设(,)M a b 是定点,其中,a b 满足2400a b a ->≠,,过(,)M a b 作L 的两条切线12,l l ,切点分别为22112211(,),'(,)44E P P E P P ,12,l l 与y 轴分别交于,'F F ,线段EF 上异于两端点的点集记为X ,证明:112(,)(,)2P M a b X P P a b φ∈⇔>⇔=;(3)设()21(,)|15144y x D x y y x ⎧⎫≤-⎧⎪⎪⎪=⎨⎨⎬≥+-⎪⎪⎪⎩⎩⎭,当点(),p q 取遍D 时,求(),p q φ的最小值(记为min ϕ)和最大值(记为max ϕ).【答案】(1)见解析;(2)见解析;(3)min 1ϕ=,max 54ϕ=. 9.(2019·全国高考真题(理))已知点A (−2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C . (1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连结QE 并延长交C 于点G . (i )证明:PQG 是直角三角形; (ii )求PQG 面积的最大值.10.(2018·浙江高考真题)如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足PA ,PB 的中点均在C 上.(Ⅰ)设AB 中点为M ,证明:PM 垂直于y 轴;(Ⅱ)若P 是半椭圆x 2+24y =1(x<0)上的动点,求△PAB 面积的取值范围.【答案】(Ⅰ)证明见解析;(Ⅱ)⎡⎢⎣⎦.11.(2017·山东高考真题(理))在平面直角坐标系xOy 中,椭圆E :22221x y a b +=()0a b >>的离心率为2,焦距为2.(Ⅰ)求椭圆E 的方程;(Ⅱ)如图,动直线l :1y k x =E 于,A B 两点,C 是椭圆E 上一点,直线OC 的斜率为2k ,且12k k =,M 是线段OC 延长线上一点,且:2:3MC AB =,M 的半径为MC ,,OS OT 是M 的两条切线,切点分别为,S T .求SOT ∠的最大值,并求取得最大值时直线l 的斜率.【答案】(1)2212x y += (2)SOT ∠ 的最大值为π3 ,取得最大值时直线l 的斜率为12k =±. 12.(2017·浙江高考真题)如图,已知抛物线2x y =.点A 1139-2424B ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,,,,抛物线上的点P (x,y )13-x 22⎛⎫ ⎪⎝⎭<<,过点B 作直线AP 的垂线,垂足为Q(I )求直线AP 斜率的取值范围;(II )求·PA PQ 的最大值 【答案】(I )(-1,1);(II )2716. 13.(2014·重庆高考真题(理))如图,设椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12,F F ,点D 在椭圆上,112DF F F ⊥,121||||F F DF =12DF F ∆.(1)求该椭圆的标准方程;(2)是否存在圆心在y 轴上的圆,使圆在x 轴的上方与椭圆两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求圆的方程,若不存在,请说明理由.【答案】(1)2212x y +=;(2)存在满足条件的圆,其方程为2253239x y ⎛⎫+-= ⎪⎝⎭. 14.(2015·湖北高考真题(文))一种作图工具如图1所示.O 是滑槽AB 的中点,短杆可绕转动,长杆通过处铰链与连接,上的栓子可沿滑槽AB 滑动,且1DN ON ==,3MN =.当栓子在滑槽AB 内作往复运动时,带动绕O 转动一周(不动时,也不动),处的笔尖画出的曲线记为.以O 为原点,AB 所在的直线为x 轴建立如图2所示的平面直角坐标系.(Ⅰ)求曲线C 的方程;(Ⅱ)设动直线l 与两定直线1:20l x y -=和2:20l x y +=分别交于,P Q 两点.若直线l 总与曲线C 有且只有一个公共点,试探究:的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.【答案】(Ⅰ)221164x y +=;(Ⅱ)存在最小值8. 15.(2014·重庆高考真题(文))如图,设椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12,F F ,点D 在椭圆上,112DF F F ⊥,121||||F F DF =12DF F ∆.(1)求该椭圆的标准方程;(2)是否存在圆心在y 轴上的圆,使圆在x 轴的上方与椭圆两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求圆的方程,若不存在,请说明理由.【答案】(1)2212x y +=;(2)存在满足条件的圆,其方程为2253239x y ⎛⎫+-= ⎪⎝⎭. 16.(2015·江苏高考真题)(本小题满分16分)如图,在平面直角坐标系xOy 中,已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为√22,且右焦点F 到左准线l 的距离为3.(1)求椭圆的标准方程;(2)过F的直线与椭圆交于A,B两点,线段AB的垂直平分线分别交直线l和AB于点P,C,若PC=2AB,求直线AB的方程.【答案】(1)x 22+y2=1(2)y=x−1或y=−x+1.17.(2015·重庆高考真题(文))(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分)如图,椭圆x 2a2+y2b2=1(a>b>0)的左右焦点分别为F1,F2,且过F2的直线交椭圆于P,Q两点,且PQ⊥PF1.(Ⅰ)若|PF1|=2+√2,|PF2|=2-√2,求椭圆的标准方程.(Ⅱ)若|PQ|=λ|PF1|,且34≤λ≤43,试确定椭圆离心率的取值范围.【答案】(Ⅰ)x 24+y2=1,(Ⅱ)√22<e≤√53.。
历年高考圆锥曲线2000年:(10)过原点的直线与圆相切,若切点在第三象限,则该直03422=+++x y x 线的方程是( )(A ) (B ) (C )(D )x y 3=x y 3-=x 33x 33-(11)过抛物线的焦点F 作一条直线交抛物线于P 、Q 两点,若线()02>=a ax y段PF 与FQ 的长分别是、,则等于( )p q qp 11+(A )(B )(C ) (D )a 2a21a 4a4(14)椭圆的焦点为、,点P 为其上的动点,当为钝角14922=+y x 1F 2F 21PF F ∠ 时,点P 横坐标的取值范围是________。
(22)(本小题满分14分)如图,已知梯形ABCD 中,点E 分有向线段所成的比为,CD AB 2=AC λ双曲线过C 、D 、E 三点,且以A 、B 为焦点。
当时,求双曲线离心率4332≤≤λ的取值范围。
e 2004年3.过点(-1,3)且垂直于直线的直线方程为( )032=+-y x A .B .C .D .12=-+y x 052=-+y x 052=-+y x 072=+-y x 8.已知圆C 的半径为2,圆心在轴的正半轴上,直线与圆C 相切,则圆x 0443=++y x C 的方程为( )A .B .03222=--+x y x 0422=++x y x C .D .3222=-++x y x 0422=-+x y x 8.(理工类)已知椭圆的中心在原点,离心率,且它的一个焦点与抛物线21=e 的焦点重合,x y 42-= 则此椭圆方程为( )A .B .13422=+y x 16822=+y x C .D .1222=+y x 1422=+y x 22.(本小题满分14分)双曲线的焦距为2c ,直线过点(a ,0)和(0,b ),且点)0,1(12222>>=-b a by a x l (1,0)到直线的距离与点(-1,0)到直线的距离之和求双曲线的离心率e l l .54c s ≥的取值范围.2005年:9.已知双曲线的焦点为,点在双曲线上且则点1222=-y x 12,F F M 120,MF MF ⋅= 到M 轴的距离为(x )A .B .CD435310.设椭圆的两个焦点分别为过作椭圆长轴的垂线交椭圆于点P ,若△为12,,F F 2F 12F PF等腰直角三角形,则椭圆的离心率是()A B C .D 2121、(理工类)(本小题满分12分)设,两点在抛物线上,是的垂直平分线。
圆锥曲线经典大题1.过点A (-4,0)的动直线l 与抛物线G :*2=2py (p >0)相交于B 、C 两点.当直线l 的斜率是12时,AC→=4AB →.(1)求抛物线G 的方程;(2)设线段BC 的中垂线在y 轴上的截距为b ,求b 的取值围.2.如图,(10)F ,,直线:1l x =-,点P 为平面上的动点,过点P 作l 的垂线,垂足为点Q ,且QP QF FP FQ ⋅=⋅.〔Ⅰ〕求动点P 的轨迹C 的方程。
〔Ⅱ〕过点F 的直线交轨迹C 于A B ,两点,交直线l 于点M . 〔1〕1MA AF λ=,2MB BF λ=,求12λλ+的值; 〔2〕求MA MB ⋅的最小值. 3.设点F 是抛物线G :*2=4y 的焦点.〔1〕过点P 〔0,-4〕作抛物线G 的切线,求切线的方程;〔2〕设A ,B 为抛物线G 上异于原点的两点,且满足0·=FB FA ,分别延长AF ,BF 交抛物线G 于C ,D 两点,求四边形ABCD 面积的最小值.4.设抛物线方程为22(0)x py p =>,M 为直线2y p =-上任意一点,过M 引抛物线的切线,切点分别为A B ,.〔Ⅰ〕求证:A M B ,,三点的横坐标成等差数列;〔Ⅱ〕当M 点的坐标为(22)p -,时,AB = 5.设椭圆222:12x y M a +=(a >的右焦点为1F ,直线2:22-=a a x l 与x 轴交于点A ,假设112OF AF +=0〔其中O 为坐标原点〕. 〔1〕求椭圆M 的方程;〔2〕设P 是椭圆M 上的任意一点,EF 为圆()12:22=-+y x N 的任意一条直径〔E 、F 为直径的两个端点〕,求PF PE ⋅的最大值.6.双曲线C 的方程为22221(0,0)y x a b a b -=>>,离心率2e =,顶点到渐近线的距离为5。
(I ) 求双曲线C 的方程;(II)如图,P 是双曲线C 上一点,A ,B 两点在双曲线C 的两条渐近线上,且分别位于第一、二象限,假设1,[,2]3AP PB λλ=∈,求AOB ∆面积的取值围。
圆锥曲线1(新课标全国Ⅱ卷)已知曲线C :x 2+y 2=16(y >0),从C 上任意一点P 向x 轴作垂线段PP ,P 为垂足,则线段PP 的中点M 的轨迹方程为()A.x 216+y 24=1(y >0)B.x 216+y 28=1(y >0)C.y 216+x 24=1(y >0)D.y 216+x 28=1(y >0)【答案】A【分析】设点M (x ,y ),由题意,根据中点的坐标表示可得P (x ,2y ),代入圆的方程即可求解.【详解】设点M (x ,y ),则P (x ,y 0),P (x ,0),因为M 为PP 的中点,所以y 0=2y ,即P (x ,2y ),又P 在圆x 2+y 2=16(y >0)上,所以x 2+4y 2=16(y >0),即x 216+y 24=1(y >0),即点M 的轨迹方程为x 216+y 24=1(y >0).故选:A2(全国甲卷数学(理))已知双曲线C :y 2a 2-x 2b 2=1(a >0,b >0)的上、下焦点分别为F 10,4 ,F 20,-4 ,点P -6,4 在该双曲线上,则该双曲线的离心率为()A.4B.3C.2D.2【答案】C【分析】由焦点坐标可得焦距2c ,结合双曲线定义计算可得2a ,即可得离心率.【详解】由题意,F 10,-4 、F 20,4 、P -6,4 ,则F 1F 2 =2c =8,PF 1 =62+4+4 2=10,PF 2 =62+4-4 2=6,则2a =PF 1 -PF 2 =10-6=4,则e =2c 2a =84=2.故选:C .3(新高考天津卷)双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1、F 2.P 是双曲线右支上一点,且直线PF 2的斜率为2.△PF 1F 2是面积为8的直角三角形,则双曲线的方程为()A.x 28-y 22=1B.x 28-y 24=1C.x 22-y 28=1D.x 24-y 28=1【答案】C【分析】可利用△PF 1F 2三边斜率问题与正弦定理,转化出三边比例,设PF 2 =m ,由面积公式求出m ,由勾股定理得出c ,结合第一定义再求出a .【详解】如下图:由题可知,点P 必落在第四象限,∠F 1PF 2=90°,设PF 2 =m ,∠PF 2F 1=θ1,∠PF 1F 2=θ2,由k PF 2=tan θ1=2,求得sin θ1=25,因为∠F 1PF 2=90°,所以k PF 1⋅k PF 2=-1,求得k PF 1=-12,即tan θ2=12,sin θ2=15,由正弦定理可得:PF 1 :PF 2 :F 1F 2 =sin θ1:sin θ2:sin90°=2:1:5,则由PF 2 =m 得PF 1 =2m ,F 1F 2 =2c =5m ,由S △PF 1F 2=12PF 1 ⋅PF 2 =12m ⋅2m =8得m =22,则PF 2 =22,PF 1 =42,F 1F 2 =2c =210,c =10,由双曲线第一定义可得:PF 1 -PF 2 =2a =22,a =2,b =c 2-a 2=8,所以双曲线的方程为x 22-y 28=1.故选:C4(新课标全国Ⅰ卷)(多选)造型可以做成美丽的丝带,将其看作图中曲线C 的一部分.已知C 过坐标原点O .且C 上的点满足横坐标大于-2,到点F (2,0)的距离与到定直线x =a (a <0)的距离之积为4,则()A.a =-2B.点(22,0)在C 上C.C 在第一象限的点的纵坐标的最大值为1D.当点x 0,y 0 在C 上时,y 0≤4x 0+2【答案】ABD【分析】根据题设将原点代入曲线方程后可求a,故可判断A的正误,结合曲线方程可判断B的正误,利用特例法可判断C的正误,将曲线方程化简后结合不等式的性质可判断D的正误.【详解】对于A:设曲线上的动点P x,y,则x>-2且x-22+y2×x-a=4,因为曲线过坐标原点,故0-22+02×0-a=4,解得a=-2,故A正确.对于B:又曲线方程为x-22+y2×x+2=4,而x>-2,故x-22+y2×x+2=4.当x=22,y=0时,22-22×22+2=8-4=4,故22,0在曲线上,故B正确.对于C:由曲线的方程可得y2=16x+22-x-22,取x=32,则y2=6449-14,而6449-14-1=6449-54=256-24549×4>0,故此时y2>1,故C在第一象限内点的纵坐标的最大值大于1,故C错误.对于D:当点x0,y0在曲线上时,由C的分析可得y20=16x0+22-x0-22≤16x0+22,故-4x0+2≤y0≤4x0+2,故D正确.故选:ABD.【点睛】思路点睛:根据曲线方程讨论曲线的性质,一般需要将曲线方程变形化简后结合不等式的性质等来处理.5(新课标全国Ⅱ卷)(多选)抛物线C:y2=4x的准线为l,P为C上的动点,过P作⊙A:x2+(y-4)2=1的一条切线,Q为切点,过P作l的垂线,垂足为B,则()A.l与⊙A相切B.当P,A,B三点共线时,|PQ|=15C.当|PB|=2时,PA⊥ABD.满足|PA|=|PB|的点P有且仅有2个【答案】ABD【分析】A选项,抛物线准线为x=-1,根据圆心到准线的距离来判断;B选项,P,A,B三点共线时,先求出P 的坐标,进而得出切线长;C选项,根据PB=2先算出P的坐标,然后验证k PA k AB=-1是否成立;D选项,根据抛物线的定义,PB=PF,于是问题转化成PA=PF的P点的存在性问题,此时考察AF的中垂线和抛物线的交点个数即可,亦可直接设P点坐标进行求解.【详解】A选项,抛物线y2=4x的准线为x=-1,⊙A的圆心(0,4)到直线x=-1的距离显然是1,等于圆的半径,故准线l和⊙A相切,A选项正确;B选项,P,A,B三点共线时,即PA⊥l,则P的纵坐标y P=4,由y2P=4x P,得到x P=4,故P(4,4),此时切线长PQ=PA2-r2=42-12=15,B选项正确;C选项,当PB=2时,xP=1,此时y2P=4x P=4,故P(1,2)或P(1,-2),当P(1,2)时,A(0,4),B(-1,2),k PA=4-20-1=-2,k AB=4-20-(-1)=2,不满足k PA k AB=-1;当P(1,-2)时,A(0,4),B(-1,2),k PA=4-(-2)0-1=-6,k AB=4-(-2)0-(-1)=6,不满足k PA k AB=-1;于是PA⊥AB不成立,C选项错误;D选项,方法一:利用抛物线定义转化根据抛物线的定义,PB=PF,这里F(1,0),于是PA=PB时P点的存在性问题转化成PA=PF时P点的存在性问题,A(0,4),F(1,0),AF中点12,2,AF中垂线的斜率为-1kAF =14,于是AF的中垂线方程为:y=2x+158,与抛物线y2=4x联立可得y2-16y+30=0,Δ=162-4×30=136>0,即AF的中垂线和抛物线有两个交点,即存在两个P点,使得PA=PF,D选项正确.方法二:(设点直接求解)设Pt24,t,由PB⊥l可得B-1,t,又A(0,4),又PA=PB,根据两点间的距离公式,t416+(t-4)2=t24+1,整理得t2-16t+30=0,Δ=162-4×30=136>0,则关于t的方程有两个解,即存在两个这样的P点,D选项正确.故选:ABD6(新课标全国Ⅰ卷)设双曲线C:x2a2-y2b2=1(a>0,b>0)的左右焦点分别为F1、F2,过F2作平行于y轴的直线交C于A,B两点,若|F1A|=13,|AB|=10,则C的离心率为.【答案】3 2【分析】由题意画出双曲线大致图象,求出AF2,结合双曲线第一定义求出AF1,即可得到a,b,c的值,从而求出离心率.【详解】由题可知A ,B ,F 2三点横坐标相等,设A 在第一象限,将x =c 代入x 2a 2-y 2b 2=1得y =±b 2a ,即A c ,b 2a ,B c ,-b 2a ,故AB =2b 2a =10,AF 2 =b 2a=5,又AF 1 -AF 2 =2a ,得AF 1 =AF 2 +2a =2a +5=13,解得a =4,代入b 2a=5得b 2=20,故c 2=a 2+b 2=36,,即c =6,所以e =c a =64=32.故答案为:327(新高考北京卷)已知抛物线y 2=16x ,则焦点坐标为.【答案】4,0【分析】形如y 2=2px ,p ≠0 的抛物线的焦点坐标为p2,0,由此即可得解.【详解】由题意抛物线的标准方程为y 2=16x ,所以其焦点坐标为4,0 .故答案为:4,0 .8(新高考北京卷)已知双曲线x 24-y 2=1,则过3,0 且和双曲线只有一个交点的直线的斜率为.【答案】±12【分析】首先说明直线斜率存在,然后设出方程,联立双曲线方程,根据交点个数与方程根的情况列式即可求解.【详解】联立x =3与x 24-y 2=1,解得y =±52,这表明满足题意的直线斜率一定存在,设所求直线斜率为k ,则过点3,0 且斜率为k 的直线方程为y =k x -3 ,联立x 24-y 2=1y =k x -3 ,化简并整理得:1-4k 2x 2+24k 2x -36k 2-4=0,由题意得1-4k 2=0或Δ=24k 2 2+436k 2+4 1-4k 2 =0,解得k =±12或无解,即k =±12,经检验,符合题意.故答案为:±12.9(新高考天津卷)(x -1)2+y 2=25的圆心与抛物线y 2=2px (p >0)的焦点F 重合,A 为两曲线的交点,则原点到直线AF 的距离为.【答案】45/0.8【分析】先求出圆心坐标,从而可求焦准距,再联立圆和抛物线方程,求A 及AF 的方程,从而可求原点到直线AF 的距离.【详解】圆(x -1)2+y 2=25的圆心为F 1,0 ,故p2=1即p =2,由x -12+y 2=25y 2=4x可得x 2+2x -24=0,故x =4或x =-6(舍),故A 4,±4 ,故直线AF :y =±43x -1 即4x -3y -4=0或4x +3y -4=0,故原点到直线AF 的距离为d =45=45,故答案为:4510(新高考上海卷)已知抛物线y 2=4x 上有一点P 到准线的距离为9,那么点P 到x 轴的距离为.【答案】42【分析】根据抛物线的定义知x P =8,将其再代入抛物线方程即可.【详解】由y 2=4x 知抛物线的准线方程为x =-1,设点P x 0,y 0 ,由题意得x 0+1=9,解得x 0=8,代入抛物线方程y 2=4x ,得y 20=32,解得y 0=±42,则点P 到x 轴的距离为42.故答案为:42.11(新课标全国Ⅰ卷)已知A (0,3)和P 3,32 为椭圆C :x 2a 2+y 2b 2=1(a >b >0)上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且△ABP 的面积为9,求l 的方程.【答案】(1)12(2)直线l 的方程为3x -2y -6=0或x -2y =0.【分析】(1)代入两点得到关于a ,b 的方程,解出即可;(2)方法一:以AP 为底,求出三角形的高,即点B 到直线AP 的距离,再利用平行线距离公式得到平移后的直线方程,联立椭圆方程得到B 点坐标,则得到直线l 的方程;方法二:同法一得到点B 到直线AP 的距离,再设B x 0,y 0 ,根据点到直线距离和点在椭圆上得到方程组,解出即可;法三:同法一得到点B 到直线AP 的距离,利用椭圆的参数方程即可求解;法四:首先验证直线AB 斜率不存在的情况,再设直线y =kx +3,联立椭圆方程,得到点B 坐标,再利用点到直线距离公式即可;法五:首先考虑直线PB 斜率不存在的情况,再设PB :y -32=k (x -3),利用弦长公式和点到直线的距离公式即可得到答案;法六:设线法与法五一致,利用水平宽乘铅锤高乘12表达面积即可.【详解】(1)由题意得b=39a2+94b2=1,解得b2=9a2=12,所以e=1-b2a2=1-912=12.(2)法一:k AP=3-320-3=-12,则直线AP的方程为y=-12x+3,即x+2y-6=0,AP=0-32+3-3 22=352,由(1)知C:x212+y29=1,设点B到直线AP的距离为d,则d=2×9352=1255,则将直线AP沿着与AP垂直的方向平移1255单位即可,此时该平行线与椭圆的交点即为点B,设该平行线的方程为:x+2y+C=0,则C+65=1255,解得C=6或C=-18,当C=6时,联立x212+y29=1x+2y+6=0,解得x=0y=-3或x=-3y=-32,即B0,-3或-3,-3 2,当B0,-3时,此时k l=32,直线l的方程为y=32x-3,即3x-2y-6=0,当B-3,-3 2时,此时k l=12,直线l的方程为y=12x,即x-2y=0,当C=-18时,联立x212+y29=1x+2y-18=0得2y2-27y+117=0,Δ=272-4×2×117=-207<0,此时该直线与椭圆无交点.综上直线l的方程为3x-2y-6=0或x-2y=0.法二:同法一得到直线AP的方程为x+2y-6=0,点B到直线AP的距离d=125 5,设B x0,y0,则x0+2y0-65=1255x2012+y209=1,解得x0=-3y0=-32或x0=0y0=-3,即B0,-3或-3,-3 2,以下同法一.法三:同法一得到直线AP的方程为x+2y-6=0,点B到直线AP的距离d=125 5,设B 23cos θ,3sin θ ,其中θ∈0,2π ,则有23cos θ+6sin θ-6 5=1255,联立cos 2θ+sin 2θ=1,解得cos θ=-32sin θ=-12或cos θ=0sin θ=-1,即B 0,-3 或-3,-32,以下同法一;法四:当直线AB 的斜率不存在时,此时B 0,-3 ,S △PAB =12×6×3=9,符合题意,此时k l =32,直线l 的方程为y =32x -3,即3x -2y -6=0,当线AB 的斜率存在时,设直线AB 的方程为y =kx +3,联立椭圆方程有y =kx +3x 212+y 29=1,则4k 2+3 x 2+24kx =0,其中k ≠k AP ,即k ≠-12,解得x =0或x =-24k 4k 2+3,k ≠0,k ≠-12,令x =-24k 4k 2+3,则y =-12k 2+94k 2+3,则B -24k 4k 2+3,-12k 2+94k 2+3同法一得到直线AP 的方程为x +2y -6=0,点B 到直线AP 的距离d =1255,则-24k4k 2+3+2×-12k 2+94k 2+3-65=1255,解得k =32,此时B -3,-32 ,则得到此时k l =12,直线l 的方程为y =12x ,即x -2y =0,综上直线l 的方程为3x -2y -6=0或x -2y =0.法五:当l 的斜率不存在时,l :x =3,B 3,-32,PB =3,A 到PB 距离d =3,此时S △ABP =12×3×3=92≠9不满足条件.当l 的斜率存在时,设PB :y -32=k (x -3),令P x 1,y 1 ,B x 2,y 2 ,y =k (x -3)+32x 212+y 29=1 ,消y 可得4k 2+3 x 2-24k 2-12k x +36k 2-36k -27=0,Δ=24k 2-12k 2-44k 2+3 36k 2-36k -27 >0,且k ≠k AP ,即k ≠-12,x 1+x 2=24k 2-12k 4k 2+3x 1x 2=36k 2-36k -274k 2+3,PB =k 2+1x 1+x 2 2-4x 1x 2=43k 2+13k 2+9k +2744k 2+3 ,A 到直线PB 距离d =3k +32k 2+1,S △PAB =12⋅43k 2+13k 2+9k +2744k 2+3⋅3k +32 k 2+1=9,∴k =12或32,均满足题意,∴l :y =12x 或y =32x -3,即3x -2y -6=0或x -2y =0.法六:当l 的斜率不存在时,l :x =3,B 3,-32,PB =3,A 到PB 距离d =3,此时S △ABP =12×3×3=92≠9不满足条件.当直线l 斜率存在时,设l :y =k (x -3)+32,设l 与y 轴的交点为Q ,令x =0,则Q 0,-3k +32,联立y =kx -3k +323x 2+4y 2=36,则有3+4k 2 x 2-8k 3k -32x +36k 2-36k -27=0,3+4k 2x 2-8k 3k -32x +36k 2-36k -27=0,其中Δ=8k 23k -322-43+4k 2 36k 2-36k -27 >0,且k ≠-12,则3x B =36k 2-36k -273+4k 2,x B =12k 2-12k -93+4k 2,则S =12AQ x P -x B =123k +32 12k +183+4k 2=9,解的k =12或k =32,经代入判别式验证均满足题意.则直线l 为y =12x 或y =32x -3,即3x -2y -6=0或x -2y =0.12(新课标全国Ⅱ卷)已知双曲线C :x 2-y 2=m m >0 ,点P 15,4 在C 上,k 为常数,0<k <1.按照如下方式依次构造点P n n =2,3,... ,过P n -1作斜率为k 的直线与C 的左支交于点Q n -1,令P n 为Q n -1关于y 轴的对称点,记P n 的坐标为x n ,y n .(1)若k =12,求x 2,y 2;(2)证明:数列x n -y n 是公比为1+k1-k的等比数列;(3)设S n 为△P n P n +1P n +2的面积,证明:对任意的正整数n ,S n =S n +1.【答案】(1)x 2=3,y 2=0(2)证明见解析(3)证明见解析【分析】(1)直接根据题目中的构造方式计算出P 2的坐标即可;(2)根据等比数列的定义即可验证结论;(3)思路一:使用平面向量数量积和等比数列工具,证明S n 的取值为与n 无关的定值即可.思路二:使用等差数列工具,证明S n 的取值为与n 无关的定值即可.【详解】(1)由已知有m =52-42=9,故C 的方程为x 2-y 2=9.当k =12时,过P 15,4 且斜率为12的直线为y =x +32,与x 2-y 2=9联立得到x 2-x +322=9.解得x =-3或x =5,所以该直线与C 的不同于P 1的交点为Q 1-3,0 ,该点显然在C 的左支上.故P 23,0 ,从而x 2=3,y 2=0.(2)由于过P n x n ,y n 且斜率为k 的直线为y =k x -x n +y n ,与x 2-y 2=9联立,得到方程x 2-k x -x n +y n 2=9.展开即得1-k 2 x 2-2k y n -kx n x -y n -kx n 2-9=0,由于P n x n ,y n 已经是直线y =k x -x n +y n 和x 2-y 2=9的公共点,故方程必有一根x =x n .从而根据韦达定理,另一根x =2k y n -kx n 1-k 2-x n =2ky n -x n -k 2x n1-k 2,相应的y =k x -x n +y n =y n +k 2y n -2kx n1-k 2.所以该直线与C 的不同于P n 的交点为Q n2ky n -x n -k 2x n 1-k 2,y n +k 2y n -2kx n1-k 2,而注意到Q n 的横坐标亦可通过韦达定理表示为-y n -kx n 2-91-k 2x n ,故Q n 一定在C 的左支上.所以P n +1x n +k 2x n -2ky n 1-k 2,y n +k 2y n -2kx n1-k 2.这就得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n1-k 2.所以x n +1-y n +1=x n +k 2x n -2ky n 1-k 2-y n +k 2y n -2kx n1-k 2=x n +k 2x n +2kx n 1-k 2-y n +k 2y n +2ky n 1-k 2=1+k 2+2k 1-k2x n -y n =1+k 1-k x n -y n .再由x 21-y 21=9,就知道x 1-y 1≠0,所以数列x n -y n 是公比为1+k 1-k 的等比数列.(3)方法一:先证明一个结论:对平面上三个点U ,V ,W ,若UV =a ,b ,UW =c ,d ,则S △UVW =12ad -bc .(若U ,V ,W 在同一条直线上,约定S △UVW =0)证明:S △UVW =12UV ⋅UW sin UV ,UW =12UV ⋅UW 1-cos 2UV ,UW =12UV⋅UW 1-UV ⋅UWUV ⋅UW 2=12UV 2⋅UW 2-UV ⋅UW 2=12a 2+b 2c 2+d 2-ac +bd2=12a 2c 2+a 2d 2+b 2c 2+b 2d 2-a 2c 2-b 2d 2-2abcd =12a 2d 2+b 2c 2-2abcd =12ad -bc2=12ad -bc .证毕,回到原题.由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n 1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k 2x n +y n=1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k 1+k 的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n-121+k 1-k mx n +y n x n -y n =121-k 1+k m -1+k 1-k m x 2n -y 2n=921-k 1+k m -1+k 1-k m .而又有P n +1P n =-x n +1-x n ,-y n +1-y n ,P n +1P n +2=x n +2-x n +1,y n +2-y n +1 ,故利用前面已经证明的结论即得S n =S △P n P n +1P n +2=12-x n +1-x n y n +2-y n +1 +y n +1-y n x n +2-x n +1 =12x n +1-x n y n +2-y n +1 -y n +1-y n x n +2-x n +1 =12x n +1y n +2-y n +1x n +2 +x n y n +1-y n x n +1 -x n y n +2-y n x n +2=12921-k 1+k -1+k 1-k +921-k 1+k -1+k 1-k -921-k 1+k 2-1+k 1-k 2.这就表明S n 的取值是与n 无关的定值,所以S n =S n +1.方法二:由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n 1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k2x n +y n =1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k1+k的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n-121+k 1-k mx n +y n x n -y n =121-k 1+k m -1+k 1-k m x 2n -y 2n =921-k 1+k m -1+k 1-k m.这就得到x n +2y n +3-y n +2x n +3=921-k 1+k -1+k1-k=x n y n +1-y n x n +1,以及x n +1y n +3-y n +1x n +3=921-k 1+k 2-1+k 1-k 2=x n y n +2-y n x n +2.两式相减,即得x n +2y n +3-y n +2x n +3 -x n +1y n +3-y n +1x n +3 =x n y n +1-y n x n +1 -x n y n +2-y n x n +2 .移项得到x n +2y n +3-y n x n +2-x n +1y n +3+y n x n +1=y n +2x n +3-x n y n +2-y n +1x n +3+x n y n +1.故y n +3-y n x n +2-x n +1 =y n +2-y n +1 x n +3-x n .而P n P n +3 =x n +3-x n ,y n +3-y n ,P n +1P n +2 =x n +2-x n +1,y n +2-y n +1 .所以P n P n +3 和P n +1P n +2平行,这就得到S △P n P n +1P n +2=S △P n +1P n +2P n +3,即S n =S n +1.【点睛】关键点点睛:本题的关键在于将解析几何和数列知识的结合,需要综合运用多方面知识方可得解.13(全国甲卷数学(理)(文))设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,点M 1,32 在C 上,且MF ⊥x 轴.(1)求C 的方程;(2)过点P 4,0 的直线与C 交于A ,B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ ⊥y 轴.【答案】(1)x 24+y 23=1(2)证明见解析【分析】(1)设F c ,0 ,根据M 的坐标及MF ⊥x 轴可求基本量,故可求椭圆方程.(2)设AB :y =k (x -4),A x 1,y 1 ,B x 2,y 2 ,联立直线方程和椭圆方程,用A ,B 的坐标表示y 1-y Q ,结合韦达定理化简前者可得y 1-y Q =0,故可证AQ ⊥y 轴.【详解】(1)设F c ,0 ,由题设有c =1且b 2a =32,故a 2-1a =32,故a =2,故b =3,故椭圆方程为x 24+y 23=1.(2)直线AB 的斜率必定存在,设AB :y =k (x -4),A x 1,y 1 ,B x 2,y 2 ,由3x 2+4y 2=12y =k (x -4) 可得3+4k 2 x 2-32k 2x +64k 2-12=0,故Δ=1024k 4-43+4k 2 64k 2-12 >0,故-12<k <12,又x 1+x 2=32k 23+4k 2,x 1x 2=64k 2-123+4k 2,而N 52,0 ,故直线BN :y =y 2x 2-52x -52 ,故y Q =-32y 2x 2-52=-3y 22x 2-5,所以y 1-y Q =y 1+3y 22x 2-5=y 1×2x 2-5 +3y 22x 2-5=k x 1-4 ×2x 2-5 +3k x 2-42x 2-5=k 2x 1x 2-5x 1+x 2 +82x 2-5=k2×64k 2-123+4k 2-5×32k 23+4k 2+82x 2-5=k128k 2-24-160k 2+24+32k 23+4k 22x 2-5=0,故y 1=y Q ,即AQ ⊥y 轴.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为x 1,y 1 ,x 2,y 2 ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,注意Δ的判断;(3)列出韦达定理;(4)将所求问题或题中的关系转化为x 1+x 2、x 1x 2(或y 1+y 2、y 1y 2)的形式;(5)代入韦达定理求解.14(新高考北京卷)已知椭圆方程C :x 2a 2+y 2b 2=1a >b >0 ,焦点和短轴端点构成边长为2的正方形,过0,t t >2 的直线l 与椭圆交于A ,B ,C 0,1 ,连接AC 交椭圆于D .(1)求椭圆方程和离心率;(2)若直线BD 的斜率为0,求t .【答案】(1)x 24+y 22=1,e =22(2)t =2【分析】(1)由题意得b =c =2,进一步得a ,由此即可得解;(2)说明直线AB 斜率存在,设AB :y =kx +t ,t >2 ,A x 1,y 1 ,B x 2,y 2 ,联立椭圆方程,由韦达定理有x 1+x 2=-4kt 1+2k 2,x 1x 2=2t 2-42k 2+1,而AD :y =y 1-y 2x 1+x 2x -x 1 +y 1,令x =0,即可得解.【详解】(1)由题意b =c =22=2,从而a =b 2+c 2=2,所以椭圆方程为x 24+y 22=1,离心率为e =22;(2)显然直线AB 斜率存在,否则B ,D 重合,直线BD 斜率不存在与题意不符,同样直线AB 斜率不为0,否则直线AB 与椭圆无交点,矛盾,从而设AB :y =kx +t ,t >2 ,A x 1,y 1 ,B x 2,y 2 ,联立x 24+y 22=1y =kx +t ,化简并整理得1+2k 2x 2+4ktx +2t 2-4=0,由题意Δ=16k 2t 2-82k 2+1 t 2-2 =84k 2+2-t 2 >0,即k ,t 应满足4k 2+2-t 2>0,所以x 1+x 2=-4kt 1+2k 2,x 1x 2=2t 2-42k 2+1,若直线BD 斜率为0,由椭圆的对称性可设D -x 2,y 2 ,所以AD :y =y 1-y 2x 1+x 2x -x 1 +y 1,在直线AD 方程中令x =0,得y C =x 1y 2+x 2y 1x 1+x 2=x 1kx 2+t +x 2kx 1+t x 1+x 2=2kx 1x 2+t x 1+x 2 x 1+x 2=4k t 2-2 -4kt +t =2t =1,所以t =2,此时k 应满足4k 2+2-t 2=4k 2-2>0k ≠0 ,即k 应满足k <-22或k >22,综上所述,t =2满足题意,此时k <-22或k >22.15(新高考天津卷)已知椭圆x 2a 2+y 2b 2=1(a >b >0)椭圆的离心率e =12.左顶点为A ,下顶点为B ,C 是线段OB 的中点,其中S △ABC =332.(1)求椭圆方程.(2)过点0,-32的动直线与椭圆有两个交点P ,Q .在y 轴上是否存在点T 使得TP ⋅TQ ≤0恒成立.若存在求出这个T 点纵坐标的取值范围,若不存在请说明理由.【答案】(1)x 212+y 29=1(2)存在T 0,t -3≤t ≤32,使得TP ⋅TQ ≤0恒成立.【详解】(1)因为椭圆的离心率为e =12,故a =2c ,b =3c ,其中c 为半焦距,所以A -2c ,0 ,B 0,-3c ,C 0,-3c 2 ,故S △ABC=12×2c ×32c =332,故c =3,所以a =23,b =3,故椭圆方程为:x 212+y 29=1.(2)若过点0,-32 的动直线的斜率存在,则可设该直线方程为:y =kx -32,设P x 1,y 1 ,Q x 2,y 2 ,T 0,t ,由3x 2+4y 2=36y =kx -32可得3+4k 2 x 2-12kx -27=0,故Δ=144k 2+1083+4k 2 =324+576k 2>0且x 1+x 2=12k 3+4k 2,x 1x 2=-273+4k 2,而TP =x 1,y 1-t ,TQ=x 2,y 2-t ,故TP ⋅TQ =x 1x 2+y 1-t y 2-t =x 1x 2+kx 1-32-t kx 2-32-t =1+k 2 x 1x 2-k 32+t x 1+x 2 +32+t 2=1+k 2 ×-273+4k 2-k 32+t ×12k 3+4k 2+32+t 2=-27k 2-27-18k 2-12k 2t +332+t 2+3+2t 2k 23+4k 2=3+2t2-12t -45 k 2+332+t 2-273+4k 2,因为TP ⋅TQ ≤0恒成立,故3+2t 2-12t -45≤0332+t 2-27≤0,解得-3≤t ≤32.若过点0,-32的动直线的斜率不存在,则P 0,3 ,Q 0,-3 或P 0,-3 ,Q 0,3 ,此时需-3≤t ≤3,两者结合可得-3≤t ≤32.综上,存在T 0,t-3≤t ≤32 ,使得TP ⋅TQ ≤0恒成立.【点睛】思路点睛:圆锥曲线中的范围问题,往往需要用合适的参数表示目标代数式,表示过程中需要借助韦达定理,此时注意直线方程的合理假设.16(新高考上海卷)已知双曲线Γ:x 2-y 2b2=1,(b >0),左右顶点分别为A 1,A 2,过点M -2,0 的直线l 交双曲线Γ于P ,Q 两点.(1)若离心率e =2时,求b 的值.(2)若b =263,△MA 2P 为等腰三角形时,且点P 在第一象限,求点P 的坐标.(3)连接OQ 并延长,交双曲线Γ于点R ,若A 1R ⋅A 2P=1,求b 的取值范围.【答案】(1)b =3(2)P 2,22 (3)0,3 ∪3,303【详解】(1)由题意得e =c a =c1=2,则c =2,b =22-1=3.(2)当b =263时,双曲线Γ:x 2-y 283=1,其中M -2,0 ,A 21,0 ,因为△MA 2P 为等腰三角形,则①当以MA 2为底时,显然点P 在直线x =-12上,这与点P 在第一象限矛盾,故舍去;②当以A 2P 为底时,MP =MA 2 =3,设P x ,y ,则 x 2-3y 28=1(x +2)2+y 2=9, 联立解得x =-2311y =-81711 或x =-2311y =81711或x =1y =0 ,因为点P 在第一象限,显然以上均不合题意,舍去;(或者由双曲线性质知MP >MA 2 ,矛盾,舍去);③当以MP 为底时,A 2P =MA 2 =3,设P x 0,y 0 ,其中x 0>0,y 0>0,则有x 0-1 2+y 20=9x 20-y 2083=1,解得x 0=2y 0=22,即P 2,22 .综上所述:P 2,22 .(3)由题知A 1-1,0 ,A 21,0 , 当直线l 的斜率为0时,此时A 1R ⋅A 2P=0,不合题意,则k l ≠0,则设直线l :x =my -2,设点P x 1,y 1 ,Q x 2,y 2 ,根据OQ 延长线交双曲线Γ于点R ,根据双曲线对称性知R -x 2,-y 2 , 联立有x =my -2x 2-y 2b2=1⇒b 2m 2-1 y 2-4b 2my +3b 2=0,显然二次项系数b 2m 2-1≠0,其中Δ=-4mb 2 2-4b 2m 2-1 3b 2=4b 4m 2+12b 2>0,y 1+y 2=4b 2m b 2m 2-1①,y 1y 2=3b 2b 2m 2-1②,A 1R =-x 2+1,-y 2 ,A 2P=x 1-1,y 1 ,则A 1R ⋅A 2P=-x 2+1 x 1-1 -y 1y 2=1,因为P x 1,y 1 ,Q x 2,y 2 在直线l 上,则x 1=my 1-2,x 2=my 2-2,即-my 2-3 my 1-3 -y 1y 2=1,即y 1y 2m 2+1 -y 1+y 2 3m +10=0,将①②代入有m 2+1 ⋅3b 2b 2m 2-1-3m ⋅4b 2m b 2m 2-1+10=0,即3b 2m 2+1 -3m ⋅4b 2m +10b 2m 2-1 =0化简得b 2m 2+3b 2-10=0,所以 m 2=10b 2-3, 代入到 b 2m 2-1≠0, 得 b 2=10-3b 2≠1, 所以 b 2≠3,且m 2=10b 2-3≥0,解得b 2≤103,又因为b >0,则0<b 2≤103,综上知,b 2∈0,3 ∪3,103 ,∴b ∈0,3 ∪3,303.【点睛】关键点点睛:本题第三问的关键是采用设线法,为了方便运算可设l :x =my -2,将其与双曲线方程联立得到韦达定理式,再写出相关向量,代入计算,要注意排除联立后的方程得二次项系数不为0.一、单选题1(2024·福建泉州·二模)若椭圆x 2a 2+y 23=1(a >0)的离心率为22,则该椭圆的焦距为()A.3B.6C.26或3D.23或6【答案】D【分析】分焦点在x 轴或y 轴两种情况,求椭圆的离心率,求解参数a ,再求椭圆的焦距.【详解】若椭圆的焦点在x 轴,则离心率e =a 2-3a =22,得a 2=6,此时焦距2c =26-3=23,若椭圆的焦点在y 轴,则离心率e =3-a 23=22,得a 2=32,此时焦距2c =23-32=6,所以该椭圆的焦距为23或6.故选:D2(2024·河北衡水·三模)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0),圆O 1:(x -2)2+y 2=4与圆O 2:x 2+(y -1)2=1的公共弦所在的直线是C 的一条渐近线,则C 的离心率为()A.3B.2C.5D.6【答案】C【详解】因为O 1:(x -2)2+y 2=4,O 2:x 2+(y -1)2=1,所以两圆方程相减可得y =2x ,由题意知C 的一条渐近线为y =2x ,即ba =2,双曲线C 的离心率e =c a =c 2a 2=a 2+b 2a 2=1+b 2a2=5.故选:C .3(2024·北京·三模)已知双曲线E :3mx 2-my 2=3的一个焦点坐标是0,2 ,则m 的值及E 的离心率分别为()A.-1,233B.-1,2C.1,2D.102,10【答案】A【详解】依题意,双曲线E :3mx 2-my 2=3化为:y 2-3m -x 2-1m=1,则-3m +-1m =22,解得m =-1,双曲线y 23-x 2=1的离心率e =23=233.故选:A4(2024·贵州贵阳·三模)过点A (-3,-4)的直线l 与圆C :(x -3)2+(y -4)2=9相交于不同的两点M ,N ,则线段MN 的中点P 的轨迹是()A.一个半径为10的圆的一部分B.一个焦距为10的椭圆的一部分C.一条过原点的线段D.一个半径为5的圆的一部分【答案】D【详解】设P (x ,y ),根据线段MN 的中点为P ,则CP ⊥MN ,即CP ⊥AP ,所以CP ⋅AP =0,又A (-3,-4),C (3,4),AP =(x +3,y +4),CP =(x -3,y -4),所以(x +3)(x -3)+(y +4)(y -4)=0,即x 2+y 2=25,所以点P 的轨迹是以(0,0)为圆心,半径为5的圆在圆C 内的一部分,故选:D .5(2024·湖南·模拟预测)已知点A 1,0 ,点B -1,0 ,动点M 满足直线AM ,BM 的斜率之积为4,则动点M 的轨迹方程为()A.x 24-y 2=1B.x 24-y 2=1(x ≠±1)C.x 2-y 24=1D.x 2-y 24=1(x ≠±1)【答案】D【详解】设动点M (x ,y )由于A 1,0 ,B -1,0 ,根据直线AM 与BM 的斜率之积为4.整理得y x +1⋅y x -1=4,化简得:x 2-y 24=1(x ≠±1).故选:D6(2024·陕西榆林·三模)在平面直角坐标系xOy 中,把到定点F 1-a ,0 ,F 2a ,0 距离之积等于a 2(a >0)的点的轨迹称为双纽线.若a =2,点P x 0,y 0 为双纽线C 上任意一点,则下列结论正确的个数是()①C 关于x 轴不对称②C 关于y 轴对称③直线y =x 与C 只有一个交点④C 上存在点P ,使得PF 1 =PF 2 A.1个 B.2个C.3个D.4个【答案】C【详解】①设M x ,y 到定点F 1-2,0 ,F 22,0 的距离之积为4,可得(x +2)2+y 2.(x -2)2+y 2=4,整理得x 2+y 2 2=8x 2-y 2 ,即曲线C 的方程为x 2+y 2 2=8x 2-y 2 ,由x 用-x 代换,方程没变,可知曲线C 关于y 轴对称,由y 用-y 代换,方程没变,可知曲线C 关于x 轴对称,由x 用-x 代换,y 用-y 同时代换,方程没变,可知曲线C 关于原点对称,图象如图所示:所以①不正确,②正确;③联立方程组x 2+y 2 2=8x 2-y 2y =x,可得x 4=0,即x =0,所以y =0,所以直线y =x 与曲线C 只有一个交点O (0,0),所以③正确.④原点O 0,0 满足曲线C 的方程,即原点O 在曲线C 上,则OF 1 =OF 2 ,即曲线C 上存在点P 与原点O 重合时,满足PF 1 =PF 2 ,所以④正确.故选:C .7(2024·福建泉州·二模)双曲线C :x 2a 2-y 2b 2=1(a >0,b >0),左、右顶点分别为A ,B ,O 为坐标原点,如图,已知动直线l 与双曲线C 左、右两支分别交于P ,Q 两点,与其两条渐近线分别交于R ,S 两点,则下列命题正确的是()A.存在直线l ,使得BQ ⎳OSB.当且仅当直线l 平行于x 轴时,|PR |=|SQ |C.存在过(0,b )的直线l ,使得S △ORB 取到最大值D.若直线l 的方程为y =-22(x -a ),BR =3BS ,则双曲线C 的离心率为3【答案】D【详解】解:对于A 项:与渐近线平行的直线不可能与双曲线有两个交点,故A 项错误;对于B 项:设直线l :y =kx +t ,与双曲线联立y =kx +tx 2a2-y 2b2=1,得:b 2-a 2k 2 x 2-2a 2ktx -a 2t 2+a 2b 2 =0,其中b 2-a 2k 2≠0,设P x 1,y 1 ,Q x 2,y 2 ,由根与系数关系得:x 1+x 2=2a 2kt b 2-a 2k 2,x 1x 2=-a 2b 2+a 2t 2b 2-a 2k 2,所以线段PQ 中点N x 1+x 22,y 1+y 22 =a 2kt b 2-a 2k 2,a 2k 2tb 2-a 2k2+t,将直线l :y =kx +t ,与渐近线y =b a x 联立得点S 坐标为S at b -ak ,btb -ak,将直线l :y =kx +t 与渐近线y =-b a x 联立得点R 坐标为R -at b +ak ,btb +ak ,所以线段RS 中点M a 2kt b 2-a 2k 2,a 2k 2tb 2-a 2k2+t,所以线段PQ 与线段RS 的中点重合.所以,对任意的直线l ,都有|PR |=|PQ |-|RS |2=|SQ |,故B 项不正确;对于C 项:因为|OB |为定值,当k 越来越接近渐近线y =-b a x 的斜率-ba 时,S △ORB 趋向于无穷,所以S △ORB 会趋向于无穷,不可能有最大值,故C 项错误;对于D 项:联立直线l 与渐近线y =bax ,解得Sa 22b +a ,ab2b +a,联立直线l 与渐近线y =-b a x ,解得R a 2-2b +a ,ab2b -a由题可知,BR =3BS ,3y S =y R +2y B ,3ab2b +a =ab2b -a ,解得b =2a ,所以e =1+b 2a2=1+(2a )2a 2=3,故D 项正确.故选:D .【点睛】方法点睛:求解椭圆或双曲线的离心率的三种方法:①定义法:通过已知条件列出方程组,求得a ,c 得值,根据离心率的定义求解离心率e ;②齐次式法:由已知条件得出关于a ,c 的二元齐次方程,然后转化为关于e 的一元二次方程求解;③特殊值法:通过取特殊值或特殊位置,求出离心率.8(2024·河南·二模)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左,右焦点分别为F 1,F 2,O 为坐标原点,焦距为82,点P 在双曲线C 上,OP =OF 2 ,且△POF 2的面积为8,则双曲线的离心率为()A.2B.22C.2D.4【答案】C【详解】因为△POF 2的面积为8,所以△PF 1F 2的面积为16.又OP =OF 2 ,所以OP =OF 2 =OF 1 =12F 1F 2,所以△PF 1F 2为直角三角形,且PF 1⊥PF 2.设PF 1 =m ,PF 2 =n ,所以m -n =2a ,m 2+n 2=4c 2,所以mn =m 2+n 2 -(m -n )22=4c 2-4a 22=2b 2,所以S △PF 1F 2=12mn =b 2=16,又b >0,所以b =4.焦距为2c =82,所以c =42,则a 2=c 2-b 2=(42)2-16=16,所以a =4,则离心率e =424=2.故选:C .9(2024·重庆·三模)已知抛物线y 2=4x 的焦点为F ,过点F 的直线l 交抛物线于A ,B 两点,点A 在第一象限,点O 为坐标原点,且S △AOF =2S △BOF ,则直线l 的斜率为()A.22B.3C.1D.-1【答案】A 【详解】如图:设直线倾斜角为α,抛物线的准线l :x =-1作AM ⊥l 于M ,根据抛物线的定义,AM =AF =DF +AF ⋅cos α=2+AF ⋅cos α,所以|AF |=21-cos α,类似的|BF |=21+cos α.由S △AOF =2S △BOF 知|AF |=2|BF |,得cos α=13,故k =tan α=22.故选:A10(2024·黑龙江齐齐哈尔·三模)设F 为抛物线C :y =ax 2的焦点,若点P (1,2)在C 上,则|PF |=()A.3B.52C.94D.178【答案】D【详解】依题意,2=a ×12,解得a =2,所以C :x 2=y 2的准线为y =-18,所以|PF |=2+18=178,故选:D .11(2024·山东泰安·二模)设抛物线x 2=4y 的焦点为F ,过抛物线上点P 作准线的垂线,设垂足为Q ,若∠PQF =30°,则PQ =()A.43B.433C.3D.233【答案】A【详解】如图所示:设 M 为准线与x 轴的交点,因为∠PQF =30°,且PF =PQ ,所以∠PFQ =30°,∠QPF =120°,因为FM ⎳PQ ,所以∠QFM =30°,而在Rt△QMF中,QF=FMcos30°=232=433,所以PF=PQ=QF2÷cos30°=233÷32=43.故选:A.二、多选题12(2024·江西·模拟预测)已知A-2,0,B2,0,C1,0,动点M满足MA与MB的斜率之积为-3 4,动点M的轨迹记为Γ,过点C的直线交Γ于P,Q两点,且P,Q的中点为R,则()A.M的轨迹方程为x24+y23=1B.MC的最小值为1C.若O为坐标原点,则△OPQ面积的最大值为32D.若线段PQ的垂直平分线交x轴于点D,则R点的横坐标是D点的横坐标的4倍【答案】BCD【详解】对于选项A,设M x,y,因为A-2,0,B2,0,所以k MA⋅k MB=yx+2⋅yx-2=-34,化简得x24+y23=1x≠±2,故A错误;对于选项B,因为x24+y23=1x≠±2,则a=2,b=3,则c=a2-b2=1,所以C1,0为椭圆的右焦点,则MCmin=a-c=2-1=1,故B正确;对于选项C,设PQ的方程 x=my+1,代入椭圆方程,得3m2+4y2+6my-9=0,设P x1,y1,Q x2,y2,则y1+y2=-6m3m2+4,y1y2=-93m2+4,Δ=36m2+363m2+4>0,所以S△OPQ=12OCy1-y2=12y1+y22-4y1y2=12-6m3m2+42+363m2+4=6m2+13m2+4,令m2+1=t≥1,则S△OPQ=6t3t2+1=63t+1t,令g t =3t+1tt≥1,则S△OPQ=6g t,t≥1,g t =3-1t2=3t2-1t2>0,g t 在1,+∞为增函数,g t ≥g1 =4,g t min=4,所以S△OPQmax=64=32,当且仅当t=1时即m=0等号成立,故C正确;对于选项D,因为Rx1+x22,y1+y22,x1+x22=m y1+y22+1=-3m23m2+4+1=43m2+4,y1+y22=-3m3m2+4,所以R43m2+4,-3m3m2+4,则x R=43m2+4,设D x D ,0 ,则k PQ ⋅k RD =1m ⋅3m3m 2+4x D -43m 2+4=-1,则x D =13m 2+4,所以x R x D=43m 2+413m 2+4=4,则R 点的横坐标是D 点的横坐标的4倍,故D 正确.故选:BCD .【点睛】关键点点睛:本题求解的关键有两个:一是利用面积公式得出面积表达式,结合导数得出最值;二是根据垂直平分得出点之间的关系.13(2024·江苏常州·二模)双曲线具有光学性质:从双曲线一个焦点发出的光线经过双曲线镜面反射,其反射光线的反向延长线经过双曲线的另一个焦点.如图,双曲线E :x 24-y 26=1的左、右焦点分别为F 1,F 2,从F 2发出的两条光线经过E 的右支上的A ,B 两点反射后,分别经过点C 和D ,其中AF 2 ,BF 2共线,则()A.若直线AB 的斜率k 存在,则k 的取值范围为-∞,-62 ∪62,+∞ B.当点C 的坐标为210,10 时,光线由F 2经过点A 到达点C 所经过的路程为6C.当AB ⋅AD =AB 2时,△BF 1F 2的面积为12D.当AB ⋅AD =AB 2时,cos ∠F 1F 2A =-1010【答案】ABD【详解】如图所示,过点F 2分别作E 的两条渐近线的平行线l 1,l 2,则l 1,l 2的斜率分别为62和-62,对于A 中,由图可知,当点A ,B 均在E 的右支时,k <-62或k >62,所以A 正确;对于B 中,光线由F 2经过点A 到达点C 所经过的路程为F 2A +AC =F 1A -2a +AC =F 1C -2a =(210+10)2+(10-0)2-4=6,所以B 正确;对于C 中,由AB ⋅AD =AB 2,得AB ⋅AD -AB =0,即AB ⋅BD=0,所以AB ⊥BD ,设BF 1 =n ,则BF 2 =n -2a =n -4,因为∠ABD =π2,所以n 2+(n -4)2=(2c )2=40,整理得n 2-4n -12=0,解得n =6或n =-2(舍去),所以BF 1 =6,BF 2 =2,所以△BF 1F 2的面积S =12BF 1 ⋅BF 2 =6,所以C 错误;对于D 项,在直角△F 1BF 2中,cos ∠F 1F 2B =BF 2 F 1F 2=2210=1010,所以cos ∠F 1F 2A =-cos ∠F 1F 2B =-1010,所以D 正确.故选:ABD .14(2024·重庆·三模)已知双曲线C :x 2a 2-y 216=1(a >0)的左,右焦点分别为F 1,F 2,P 为双曲线C 上点,且△PF 1F 2的内切圆圆心为I (3,1),则下列说法正确的是()A.a =3B.直线PF 1的斜率为14C.△PF 1F z 的周长为643D.△PF 1F 2的外接圆半径为6512【答案】ACD【详解】如图1,由条件,点P 应在双曲线C 的右支上,设圆I 分别与△PF 1F 2的三边切于点M 、N 、A ,则由题A 3,0 ,且PM =PN ,F 1M =F 1A ,F 2N =F 2A ,又∵PF 1 -PF 2 =F 1M -F 2N =AF 1 -F 2A =x A +c -c -x A =2x A =2a ∴a =x A =3,A 选项正确;由选项A 得F 1-5,0 ,F 25,0 ,连接IF 1、IF 2、IA ,则tan ∠IF 1A =IA AF 1=18,所以k PF 1=tan ∠PF 1A =tan2∠IF 1A =2tan ∠IF 1A 1-tan 2∠IF 1A=1663,B 选项错误;同理,tan ∠PF 2A =tan2∠IF 2A =43,∴tan ∠F 1PF 2=-tan ∠PF 1A +∠PF 2A =-125,∴⇒tan∠F 1PF 22=32,所以由焦三角面积公式得S △F 1PF 2=b 2tan∠F 1PF 22=323,又S △F 1PF 2=PF 1+PF 2+F 1F 2 r2,故得PF 1 +PF 2 +F 1F 2 =643,∴△PF 1F 2的周长为643,C 选项正确;由tan ∠F 1PF 2=-125⇒sin ∠F 1PF 2=1213,由正弦定理F 1F 2sin ∠F 1PF 2=2R 得R =6512,D 选项正确.故选:ACD .【点睛】关键点睛:求直线PF 1的斜率、△PF 1F z 的周长、△PF 1F 2的外接圆半径的关键是根据已知条件F 1A 、F 2A 、IA 以及与各个所需量的关系即可求出∠PF 1A =2∠IF 1A 、∠PF 2A =2∠IF 2A 和∠F 2PF 1.15(2024·湖北襄阳·二模)抛物线C :x 2=2py 的焦点为F ,P 为其上一动点,当P 运动到(t ,1)时,|PF |=2,直线l 与抛物线相交于A 、B 两点,下列结论正确的是()A.抛物线的方程为:x 2=8yB.抛物线的准线方程为:y =-1。
2024年全国一卷新高考题型细分S13——圆锥曲线 大题31、试卷主要是2024年全国一卷新高考地区真题、模拟题,合计202套。
其中全国高考真题4套,广东47套,山东22套,江苏18套,浙江27套,福建15套,河北23套,湖北19套,湖南27套。
2、题目设置有尾注答案,复制题干的时候,答案也会被复制过去,显示在文档的后面,双击尾注编号可以查看。
方便老师备课选题。
3、题型纯粹按照个人经验进行分类,没有固定的标准。
4、《圆锥曲线——大题》题目主要按长短顺序排版,具体有:短,中,长,涉后导数等,大概206道题。
每道题目后面标注有类型和难度,方便老师备课选题。
1. (2024年冀J12大数据应用调研)19. 已知圆()()22:4,1,0,1,0O x y B C +=-.点M 在圆O 上,延长CM 到A ,使CM MA =,点P 在线段AB 上,满足()0PA PC AC +⋅=.(1)求点P 的轨迹E 的方程;(①)(2)设Q 点在直线1x =上运动,()()122,0,2,0D D -.直线1QD 与2QD 与轨迹E 分别交于G H ,两点,求OGH 面积的最大值.(椭圆,中下;面积,最值,中档;)2. (2024年冀J16邯郸三调)18. 已知椭圆2222:1(0,0)x y E a b a b +=>>经过2P ⎛⎫- ⎪⎝⎭,31,2Q ⎛⎫- ⎪⎝⎭两点.(1)求E 的方程;(②)(2)若圆221x y +=的两条相互垂直的切线12,l l 均不与坐标轴垂直,且直线12,l l 分别与E 相交于点A ,C 和B ,D ,求四边形ABCD 面积的最小值. (椭圆,基础;面积,最值,中档;)3. (2024年冀J11衡水一模)17. 已知椭圆2222:1(0)x y C a b a b+=>>过31,2⎛⎫ ⎪⎝⎭和⎭两点.12,F F 分别为椭圆的左、右焦点,P 为椭圆上的点(P 不在x 轴上),过椭圆右焦点2F 的直线l 与椭圆交于A B 、两点.(1)求椭圆的标准方程;(③)(2)求AB 的范围.(椭圆,基础;长度,范围,中档;)4. (2024年粤J105湛江二模)18. 双曲线2222:1(0,0)x y C a b a b-=>>上一点(D 到左、右焦点的距离之差为6,(1)求双曲线C 的方程,(④)(2)已知()(),3,03,0A B -,过点()5,0的直线l 与C 交于,M N (异于,A B )两点,直线MA 与NB 交于点P ,试问点P 到直线2x =-的距离是否为定值?若是,求出该定值;若不是,请说明理由, (双曲线,易;距离,定值,中档;)5. (2024年粤J104名校一联考)16. 现有一“v ”型的挡板如图所示,一椭圆形物件的短轴顶点被固定在A 点.物件可绕A 点在平面内旋转.AP 间距离可调节且与两侧挡板的角度固定为60°.已知椭圆长轴长为4,短轴长为2.(1)在某个角度固定椭圆,则当椭圆不超过挡板时AP 间距离最短为多少;(⑤)(2)为了使椭圆物件能自由绕A 点自由转动,AP 间距离最短为多少.求出最短距离并证明其可行性. (椭圆,距离最值,中档;距离最值,中档;)6. (2024年闽J13厦门二检)17.(15分)双曲线C :()222210,0x y a b a b-=>>,点T在C 上.(1)求C 的方程;(⑥)(2)设圆O :222x y +=上任意一点P 处的切线交C 于M 、N 两点,证明:以MN 为直径的圆过定点.(双曲线,基础;圆切线,定点,中档;)7. (2024年湘J42岳阳三检)18.已知动圆P 过定点(0,1)F 且与直线3y =相切,记圆心P 的轨迹为曲线E .(⑦)(1)已知A 、B 两点的坐标分别为(2,1)-、(2,1),直线AP 、BP 的斜率分别为1k 、2k ,证明:121k k -=; (2)若点()11,M x y 、()22,N x y 是轨迹E 上的两个动点且124x x =-,设线段MN 的中点为Q ,圆P 与动点Q 的轨迹Γ交于不同于F 的三点C 、D 、G ,求证:CDG 的重心的横坐标为定值. (斜率,中下;中点,定值,中档;)8.(2024年湘J47长沙雅礼二模)17.已知椭圆2222:1(0)x y G a b a b +=>>右焦点为(),斜率为1的直线l 与椭圆G 交于,A B 两点,以AB 为底边作等腰三角形,顶点为(3,2)P -. (1)求椭圆G 的方程;(⑧) (2)求PAB 的面积. (椭圆,易;面积,中下;)9. (2024年鲁J46烟台二模)19.已知椭圆()222103x y a a Γ+=>:的右焦点为()1,0F ,过点F 且不垂直于坐标轴的直线交Γ于,A B 两点,Γ在,A B 两点处的切线交于点Q . (1)求证:点Q 在定直线上,并求出该直线方程;(⑨)(2)设点M 为直线OQ 上一点,且AB AM ⊥,求AM 的最小值. (椭圆,定直线,中档;长度,中档;)10. (2024年鲁J38济宁三模)18.已知椭圆2222:1(0)x y E a b a b+=>>的左焦点为F ,上顶点为B ,离心率2e =,直线FB 过点(1,2)P . (1)求椭圆E 的标准方程;(⑩)(2)过点F 的直线l 与椭圆E 相交于M ,N 两点(M 、N 都不在坐标轴上),若MPF NPF =∠∠,求直线l 的方程.(椭圆,基础;角度,直线,中档;)11. (2024年鲁J42青岛二适)16.已知椭圆2222:1(0)x y E a b a b+=>>的左,右焦点分别为12,F F ,椭圆E的离心率为12,椭圆E 上的点到右焦点的最小距离为1. (1)求椭圆E 的方程;(11)(2)若过右焦点2F 的直线l 与椭圆E 交于B ,C 两点,E 的右顶点记为A ,1//AB CF ,求直线l 的方程. (椭圆,中下;直线,中档;)12. (2024年浙J40台州二评)18.已知椭圆C :229881x y +=,直线l :=1x -交椭圆于M ,N 两点,T为椭圆的右顶点,TMN △的内切圆为圆Q . (1)求椭圆C 的焦点坐标;(12) (2)求圆Q 的方程;(3)设点()1,3P ,过P 作圆Q 的两条切线分别交椭圆C 于点A ,B ,求PAB 的周长. (椭圆,易;圆,中下;圆切线,周长,中档;)13. (2024年浙J31五校联考)16.已知椭圆()222210x y a b a b+=>>的左焦点为F ,椭圆上的点到点F 距离11. (1)求该椭圆的方程;(13)(2)对椭圆上不在上下顶点的任意一点P ,其关于y 轴的对称点记为P ',求PF P F '+; (3)过点()2,0Q 作直线交椭圆于不同的两点A ,B ,求FAB 面积的最大值. (椭圆,中下;椭圆,基础;面积最值,中档;)14. (2024年苏J35南京二模)18.已知抛物线2:2(0)C y px p =>与双曲线2222:1x y E a b-=(0a >,0b >)有公共的焦点F ,且4p b =.过F 的直线1与抛物线C 交于A ,B 两点,与E 的两条近线交于P ,Q 两点(均位于y 轴右侧). (1)求E 的渐近线方程;(14)(2)若实数λ满足1111||||||||OP OQ AF BF λ⎛⎫+=- ⎪⎝⎭,求λ的取值范围. (双曲线,基础;范围分析,中档;)15. (2024年粤J138汕头金南三模)19.已知动圆M (M 为圆心)过定点(2,0)P ,且与定直线:2l x =-相切.(1)求动圆圆心M 的轨迹方程;(15)(2)设过点P 且斜率为1)中的曲线交于A 、B 两点,求AOBS ;(3)设点(,0)N a 是x 轴上一定点,求M 、N 两点间距离的最小值()d a . (抛物线,中下;面积,中下;距离最值,中档;)16. (2024年粤J137梅州二模)15.已知椭圆C :22221x y a b+=(0a b >>)的离心率为12,且经过点31,2T ⎛⎫ ⎪⎝⎭.(1)求椭圆C 的方程:(16)(2)求椭圆C 上的点到直线l :2y x =的距离的最大值. (椭圆,基础;最值,中下;)17. (2024年粤J136茂名高州一模)21.已知抛物线()2:20C y px p =>,F 为抛物线的焦点,,P Q 其为准线上的两个动点,且PF QF ⊥.当2PF QF =时,5PQ =. (1)求抛物线C 的标准方程;(17)(2)若线段,PF QF 分别交抛物线C 于点,A B ,记PQF △的面积为1S ,ABF △的面积为2S ,当129S S =时,求PQ 的长.(抛物线,基础;面积,长度,中档;)18. (2024年粤J135茂名二测)17.已知椭圆22:12x C y +=,右焦点为F ,过点F 的直线l 交C 于,A B 两点.(1)若直线l 的倾斜角为π4,求AB ;(18)(2)记线段AB 的垂直平分线交直线=1x -于点M ,当AMB ∠最大时,求直线l 的方程. (椭圆,常规,基础;最值求直线,中档)19. (2024年粤J133江门开平忠源)18.已知双曲线2222:1(0,0)x y C a b a b -=>>的焦点与椭圆2215x y +=的焦点重合,其渐近线方程为y =. (1)求双曲线C 的方程;(19)(2)若,A B 为双曲线C 上的两点且不关于原点对称,直线1:3l y x =过AB 的中点,求直线AB 的斜率.(双曲线,常规,基础;直线中点,斜率,中下)20. (2024年冀J47唐山二模)18.已知椭圆C 的右焦点为()1,0F ,其四个顶点的连线围成的四边形面积为ABDE 内接于椭圆C . (1)求椭圆C 的标准方程;(20)(2)(ⅰ)坐标原点O 在边AB 上的投影为点P ,求点P 的轨迹方程; (ⅰ)求菱形ABDE 面积的取值范围.(椭圆,基础;轨迹,中档;面积范围,中上)①【答案】(1)22143x y +=(2【解析】【分析】(1)由题意可得PA PC =,再根据M 为AC 的中点,可得12OM AB =,再根据PB PC PB PA AB +=+=,结合椭圆的定义即可得解;(2)设()()()011221,,,,,Q y G x y H x y ,根据1,,Q G D 三点共线,2,,Q H D 三点共线,求出,G H 两点坐标的关系,设GH 的方程为ty x m =+,联立方程,利用韦达定理求得1212,y y y y +,再根据弦长公式及点到直线的距离公式分析即可得解. 【小问1详解】因为()0PA PC AC +⋅=,所以()()0PA PC PC PA +⋅-=, 所以22PA PC =,所以PA PC =, 因为CM MA =,所以M 为AC 的中点, 又因O 为BC 的中点,所以122OM AB ==,所以AB 4=,则4PB PC PB PA AB BC +=+==>,所以点P 的轨迹是以,B C 为焦点的椭圆,而22213-=,所以点P 的轨迹E 的方程为22143x y +=;【小问2详解】由(1)得()()122,0,2,0D D -是椭圆E 的左右顶点, 设()()()011221,,,,,Q y G x y H x y ,由1,,Q G D 三点共线,得11//D Q D G ,而()()101113,,2,D Q y D G x y ==+, 所以()10132y y x =+,所以10132y y x =+, 由2,,Q H D 三点共线,得22//D Q D H ,而()()101221,,2,DQ y DG x y =-=-, 所以()1012y y x -=-,所以2022y y x =--, 所以1212322y y x x =-+-,即()()12213220y x y x -++=, 设GH 的方程为ty x m =+,联立22143ty x m x y =+⎧⎪⎨+=⎪⎩,得()2223463120t y tmy m +-+-=,则()()()222222Δ3643431248340t m t m t m =-+-=-+>,21212226312,3434tm m y y y y t t -+==++,所以()2121242m ty y y y m-=+,由()()12213220y x y x -++=,得()()12213220y ty m y ty m --+-+=, 即()()122142320ty y m y m y ---+=, 所以()()()()21221242320m y y m ym y m-+---+=,所以()()()214220m m y m y ⎡⎤+--+=⎣⎦恒成立,所以4m =-, 则()2Δ483120t =->,所以24t >, 则21221234243634,t y y y y t t ==++-+,GH 的方程为4ty x =-,所以GH ==,原点O 到直线GH 的距离d =则12424323416OGHSGH d t ====-++≤===t =时取等号,所以OGH【点睛】方法点睛:圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值.②【答案】(1)22143x y +=.(2)24049. 【解析】【分析】(1)依据椭圆经过两点,将点的坐标代入椭圆方程,待定系数法解方程即可;(2)设其中一条的斜截式方程,首先由直线与圆相切,得出直线的斜率与截距关系;再设而不求,用韦达定理表示出两条直线与椭圆相交的弦长,再利用条件知两弦垂直,故四边形ABCD 的面积1||||2S AC BD =⋅,利用弦长将面积表示成其中一条直线斜率的函数,利用函数求最值. 【小问1详解】因为E过点P ⎛ ⎝⎭,31,2Q ⎛⎫- ⎪⎝⎭, 所以2222231,2191,4a b a b ⎧+=⎪⎪⎨⎪+=⎪⎩解得224,3.a b ⎧=⎨=⎩ 故E 的方程为22143x y +=.【小问2详解】由题知12,l l 的斜率存在且不为0. 设1:(0)l y kx m k =+≠. 因为1l 与圆221x y +=1=,得221m k =+.联立1l 与E 的方程,可得()2223484120kxkmx m +++-=,设()11,A x y ,()22,C x y ,则122834km x x k -+=+,212241234m x x k-=+.所以12AC x =-==,将221m k =+代入,可得AC =.用1k-替换k,可得BD =四边形ABCD 的面积123434S AC BD k k =⋅=++令21t k=+,则(1,)t ∈+∞,可得212S t t==+-, 再令u =(1,)t ∈+∞,则52u ⎤∈⎥⎦,可得2242424240652649625u S u u u ==≥=+++⨯,即四边形ABCD 面积的最小值为24049.③【答案】(1)22143x y +=(2)[]3,4 【解析】【分析】(1)将点3(1,2代入椭圆方程,即可求出椭圆C 的标准方程;(2)分类讨论直线斜率是否为0,从而假设直线方程,与椭圆方程联立,利用韦达定理与弦长公式得到关于m 的关系式,再分析即可得解; 【小问1详解】由题意可知,将点3(1,2代入椭圆方程,得222291416241a b a b ⎧⎪+=⎪⎪⎨⎪⎪+=⎪⎩,解得224,3a b ==,所以椭圆的标准方程为22143x y +=.【小问2详解】由(1)知()11,0F -,()21,0F , 当直线l 的斜率为0时,24AB a ==,当直线l 的斜率不为0时,设直线l 的方程为1x my =+,()11,A x y ,()22,B x y ,联立221431x y x my ⎧+=⎪⎨⎪=+⎩,消去x ,得22(34)690m y my ++-=, 易得()22Δ636(34)0m m =++>,则12122269,3434m y y y y m m --+==++, 所以AB ==2221212443434m m m +===-++, 因为20m ≥,所以2344m +≥,所以240134m <≤+,所以34AB ≤<,综上,34AB ≤≤,即AB 的范围是[]3,4.④【答案】(1)2219x y -=(2)是定值,定值为195【解析】【分析】(1)利用双曲线的定义与点在双曲线上得到关于,a b 的方程,解之即可得解;(2)假设直线l 方程5x my =+,联立双曲线方程得到1212,y y y y +,再由题设条件得到直线AM 与BN 的方程,推得两者的交点P 在定直线上,从而得解. 【小问1详解】依题意可得22222661a ab =⎧⎪⎨-=⎪⎩,解得23,1a b ==,故双曲线C 的方程为2219x y -=.【小问2详解】由题意可得直线l 的斜率不为0,设直线l 的方程为5x my =+,联立22519x my x y =+⎧⎪⎨-=⎪⎩,消去x ,得()22910160m y my -++=, 则290m -≠,()()()222Δ10416936160m m m =-⨯-=+>,设()()1122,,,M x y N x y ,则1212221016,99m y y y y m m -+==--, 又()()3,0,3,0A B -, 直线11:(3)3y AM y x x =++,直线22:(3)3y BN y x x =--, 联立1122(3)3(3)3y y x x y y x x ⎧=+⎪+⎪⎨⎪=-⎪-⎩,两式相除,得()()()()2121122121212138833322y x y my my y y x x y x y my my y y ++++===--++()1122212121121112216806488889994161622299m m my y my y y y y m m m m m my y y y y m m ----++----====-+++--, 即343x x +=--,解得95x =, 所以点P 在定直线95x =上,因为直线95x =与直线2x =-之间的距离为919255+=, 所以点P 到直线2x =-的距离为定值,且定值为195. 【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()()1122,,,x y x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,注意∆的判断; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x (或12y y +、12y y )的形式; (5)代入韦达定理求解.⑤【答案】(1)13- (2)13+,证明见解析 【解析】【分析】(1)如图,设00(,)P x y 和过点P 的直线,切线,PM PN 的斜率分别为12,k k ,联立椭圆方程,利用韦达定理表示1212,k k k k +,进而可得121200tan 1k k MPN k k -∠==+,结合tan 0MPN ∠>或tan MPN ∠≤(2)当PA 恒为正实数R 时,设11(,)B x y 1(11)y -≤≤为椭圆上任意一点,则2163PB ≤,进而1R x >=.由(1)可得222012(320)(320)160R y R -+--≤或20320620R y -++≥,利用换元法,结合011R y R -≤≤+建立不等式组,化简可得2310R ≥+.【小问1详解】由题意,如图,该椭圆的方程为2214x y +=,(0,1)A ,,PM PN 分别为椭圆的2条切线,切点分别为,M N ,设直线,PM PN 的斜率分别为12,k k .设00(,)P x y ,当02x =±时,12,k k 其中1个不存在,另1个趋于∞; 当02x ≠±时,设过点P 的直线为00()y k x x y =-+(0)k ≠,00222200002()(14)8()4()4014y k x x y k x k y kx x y kx x y =-+⎧⎪⇒++-+--=⎨+=⎪⎩, 所以2222000064()16(14)[()1]0k y kx k y kx ∆=--+--=,整理,得220000(4)210x k x y k y --+-=,①由12,k k 是方程①的2个实根,得20001212220021,44x y y k k k k x x -+==--, 所以220002222200121212222012122021()444()4tan 11(1)(1)4x y y x x k k k k k k MPN y k k k k x -----+-∠===-+++- 2222222000000022222222000004()4(1)(4)(4)4(44)(4)(5)(5)x y y x x x y x x y x y ----+-=⨯=-+-+-, 又220014x y +>,所以2200440x y +->, 当220050x y +->时,点P 在圆225x y +=的外部,则tan 0MPN ∠>,此时00tan MPN ∠=;当220050x y +-<时,点P 在圆225x y +=的内部,则tan 0MPN ∠>,此时00tan MPN ∠=,所以00tan MPN ∠=.又tan 0MPN ∠>或tan tan120MPN ︒∠≤=,000>00≤整理,得220050x y +-≥或2222200004(44)3(5)x y x y +-≥+-.要求PA 的最小值,只需考虑MPN ∠为钝角的情况,即2222200004(44)3(5)x y x y +-≥+-且220050x y +-<,得22222220000003(5)4(44)4(444)x y x y x y +-≤+-≤+-.令2OP t =,则5t <且23(5)4(44)t t -≤-,即2346910t t -+≤,解得7133t ≤≤,所以OP ≥13PA OP OA ≥-=-,当且仅当,,P O A 三点共线时等号成立.故00tan MPN ∠=053=-,得120MPN ︒∠=. 综上,PA的最小值为13-. 【小问2详解】当PA 恒为正实数R 时,设11(,)B x y 1(11)y -≤≤为椭圆上任意一点, 则22222211111111216(1)213255333PB x y x y y y y =+-=+-+=--+≤-++=,当且仅当1113x y ==时等号成立,所以13R x >=. 由(1)知,2222200004(44)3(5)x y x y +-≥+-或220050x y +-≥,由22200(1)x y R +-=,得22222200004[(1)44]3[(1)5]R y y R y y --+-≥--+-或22200(1)50R y y --+-≥,即22220004(325)3(26)y y R R y ++-≥+-或20260R y +-≥,整理,得222012(320)(320)160R y R -+--≤或20320620R y -++≥,令2320u R =-,则4u >-,得2012160uy u +-≤或0620u y ++≥,011R y R -≤≤+.当2203R ≤即0u <时,201612u y u-≥或026u y --≥,令v u =-,则04v <<,得201612v y v -≥-或026v y -≥,又011y ≤得216112v v --或216v -≥,而12111136v -=<-<-<,所以216112v v--,整理,得010v <≤-10u ≥- 当0u ≥时,010u ≥>,符合题意.综上,10u ≥,则232010u R =-≥,即2310R ≥+解得1R ≥+,所以R1,即PA1.【点睛】方法点睛:解决圆锥曲线中范围问题的方法:一般题目中没有给出明确的不等关系,首先需要根据已知条件进行转化,利用圆锥曲线的几何性质及曲线 上点的坐标确定不等关系;然后构造目标函数,把原问题转化为求函数的值域或引入参数根据参数范围求解,解题时应注意挖掘题目中的隐含条件,寻找量与量之间的转化.⑥17. 方法一:(1)依题意:22222221a b c a b ca⎧-=⎪⎪=+⎨⎪⎪=⎩,……2分解得:21a =,22b =,……3分所以双曲线方程为2212y x -=.……4分 (2)设()11,M x y ,()22,N x y ,①当切线斜率存在时,设直线方程为y kx m =+,=2222m k =+,……6分联立()22222122202y x k x kmx m y kx m ⎧-=⎪⇒----=⎨⎪=+⎩, 则12222kmx x k+=-,212222m x x k --=-,()()()222222442282k m k m m k ∆=+-+=+-.……8分 由对称性知,若以MN 为直径的圆过定点,则定点必为原点.……9分1212OM ON x x y y ⋅=+……10分()()()()22121212121x x kx m kx m k x x mk x x m =+++=++++……11分 ()2222222122m km kmk m k k--=+++-- 222222m k k --=-.……12分又2222m k =+,所以0OM ON ⋅=,所以OM ON ⊥,故以MN 为直径的圆过原点.……13分②当直线斜率不存在时,直线方程x =(222x y ±+=,恒过原点.综上所述,以MN 为直径的圆过原点.……15分 方法二:(1)同方法一;(2)设()11,M x y ,()22,N x y ,①当切线斜率存在时,设直线方程为y kx m =+,=2222m k =+,……6分联立()22222122202y x k x kmx m y kx m ⎧-=⎪⇒----=⎨⎪=+⎩, 则12222km x x k+=-,212222m x x k --=-,()()()222222442282k m k m m k ∆=+-+=+-.……8分 以()11,M x y ,()22,N x y 为直径的圆的方程为()()()()12120x x x x y y y y --+--=, 即()()22121212120x x x x x x y y y y y y -+++-++=,……9分因为()()()()221212*********x x y y x x kx m kx m k x x km x x m +=+++=++++,所以()222221212222222210222m km m k x x y y k km m k k k ----+=+⋅+⋅+==---,……11分 且()121222242222km my y k x x m k m k k +=++=⋅+=--, 所以所求的圆的方程为222224022km m x x y y k k -+-=--,……12分所以MN 为直径的圆过原点.……13分②当直线斜率不存在时,直线方程x =(222x y ±+=,恒过原点.综上所述,以MN 为直径的圆过原点.……15分⑦18.(1)证明见解析;(2)证明见解析【分析】(1)先有两点间距离公式求出圆心的轨迹方程,再由斜率的定义表示出斜率,利用轨迹方程化简斜率之差即可证明;(2)先设直线MN 的方程为y kx b =+,直曲联立,用韦达定理表示出线段MN 中点坐标()22,21Q k k --+进而得到Q 的轨迹方程是222x y =-+,再与动圆P 的方程联立,得到C 、D 、G 的横坐标分别为c ,d ,g ,最后利用()()()0x c x d x g ---=的展开式系数与3(42)40x b x a +-+=相同,得到2x 系数为零即可. 【详解】(1)设点(,)P x y ,|3|y =-, 化简并整理成248x y =-+, 圆心P 的轨迹E 的方程为248x y =-+1211,22y y k k x x --==+-,122114(1)224y y y k k x x x -----=-=+--, 又248x y =-+, 所以24(1)4(1)1444y y x y ,所以121k k -=.(2)显然直线MN 的斜率存在,设直线MN 的方程为y kx b =+,由248x y y kx b ⎧=-+⎨=+⎩,消y 并整理成24480x kx b ++-=, 在判别式大于零时,1248x x b =-, 又124x x =-,所以1b =, 所以2440x kx +-=,1y kx =+,()21212124,242x x k y y k x x k +=-+=++=-+,所以线段MN 的中点坐标为()22,21Q k k --+,设(,)Q x y ,则2221x k y k =-⎧⎨=-+⎩,消k 得222x y =-+, 所以Q 的轨迹方程是222x y =-+,圆P 过定点(0,1)F ,设其方程为22(1)(1)0x y ax b y +-++-=,由222(1)(1)022x y ax b y x y ⎧+-++-=⎨=-+⎩,得42(42)40x b x ax +-+=, 设C 、D 、G 的横坐标分别为c ,d ,g ,因为C 、D 、G 异于F ,所以c ,d ,g 都不为零, 故3(42)40x b x a +-+=的根为c ,d ,g , 令()()()0x c x d x g ---=,即有32()()0x c d g x cd dg gc x cdg -+++++-=, 所以0c d g ++=,故CDG 的重心的横坐标为定值.【点睛】关键点点睛:本题第二问关键是圆P 过定点(0,1)F ,设其方程为22(1)(1)0x y ax b y +-++-=,然后与Q 的轨迹方程联立,表示出重心横坐标的方程,然后利用待定系数法求出结果.⑧17.(1)221.124x y +=(2)92【分析】(1)根据椭圆的简单几何性质知a =2224b a c =-=,写出椭圆的方程;(2)先斜截式设出直线y x m =+,联立方程组,根据直线与圆锥曲线的位置关系,可得出AB 中点为00(,)E x y 的坐标,再根据ⅰPAB 为等腰三角形知PE AB ⊥,从而得PE 的斜率为241334mk m -==--+,求出2m =,写出AB :20x y -+=,并计算||AB = 【详解】(1)由已知得c =ca=a =2224b ac =-=, 所以椭圆G 的方程为221124x y +=.(2)设直线l 的方程为y x m =+,由22,{1124y x m x y ,=++=得22463120x mx m ++-=,ⅰ设A 、B 的坐标分别为11(,)x y ,22(,)x y (12x x <),AB 中点为00(,)E x y , 则120324x x m x +==-,004my x m =+=, 因为AB 是等腰ⅰPAB 的底边,所以PE AB ⊥.所以PE 的斜率为241334mk m-==--+,解得2m =,此时方程ⅰ为24120x x +=. 解得13x =-,20x =,所以11y =-,22y =,所以||AB =, 此时,点(3,2)P -到直线AB :20x y -+=的距离d =所以ⅰPAB 的面积1922S AB d =⋅=. 考点:1、椭圆的简单几何性质;2、直线和椭圆的位置关系;3、椭圆的标准方程;4、点到直线的距离. 【思路点晴】本题主要考查的是椭圆的方程,椭圆的简单几何性质,直线与椭圆的位置关系,点到直线的距离,属于难题.解决本类问题时,注意使用椭圆的几何性质,求得椭圆的标准方程;求三角形的面积需要求出底和高,在求解过程中要充分利用三角形是等腰三角形,进而知道定点与弦中点的连线垂直,这是解决问题的关键.⑨19.(1)证明见解析,4x =(2)12【分析】(1)由题得出椭圆方程,设直线AB 方程为()()()()112210,,,,y k x k A x y B x y =-≠,写出,A B 两点处的切线方程,由对称性得,点Q 处于与x 轴垂直的直线上,法一:两切线方程联立得Q x ,再代入()()1122=1,=1y k x y k x --即可证明;法二:由点(),Q Q Q x y 在两切线上得直线AB 的方程143Q Q x y x y +=,结合直线AB 过点()1,0F ,即可得出Q x ;(2)由(1)得出直线OQ 的方程,设直线AB 和OQ 交于点P ,得出P 为线段AB 的中点,由弦长公式得出AB 进而得出AP ,由两直线夹角公式得出tan APM ∠,得出243k AM AP k+=⋅,根据基本不等式求解即可.【详解】(1)由题意可知,231a -=, 所以24a =,所以椭圆方程为22143x y +=, 设直线AB 方程为()()()()112210,,,,y k x k A x y B x y =-≠, 联立()221431x y y k x ⎧+=⎪⎨⎪=-⎩,消y 可得,()22223484120k x k x k +-+-=, 所以221212228412,3434k k x x x x k k -+==++, 因为过点A 的切线为11143x x y y+=,过点B 的切线为22143x x y y +=, 由对称性可得,点Q 处于与x 轴垂直的直线上, 法一:联立1122143143x x y y x x y y ⎧+=⎪⎪⎨⎪+=⎪⎩,消去y 得,()2112214Q y y x x y x y -=-,将()()1122=1,=1y k x y k x --代入上式得()()()()212112211244411Q k x x k x x x kx x kx x kx kx --===----+,所以Q 点在直线4x =上.法二:因为点(),Q Q Q x y 在两切线上,所以1122114343Q QQ Q x x y y x x y y+=+=,, 所以直线AB 的方程为143Q Q x y x y +=,又直线AB 过点()1,0F ,所以10143QQ x y ⨯+⨯=,解得4Q x .(2)将4x =代入11143x x y y+=得,()()()1111313131Q x x y y k x k --===--,直线OQ 的方程为34y x k =-, 设直线AB 和OQ 交于点P ,联立()134y k x y x k ⎧=-⎪⎨=-⎪⎩,解得22434P kx k =+, 又221222418342342P k k x x x k k +==⋅=++,所以P 为线段AB 的中点,因为()212212134k AB x k +=-==+, 所以()226134k AP k +=+,又因为23434tan 314k AM k kAPM k AP k k ++∠===⎛⎫+⋅- ⎪⎝⎭,所以()2222614343161234k k k AM AP k k k k k +⎛⎫++=⋅=⋅=+≥ ⎪ ⎪+⎝⎭, 当且仅当1k =±时,等号成立, 故AM 的最小值为12.⑩18.(1)2212x y +=;(2)550x y ++=.【分析】(1)根据给定条件,求出,,a b c 即得椭圆E 的标准方程.(2)根据给定条件,借助倾斜角的关系可得1MP NP k k ⋅=,设出直线l 的方程,与椭圆方程联立,利用韦达定理结合斜率的坐标公式求解即得. 【详解】(1)令(,0)F c -,由c e a ==,得,a b c ==,则直线FB 的斜率1k =, 由直线FB 过点(1,2)P ,得直线FB 的方程为1y x =+,因此1,b c a ===所以椭圆C 的标准方程为2212x y +=.(2)设MPF NPF θ∠=∠=,直线MP 的倾斜角为β,直线NP 的倾斜角为α,由直线FP 的斜率1k =知直线FP 的倾斜角为π4,于是ππ,44αθβθ=+=+,即有π2αβ+=,显然,αβ均不等于π2, 则πsin()sin 2tan tan 1πcos cos()2αααβαα-=⋅=-,即直线,MP NP 的斜率满足1MP NP k k ⋅=, 由题设知,直线l 的斜率不为0,设直线l 的方程为1,1x my m =-≠,由22122x my x y =-⎧⎨+=⎩,消去x 并整理得,22(2)210m y my +--=,显然0∆>, 设1122(,),(,)M x y N x y ,则12122221,22m y y y y m m +==-++, 由1MP NP k k ⋅=,得121222111y y x x --⋅=--,即1212(1)(1)(2)(2)0x x y y -----=, 则1212(2)(2)(2)(2)0my my y y -----=,整理得21212(1)(22)(0)m y y m y y ---+=,即2221(22)2022m m m m m --⋅--=++,于是25410m m --=,而1m ≠,解得,15m =-, 所以直线l 的方程为115x y =--,即550x y ++=.【点睛】关键点点睛:本题第2问,由MPF NPF =∠∠,结合直线倾斜角及斜率的意义求得1MP NP k k ⋅=是解题之关键.1116.(1)22143x y +=(2)10x y -=或10x y -=【分析】(1)利用椭圆焦半径公式及性质计算即可;(2)设直线l 方程,B、C坐标,根据平行关系得出两点纵坐标关系,联立椭圆方程结合韦达定理解方程即可.【详解】(1)设焦距为2c ,由椭圆对称性不妨设椭圆上一点()()000,0P x y a x ≥≥,易知()2,0F c ,则2PF =00c c x a a x a a =-=-,显然0x a =时2min PF a c =-,由题意得222121c a a c a b c⎧=⎪⎪⎨-=⎪⎪=+⎩解得2,1,a c b ===所以椭圆C 的方程为22143x y +=; (2)设()()1122,,,C x y B x y ,因为AB //1CF ,所以1122::2:1CF AB F F F A == 所以122y y =-ⅰ设直线l 的方程为1x my =+,联立得221431x y x my ⎧+=⎪⎨⎪=+⎩,整理得()2234690m y my ++-=, 由韦达定理得()122122634934m y y m y y m ⎧+=-⎪+⎪⎨=-⎪+⎪⎩, 把ⅰ式代入上式得222226349234m y m y m ⎧-=-⎪⎪+⎨⎪-=-⎪-+⎩,得()()22222236923434m y m m ==++, 解得m =, 所以直线l 的方程为:10x y +-=或10x y -=.1218.(1)0,⎛ ⎝⎭(2)221924x y ⎛⎫-+= ⎪⎝⎭(3)【分析】(1)化简椭圆的标准方程,根据,,a b c 的关系即可求得焦点坐标;(2)先联立方程求得()1,3M -,()1,3N --,求出直线MT 的方程,然后利用待定系数法求得内切圆的方程;(3)设过P 作圆Q 的切线方程为()13y k x =-+,利用相切关系求得点A ,B 坐标,进而结合内切圆的半径利用三角形中等面积法求解即可.【详解】(1)椭圆的标准方程为2218198x y +=,因为819988-=,所以焦点坐标为0,⎛ ⎝⎭. (2)将=1x -代入椭圆方程229881x y +=得3=±y ,由对称性不妨设()1,3M -,()1,3N --, 直线MT 的方程为()3313y x =---,即3490x y +-=, 设圆Q 方程为()222x t y r -+=,由于内切圆Q 在TMN △的内部,所以1t >-, 则Q 到直线MN 和直线MT的距离相等,即1t r +=,解得12t =,32r =,所以圆Q 方程为221924x y ⎛⎫-+= ⎪⎝⎭.(3)显然直线PA 和直线PB 的斜率均存在, 设过P 作圆Q 的切线方程为()13y k x =-+,其中k 有两个不同的取值1k 和2k 分别为直线PA 和PB 的斜率. 由圆Q32=,化简得:2812270k k +-=,则121232278k k k k ⎧+=-⎪⎪⎨⎪=-⎪⎩,由()122139881y k x x y ⎧=-+⎨+=⎩得()()222111119816384890k x k k x k k ++-+--=, 可得21121848989A P A k k x x x k --==+,所以()221111112211848924182713138989A A k k k k y k x k k k ⎛⎫----+=-+=-+= ⎪++⎝⎭ ()()()111113271218271833271291232k k k k k ---+-===--+-.同理22222848989B k k x k --=+,32B y =-,所以直线AB 的方程为32y =-, 所以AB 与圆Q 相切,将32y =-代入229881x y +=得x =所以AB =P 到直线AB 的距离为92,设PAB 的周长为m ,则PAB的面积13192222ABC S m =⨯=⨯△,解得m =所以PAB的周长为.1316.(1)2212x y +=;(2)【分析】(1)设出椭圆上的点00(,)M x y ,求出||MF 的最值,进而求出,a c 即可. (2)利用椭圆的对称性及椭圆定义求解即得.(3)设出直线AB 的方程,与椭圆方程联立求出三角形面积的表达式,再求出最大值即得.【详解】(1)令(,0)F c -,设00(,)M x y 是椭圆22221x y a b+=上的点,则22220002(),b y a x a x a a =--≤≤,则0||c MF a x a===+,显然当0x a =-时,min ||MF a c =-,当0x a =时,max ||MF a c =+,则11a c a c ⎧-=⎪⎨+=⎪⎩,解得1a c ⎧=⎪⎨=⎪⎩所以椭圆的方程为2212x y +=.(2)记椭圆的右焦点为F ',由椭圆对称性知,||||P F PF ''=,所以2PF P F PF PF a +=+==''(3)显然直线AB 不垂直于y 轴,设直线AB 的方程为2x my =+,1122(,),(,)A x y B x y ,由22222x my x y =+⎧⎨+=⎩消去x 得22(2)420m y my +++=,222168(2)8(2)0m m m ∆=-+=->,则12122242,22m y y y y m m +=-=++,12||y y -=因此12|1|||2ABFS QF y y =-=,令0t =>,于是ABFS=≤=,当且仅当2t =,即m =所以FAB1418.(1)y =(2)10,2⎡⎫⎪⎢⎣⎭【分析】(1)由两曲线有公共的焦点F ,且4p b =,得2c b =,3a b ,可求渐近线方程;(2)通过设直线方程,联立方程组,借助韦达定理,表示出11||||OP OQ +和11||||AF BF -,由1111OP OQ AF BF λ⎛⎫+=- ⎪⎪⎝⎭求λ的取值范围. 【详解】(1)抛物线2:2(0)C y px p =>与双曲线2222:1x y E a b-=(0a >,0b >)有公共的焦点F ,设双曲线E 的焦距为2c ,则有2pc =,又4p b =,则2c b =. 由222+=a b c ,得3ab ,所以E的渐近线的方程为y = (2)设:l x my c =+,()()1122,,,P x y Q x y ,1与E 的两条近线交于P ,Q 两点均位于y 轴右侧,有23m <,由x my cy x =+⎧⎪⎨=⎪⎩,解得1y =2y =,12111122OP OQ y y +=+===设()()3344,,,A x y B x y , 由22x my cy px=+⎧⎨=⎩,消去x 得2220y pmx p --=,则有234342,y y pm y y p +==-,343411y y AF BFy y --=3423422y y pm y y p p +== 由1111OP OQ AF BF λ⎛⎫+=- ⎪ ⎪⎝⎭,2pc =,有2p λ==由23m <⎡∈⎢⎣⎭,所以10,2λ⎡⎫∈⎪⎢⎣⎭.【点睛】方法点睛:解答直线与圆锥曲线的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系,涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形,强化有关直线与圆锥曲线联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.1519.(1)28y x =(3)4(),4a d a a a ≥=<⎪⎩【分析】(1)根据抛物线的定义即得动圆圆心M 的轨迹方程; (2)将直线方程与抛物线方程联立,求出交点坐标,再由12AOBA B SOP y y =-计算可得; (3)根据题设先求出MN 的解析式,可将距离最小值问题转化为二次函数最小值问题,分类讨论即得. 【详解】(1)因为动圆M (M 为圆心)过定点(2,0)P ,且与定直线:2l x =-相切,即点M 到定点(2,0)P 的距离与到直线:2l x =-的距离相等,且点(2,0)P 不在直线:2l x =-上, 所以由抛物线定义知:圆心M 的轨迹是以定点()2,0P 为焦点,定直线:2l x =-为准线的抛物线,抛物线方程形如()220y px p =>,又22p=,则4p =, 故圆心M 的轨迹方程为28y x =.(2)如图,由题知,直线AB的方程为)2y x =-,由)228y x y x ⎧=-⎪⎨=⎪⎩,解得6x y =⎧⎪⎨=-⎪⎩23x y ⎧=⎪⎪⎨⎪=⎪⎩23A ⎛ ⎝⎭,(6,B -, 所以()11222AOBA B SOP y y =-=⨯-=(3)设(),M x y ,则28y x =()0x ≥,又(,0)N a ,则MN ==)0x =≥,因二次函数()24816y x a a =-++-的对称轴为4x a =-,故当40a -≥,即4a ≥时,min 816y a =-,此时min ()MN d a =当40a -<,即4a <时,2min y a=,此时min ||()MN d a a ==.所以4(),4a d a a a ≥=⎨<⎪⎩.1615.(1)22143x y +=【分析】(1)由椭圆的离心率可得a ,b 的关系,设椭圆的方程,将点T 的坐标代入椭圆的方程,可得参数的值,即可得a ,b 的值,求出椭圆的方程;(2)设与2y x =平行的直线的方程,与椭圆的方程联立,由判别式为0,可得参数的值,进而求出两条直线的距离,即求出椭圆上的点到直线的最大距离.【详解】(1)由椭圆的离心率为12,可得12c e a=,可得2234a b =,设椭圆的方程为:2222143x y t t+=,20t >,又因为椭圆经过点3(1,)2T ,所以2213144t t +=,解得21t =,所以椭圆的方程为:22143x y +=;(2)设与直线2y x =平行的直线的方程为()20y x m m =+≠,联立222143y x mx y =+⎧⎪⎨+=⎪⎩,整理可得:2219164120x mx m ++-=,22216419(412)0m m ∆=-⨯⨯-=,可得219m =,则m =所以直线2y x m =+到直线2y x =的距离d ==所以椭圆C 上的点到直线:2l y x =1721.(1)24y x = (2)649【分析】(1)首先利用勾股定理求出QF ,PF ,再由等面积法求出p ,即可得解;(2)设直线AB 的解析式为x ky b =+,()11,A x y ,()22,B x y ,联立直线与抛物线方程,消元、列出韦达定理,依题意0FA FB ⋅=,即可得到22614b b k -+=,再由129S S =得到线段的比例关系,从而求出b ,再计算出12y y -,最后根据P Q PQ y y =-及韦达定理计算可得. 【详解】(1)方法一:5PQ =,PF QF ⊥,2PF QF =,22225QF PF PQ ∴+==,解得QF =PF = ∴在PQF △中,根据等面积法1122PQ MF PF QF ⋅=⋅,5p ⨯=2p =,∴抛物线的标准方程为24y x =;方法二:设x 轴与准线的交点为M .,PF QF ⊥∴当2PF QF =时,tan 2tan PQF AFM ∠==∠,2PM MF ∴=,2MF MQ =.552PQ PM MQ MF ∴=+==,2MF p ∴==, ∴抛物线C 的标准方程为24y x =;(2)由(1)可得抛物线的焦点()1,0F ,准线为=1x -, 依题意,直线AB 的斜率不为0,∴设直线AB 的解析式为x ky b =+,()11,A x y ,()22,B x y .联立24y x x ky b⎧=⎨=+⎩,消去x 得2440y ky b --=,显然0∆>,124y y k ∴+=,124y y b =-.由PF QF ⊥,则0FA FB ⋅=,可得()()11221,1,0x y x y -⋅-=,()()1212110x x y y ∴--+=,整理得22614b b k -+=.ⅰ易知直线AF 的解析式为()1111y y x x =--,令=1x -,可得1121P y y x -=-, 同理可得2221Q y y x -=-. 129S S =,9PF QF AF BF ∴⋅=⋅,即9PF BFAFQF =⨯,219P Qy y y y ∴=.129P Q y y y y ∴=,12121222119y y x x y y --⋅--∴=,()()124911x x ∴=--,即1249y y -=,19b ∴=.12169y y ∴-=. 所以()()1212211212122222221111P Q y y x y x y y y PQ y y x x x x ---+-=-=-=---- ()121212121264249y y y y y y y y ⎛⎫-- ⎪⎝⎭==-=-.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式; (5)代入韦达定理求解.1817.(2)10x-=或10x -=【分析】(1)由椭圆方程,即可求出椭圆右焦点坐标,根据直线的点斜式,联立直线方程和椭圆方程,求得交点,A B 的坐标,根据两点之间距离公式可求得AB ;(2)联立直线方程和椭圆方程,根据椭圆的弦长公式可求得|AB |,计算AB 的中点,G MG ,利用AMB ∠最大求得直线方程【详解】(1)由题意可得()1,0F ,因为直线l 的倾斜角为π4,所以πtan 14k ==,因此,l 的方程为1y x =-,联立方程22121x y y x ⎧+=⎪⎨⎪=-⎩,消去y 得2340x x -=解得1240,3x x ==所以()410,1,,33A B ⎛⎫- ⎪⎝⎭因此,AB =(2)设()()1122,,,A x y B x y ,由题意得,直线l 的斜率不为0,故设l 为1x my =+, 联立方程22121x y x my ⎧+=⎪⎨⎪=+⎩消去x 得,()222210m y my ++-=,0∆>,因此12122221,22m y y y y m m -+==-++, 所以)2212m AB m +==+,设线段AB 的中点为G , 则12222,1222G G G y y m y x my m m +==-=+=++,所以()22242122m MG m m +=-=++,所以12tan 2ABAMB MG∠==设t =,则tan 2AMB t t ∠===≤+,当且仅当t =m = 当2AMB∠最大时,AMB ∠也最大,此时直线l 的方程为1x =+, 即10x-=或10x -=1918.(1)2213x y -=(2)1【分析】(1)先求出焦点坐标,再根据渐近线方程可求基本量,从而可得双曲线的方程. (2)利用点差法可求直线的斜率,注意检验.【详解】(1)椭圆2215x y +=的焦点为()2,0±,故224a b +=,由双曲线的渐近线为y x =,故b a =1,b a == 故双曲线方程为:2213x y -=.(2)设()()1122,,,A x y B x y ,AB 的中点为M , 因为M 在直线1:3l y x =,故13M M y x =,而121231y x -=,222231y x -=,故()()()()1212121203x x x x y y y y -+--+=, 故()()121203M M x x xy y y ---=,由题设可知AB 的中点不为原点,故0M M x y ≠,所以121213M My y xx x y -==-, 故直线AB 的斜率为1.此时12:33M M M AB y x x x x x =-+=-,由222333M x y x x y ⎧=-⎪⎨⎪-=⎩可得222333M x x x ⎛⎫--= ⎪⎝⎭,整理得到:22424303M M x x x x -++=, 当222416Δ168324033M M M x x x ⎛⎫=-+=-> ⎪⎝⎭即M x <M x >即当M x <M x >AB 存在且斜率为1.2018.(1)22143x y +=(2)(ⅰ)2212 7x y+=;(ⅰ)48,7⎡⎢⎣.【分析】(1)利用题意列出两个方程,联立求解得,a b的值,即得椭圆方程;(2)(ⅰ)设AB方程,与椭圆方程联立,写出韦达定理,利用菱形对角线互相垂直得到()221217km+=,再由题意推出22212||17mOPk==+,即得点P的轨迹方程;(ⅰ)利用弦长公式求出AB =算出AOB的面积表达式S=t的函数S=图象即可求其取值范围.【详解】(1)根据题意设椭圆C的标准方程为22221x ya b+=,由已知得,1222a b⨯⨯==ab1c=可得,221a b-=,联立解得,2a=,b=故椭圆C的标准方程为:22143x y+=.(2)ⅰ 如图,当直线AB的斜率存在时,设其方程为y kx m=+,由22143y kx mx y=+⎧⎪⎨+=⎪⎩,得()2223484120k x kmx m+++-=,由题意()()()222222Δ6443441248430k m k m k m=-+-=-+>,设1122(,),(,)A x yB x y,则122834kmx xk+=-+,212241234mx xk-=+,于是,()()2212121212()y y kx m kx m k x x km xx m=++=+++。
高二数学专题学案圆锥曲线部分高考试题汇编(椭圆部分)1、(2016全国I卷)(20)(本小题满分12分)设圆x2 + y2 + 2x—15 = 0的圆心为4直线l过点B (1,0)且与x轴不重合,l交圆A于C, D两点,过B作AC的平行线交AD于点E.(I)证明|EA| + |EB|为定值,并写出点E的轨迹方程;(II)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于PQ两点,求四边形MPNQ面积的取值范围.x2 y22、(2015全国I卷)(14)一个圆经过椭圆7十一二1的三个顶点,且圆心在乂轴上,则该圆的标准方程16 4为。
3、(2014全国I卷)20.(本小题满分12分)已知点A(0,-2),椭圆E:上+ y2= 1(a > b > 0)的离心率为3,,F是椭圆a2 b2 2的焦点,直线AF的斜率为233,O为坐标原点.(I)求E的方程;(II)设过点A的直线l与E相交于P, Q两点,当A OPQ的面积最大时,求l的方程.4、(2016山东卷)(21)(本小题满分14分)平面直角坐标系g中,椭圆C::喙=1(a>b>°)的离心率是浮,抛物线E3x=2'的焦点F是C的一个顶点.(I)求椭圆C的方程;(II)设P是E上的动点,且位于第一象限,E在点P处的切线l与C交与不同的两点A,B,线段AB的中点为D,直线OD与过P且垂直于x轴的直线交于点M.(i)求证:点M在定直线上;(ii)直线l与y轴交于点6,记^PFG的面积为S j ^PDM的面积为S2,求S-的最大值及取得最大值2时点P的坐标.八- x 2 Y 2 一,,〜5、(2015山东卷)(20)(本小题满分13分)平面直角坐标系xOy中,已知椭圆C :— + ) =1(a > b > 0)a 2 b2的离心率为*,左、右焦点分别是F , F ,以F 为圆心,以3为半径的圆与以F 为圆心,以1为半径的 2 1212圆相交,交点在椭圆C 上. (I )求椭圆C 的方程;x 2 y 2(H )设椭圆E :江+而二1,P 为椭圆C 上的任意一点,过点P的直线厂"m 交椭圆E 于A,B 两点,射线PO 交椭圆E 于点Q.圆锥曲线部分高考试题汇编(双曲线部分)1、(2016全国I 卷)(5)已知方禾m 2+n--就工=1表示双曲线,且该双曲线两焦点间的距离为4,则n的i )求|OQ | | OP |的值;(ii )求A ABQ 面积最大值.取值范围是(2、(2015全国I 卷)(5)已知M (x 0 丫0)是双曲线C : --W= 1上的一点,F 1、F 2是C 上的两个焦点,若西 • MF 2 <0,则y 0的取值范围是(2J3(D )(一二33、(2014全国I 卷)4.已知F 是双曲线C : x 2 - my 2 = 3m (m > 0)的一个焦点,则点F 到C 的一条渐近线的距离为( ) A . <3B .3C . <3mD . 3mx 2 y 24、(2016山东卷)(13)已知双曲线E_,: ---= 1 (a >0, b >0),若矩形ABCD 的四个顶点在E 上, 1a 2b 2AB , CD 的中点为E 的两个焦点,且21AB |=3|BC |,则E 的离心率是.x 2 y 25、(2015山东卷)(15)平面直角坐标系xOy 中,双曲线C : 一--—= 1(a > 0,b > 0)的渐近线与抛物线1a 2 b2C : x 2 = 2py (p > 0)交于点O , A , B ,若A OAB 的垂心为C 的焦点,则C 的离心率为. 2 21x 2 y 2 x 2 y 26、(2014山东卷)(10)已知a > b ,椭圆C 的方程为—+ -- = 1 ,双曲线C 的方程为——^- = 1, C1 a2 b 2 2 a 2 b 2 1与C 的离心率之积为二,则C 的渐近线方程为()222(A ) x 土 <2y = 0 (B ) J2x 土 y = 0 (C ) x 土2y = 0 (D ) 2x 土 y = 0圆锥曲线部分高考试题汇编(抛物线部分)(A )(-1,3)(B )(-1八”)(C )(0,3)(D )(0,\与)2<2 (C )(-—— 32<31、(2016全国I卷)(10)以抛物线C的顶点为圆心的圆交C于A, B两点,交C的准线于D, E两点.已知| AB | = 4";2 , | DEI= 2d5,则C的焦点到准线的距离为()(A)2 (B)4 (C)6 (D)82、(2015全国I卷)(20)(本小题满分12分)x2在直角坐标系xoy中,曲线C:y =—与直线y = kx + a(a >0)交与M,N两点,(I)当k=0时,分别求C在点M和N处的切线方程;(II)y轴上是否存在点R使得当k变动时,总有N OPM =Z OPN ?说明理由。
(完整版)圆锥曲线⾼考真题(1)求M 的⽅程(2)C ,D 为M 上的两点,若四边形ACBD 的对⾓线CD ⊥AB ,求四边形ACBD 的⾯积最⼤值.2.设1F ,2F 分别是椭圆()222210y x a b a b+=>>的左右焦点,M 是C 上⼀点且2MF 与x 轴垂直,直线1MF 与C 的另⼀个交点为N.(1)若直线MN 的斜率为34,求C 的离⼼率;(2)若直线MN 在y 轴上的截距为2,且15MN F N =,求a,b .3.已知椭圆C :,直线不过原点O 且不平⾏于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(1) 证明:直线OM 的斜率与的斜率的乘积为定值;(2)若过点(),延长线段OM 与C 交于点P ,四边形OAPB 能否平⾏四边⾏?若能,求此时的斜率,若不能,说明理由.4.已知抛物线C :22y x = 的焦点为F ,平⾏于x 轴的两条直线12,l l 分别交C 于A ,B 两点,交C 的准线于P ,Q 两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明AR ∥FQ ;(2)若△PQF 的⾯积是△ABF 的⾯积的两倍,求AB 中点的轨迹⽅程.5.已知抛物线C :y 2=2x ,过点(2,0)的直线l 交C 与A ,B 两点,圆M 是以线段AB 为直径的圆.(1)证明:坐标原点O 在圆M 上;(2)设圆M 过点P (4,-2),求直线l 与圆M 的⽅程.6.已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点,线段AB 的中点为()()10M m m >,.(1)证明:12k <-;(2)设F 为C 的右焦点,P 为C 上⼀点,且FP FA FB ++=0u u u r u u u r u u u r .证明:FA u u u r,FP u u u r ,FB u u u r 成等差数列,并求该数列的公差.7.已知椭圆2222:1(0)x y C a b a b +=>>的离⼼率为,且经过点(0,1),圆22221:C x y a b +=+。
1.(2018全国I理19)
设椭圆C: +y²=1的右焦点为F,过F的直线l与C交于A,B两点,点M的坐标为(2,0).
(1)当l与x轴垂直时,求直线AM的方程;
(2)设O为坐标原点,证明:∠OMA=∠OMB.
2.(2018全国II理)
3.(2018全国III理)
4.(2018全国I文)
5.(2018浙江)
6.(2017全国I理20)
7.
8.
9.(2017全国III理)
10.(2017全国I文20)
11.(2016全国I理20)
12.(2016全国III理20)
13.(2016山东理)平面直角坐标系中,椭圆C:的离心率是
,抛物线E:的焦点F是C的一个顶点.
(1)求椭圆C的方程;
(2)设P是E上的动点,且位于第一象限,E在点P处的切线与C交与不同的两点A,B,线段AB的中点为D,直线OD与过P且垂直于x轴的直线交于点M.
①求证:点M在定直线上;
②直线与y轴交于点G,记△PFG的面积为,△PDM的面积为,求的最大值及取得最大值时点P的坐标.
14.(2015全国I理)
15.(2015全国II理)
16.
17.
18.。
圆锥曲线--高考真题汇编第一节椭圆1.(2023全国甲卷理科12)已知椭圆22196x y +=,12,F F 为两个焦点,O 为原点,P 为椭圆上一点,123cos 5F PF ∠=,则OP =()A.25 C.35【解析】解法一(利用焦点三角形面积公式):设122F PF θ∠=,π02θ<<.22212222cos sin 1tan 3cos cos 2cos sin 1tan 5F PF θθθθθθθ--∠====++,解得1tan 2θ=.由椭圆焦点三角形面积公式得1222121tantan 6322F PF F PF S b b θ∠===⨯=△.121211322F PF P P S F F y ===△,解得23P y =.则代入椭圆方程得292P x =,因此302OP ==.故选B.解法二(几何性质+定义):因为1226PF PF a +==①,22212121122cos PF PF PF PF F PF F F +-⋅∠=,即2212126125PF PF PF PF +-⋅=②,联立①②,解得12152PF PF ⋅=,221221PF PF +=.由中线定理可知,()()222212122242OP F F PF PF +=+=,而12F F =,解得302OP =.故选B.解法三(向量法):由解法二知12152PF PF ⋅=,221221PF PF +=.而()1212PO PF PF =+,所以1213022PO PF PF =+===.故选B.2.(2023全国甲卷文科7)设12,F F 为椭圆22:15x C y +=的两个焦点,点P 在C 上,若120PF PF ⋅= ,则12PF PF ⋅=()A.1B.2C.4D.5【分析】解法一:根据焦点三角形面积公式求出12PF F △的面积,即可解出;解法二:根据椭圆的定义以及勾股定理即可解出.【解析】解法一:因为120PF PF ⋅=,所以1290F PF ∠= ,从而122121tan 4512F PF S b PF PF ===⨯⋅ △,所以122PF PF ⋅=.故选B.解法二:因为120PF PF ⋅=,所以1290F PF ∠= ,由椭圆方程可知,25142c c =-=⇒=,所以22221212416PF PF F F +===,又122PF PF a +==22121212216220PF PF PF PF PF PF ++=+=,所以122PF PF ⋅=.故选B.3.(2023新高考I 卷5)设椭圆()2212:11x C y a a +=>,222:14x C y +=的离心率分别为1e ,2e .若21e =,则a =()A.233B.【解析】11a e a =,232e =,由21e =可得32=,解得233a =.故选A.4.(2023新高考II 卷5)已知椭圆22:13x C y +=的左、右焦点分别为12,F F ,直线y x m =+与C 交于,A B 两点,若1F AB △的面积是2F AB △面积的2倍,则m =()A.23B.3C.3-D.23-【解析】设AB 与x 轴相交于点(),0D m -,由122F AB F AB S S =△△,得122F DF D=.又12F F =23F D =,则有()3m --=,解得3m =.故选C.第二节双曲线1.(2023新高考I 卷16)已知双曲线()2222:10,0x y C a b a b -=>>的左、右焦点分别为12,F F ,点A 在C 上,点B 在y 轴上,11F A F B ⊥ ,2223F A F B =- ,则C 的离心率为.【解析】解法一:建立如图所示的平面直角坐标系,设()()()12,0,,0,0,F c F c B n -,由2223F A F B =- 可得52,33A c n ⎛⎫- ⎪⎝⎭,又11F A F B ⊥ 且182,33F A c n ⎛⎫=- ⎪⎝⎭ ,()1,F B c n = ,则()22118282,,03333F A F B c n c n c n ⎛⎫⋅=-⋅=-= ⎪⎝⎭ ,所以224n c =,又点A 在C 上,则2222254991c n a b -=,整理可得2222254199c n a b-=,代入224n c =,可得222225169c c a b -=,即222162591e e e -=-,解得295e =或()215e =舍.故355e =.解法二:由2223F A F B =-可得2223F A F B =,设222,3F A x F B x ==,由对称性可得,13F B x =,由定义可得,122AF x a =+,5AB x =,设12F AF θ∠=,则33sin 55x x θ==,所以422cos 55x a xθ+==,解得x a =,所以1224AF x a a =+=,222F A x a ==,在12AF F △中,由余弦定理可得222216444cos 165a a c a θ+-==,2295a c =,所以355e =.2.(2023全国甲卷理科8)已知双曲线()222210,0x y a b a b-=>>的离心率为5,其中一条渐近线与圆()()22231x y -+-=交于,A B 两点,则AB =()A.15B.55C.255 D.455【解析】由5e =,则222222215c a b b a a a +==+=,解得2b a =.所以双曲线的一条渐近线为2y x =,则圆心()2,3到渐近线的距离22235521d ⨯-==+,所以弦长221452155AB r d =--.故选D.3.(2023全国甲卷文科9)已知双曲线()222210,0x y a b a b-=>>的离心率为5,其中一条渐近线与圆()()22231x y -+-=交于,A B 两点,则AB =()A.15B.55C.255D.455【解析】由e =,则222222215c a b b a a a+==+=,解得2b a =.所以双曲线的一条渐近线为2y x =,则圆心()2,3到渐近线的距离55d ==,所以弦长5AB =.故选D.4.(2023北京卷12)已知双曲线C 的焦点为()2,0-和()2,0,离心率为,则C 的方程为.【分析】根据给定条件,求出双曲线C 的实半轴、虚半轴长,再写出C 的方程作答.【解析】令双曲线C 的实半轴、虚半轴长分别为,a b ,显然双曲线C 的中心为原点,焦点在x 轴上,其半焦距2c =,由双曲线C ,得ca,解得a =,则b =所以双曲线C 的方程为22122x y -=.故答案为:22122x y -=.因为()2,0F c ,不妨设渐近线方程为所以222bc bcPF c a b ==+设2POF θ∠=,则tan θ=第三节抛物线2.(2023全国乙卷理科13,文科13)已知点A 在抛物线2:2C y px =上,则A 到C 的准线的距离为.【分析】由题意首先求得抛物线的标准方程,然后由抛物线方程可得抛物线的准线方程为54x =-,最后利用点的坐标和准线方程计算点A 到C 的准线的距离即可.【解析】由题意可得:221p =⨯,则25p =,抛物线的方程为25y x =,准线方程为54x =-,点A 到C 的准线的距离为59144⎛⎫--= ⎪⎝⎭.故答案为:94.3.(2023新高考II 卷10)设O 为坐标原点,直线)1y x =-过抛物线()2:20C y px p =>的焦点,且与C 交于,M N 两点,l 为C 的准线,则()A .2p =B .83MN =C .以MN 为直径的圆与l 相切D .OMN △为等腰三角形【解析】由题意可得焦点为()1,0F ,所以12p=,2p =,A 正确;联立)214y x y x⎧=-⎪⎨=⎪⎩,消y 得231030x x -+=.设()()1122,,,M x y N x y ,由韦达定理得12103x x +=,所以12163MN MF NF x x p =+=++=,B 错误;设MN 的中点为Q ,分别过,,M N Q 向l 作垂线,垂足分别为111,,M N Q ,由梯形中位线性质及抛物线定义可得,()()111111222QQ MM NN MF NF MN r =+=+==,所以以MN 为直径的圆与准线l 相切,C 正确;由上述解题过程知,231030x x -+=,解得121,33x x ==,从而(1,3,3M N ⎛- ⎝⎭,易得OM ON MN ≠≠,OMN △不是等腰三角形,D 错误.综上,故选AC.第四节直线与圆锥曲线的位置关系1.(2023全国乙卷理科11,文科12)已知,A B 是双曲线2219y x -=上两点,下列四个点中,可为线段AB 中点的是()A.()1,1 B.()1,2- C.()1,3 D.()1,4--【分析】设直线AB 的斜率为AB k ,OM 的斜率为k ,根据点差法分析可得9AB k k ⋅=,对于A ,B ,D 通过联立方程判断交点个数,逐项分析判断;对于C :结合双曲线的渐近线分析判断.【解析】设()11,A x y ,()22,B x y ,则AB 的中点1212,22x x y y M ++⎛⎫⎪⎝⎭,设直线AB 的斜率为AB k ,OM 的斜率为k ,可得1212121212122,2ABy y y y y y k k x x x x x x +-+===+-+,因为,A B 在双曲线上,则221122221919y x y x ⎧-=⎪⎪⎨⎪-=⎪⎩,两式相减得()2222121209y y x x ---=,所以221222129AB y y k k x x -⋅==-.对于选项A :可得1k =,9AB k =,则:98AB y x =-,联立方程229819y x y x =-⎧⎪⎨-=⎪⎩,消去y 得272272730x x -⨯+=,此时()2272472732880∆=-⨯-⨯⨯=-<,所以直线AB 与双曲线没有交点,故A 错误;对于选项B :可得2k =-,92AB k =-,则95:22AB y x =--,联立方程22952219y x y x ⎧=--⎪⎪⎨⎪-=⎪⎩,消去y 得245245610x x +⨯+=,此时()()22454456144545610∆=⨯-⨯⨯=⨯⨯-<,所以直线AB 与双曲线没有交点,故B 错误;对于选项C :可得3k =,3AB k =,则:3AB y x =.由双曲线方程可得1a =,3b =,则:3AB y x =为双曲线的渐近线,所以直线AB 与双曲线没有交点,故C 错误;对于选项D :4k =,94AB k =,则97:44AB y x =-,联立方程22974419y x y x ⎧=-⎪⎪⎨⎪-=⎪⎩,消去y 得2631261930x x +-=,此时21264631930∆=+⨯⨯>,故直线AB 与双曲线有交两个交点,故D 正确.故选D.2.(2023新高考I 卷22)在直角坐标系xOy 中,点P 到x 轴的距离等于点P 到点10,2⎛⎫⎪⎝⎭的距离,记动点P 的轨迹为W .(1)求W 的方程;(2)已知矩形ABCD 有三个顶点在W 上,证明:矩形ABCD的周长大于【解析】(1)设(,)P x y ,则22212x y y ⎛⎫+-= ⎪⎝⎭,故21:4W y x =+.(2)解法一:不妨设三个顶点,,A B C 在抛物线214y x =+上,且AB BC ⊥,显然,AB BC 的斜率存在且不为0,令222111,,,,,444A a a B b b C c c ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则,AB BC k a b k b c =+=+,1AB BC k k =-,即()()1a b b c ++=-,即1a b b c-+=+,本题等价于证明332AB BC +>,令||||AB BC b c m +=--=,则m b c =-+-,(未知数有,,a b c ,通过转化(放缩),将变量归一)由221ABBC kk =⋅,即()()22221AB BC k k a b b c =++=⋅,不妨设()221AB k a b =+≤,则m b c=-+-b =-+b c ≥--c ≥-()b b c =+-+1b a b=+++()3221a b a b⎡⎤⎣⎦++=+.令a b t +=,则()()1232323323222211223411332t t a b ta b tt t⎡⎤⎢⎥⎛⎫⎢⎥++⎡⎤ ⎪⎢⎥⎣⎦⎝⎭⎛⎫⨯ ⎪⎝⎭+++==≥=+⎣⎦,当212t =时取等号,又()2321t m t+≥取等时必有21t =,因此取不到等号,所以332m >.解法二:如图所示,先将第一问中的曲线下移14个单位,其表达式为2x y =.不妨设,,A B D 三点在抛物线上,再设()2,A t t 及AB 的斜率为k .由题意知AD 的斜率为1k -,因为11k k ⎛⎫⋅-= ⎪⎝⎭,故而可再使01k <≤,直线AB 的方程()2y t k x t -=-,即2y kx kt t =-+,与曲线联立可得220x kx kt t -+-=,由此可知()222222221211414412AB k x x k k kt t k k kt t k k t=+-=+--=+-+=+-同理,21112AD t k k=++,由此可知矩形ABCD 的周长ρ满足2211122122k k t t k kρ+-++=+2211122212k k t k t k k=+-+++22t t≥-+①12+2k t tk⎫-+⎪⎭1+k≥②()323222112122=2kkk k⎛⎫++⎪+⎝⎭=322k⎛⎫⎝⎭≥⨯③22⨯==.当1k=时①处取等号,当12,2k t tk-+同号时②处取等号,当212k=时③处取等号,显然三处不能同时取等号,所以矩形ABCD的周长大于.由题意得31a c a c +=⎧⎨-=⎩,解得所以椭圆的方程为24x y +(2)由题意得,直线2A A P 的方程为y =第五节圆锥曲线综合探究型问题1.(2023全国甲卷理科20)设抛物线()2:20C y px p =>,直线210x y -+=与C 交于,A B 两点,且AB =.(1)求p ;(2)设C 的焦点为F ,,M N 为抛物线C 上的两点,0MF NF ⋅=,求MNF △面积的最小值.【解析】(1)设()11,A x y ,()22,B x y ,联立直线与抛物线的方程22102x y y px -+=⎧⎨=⎩,消x 得()2221y p y =-,即2420y py p -+=,()21212168821042p p p p y y p y y p ∆⎧=-=->⎪+=⎨⎪=⎩,12AB y y ==-=,解得2p =,32p =-(舍).所以2p =.(2)解法一(向量法):由(1)知,抛物线的方程为24y x =,()1,0F ,设()33,M x y ,()44,N x y ,()233331,1,4y FM x y y ⎛⎫=-=- ⎪⎝⎭,()244441,1,4y FN x y y ⎛⎫=-=- ⎪⎝⎭ ,又FM FN ⊥ 得22343411044y y y y ⎛⎫⎛⎫--+= ⎪⎪⎝⎭⎝⎭,即22223434341164y y y y y y +++=,又()()22222233434434111111111222442164MNFy y y y y y S FM FN x x ⎛⎫⎛⎫⎛⎫+=⋅=++=++=++ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭ △()2223434344122816y y y y y y +⎛⎫=++= ⎪⎝⎭,又22223434341164y y y y y y +++=,得()()22343444y y y y +=-,因此343442y y y y +=-,即()343442y y y y +=-或()3434420y y y y ++-=,得()434222y y y +=-或()343222y y y +=-(这一步至关重要),()24442214162MNFy S y y ⎡+⎤=⋅+⎢⎥-⎣⎦△或()23332214162y y y ⎡+⎤⋅+⎢⎥-⎣⎦.设()22214,162MNFt S t t t ⎡+⎤=⋅+∈⎢⎥-⎣⎦R△()()22222214148181822442424242t t t t t t t t ⎛⎫⎛⎫+-+⎡⎤⎡⎤===-++=-+- ⎪ ⎪⎢⎥⎢⎥----⎣⎦⎣⎦⎝⎭⎝⎭.又()822t t -+-()822t t-+--则()(214434MNF S =-△(当且仅当2t -=时,即32t y =-=时取最小值).解法二(极坐标法):如图所示,设MF 与x 轴正半轴的夹角为θ,则有21cos MF θ=-,21sin NF θ=+,从而有()()()221cos 1sin 1sin cos sin cos MNF S θθθθθθ==-++--△()()()(22224443111112t t t ===-++++-.其中sin cos 4t θθθπ⎛⎫=-=- ⎪⎝⎭,显然当且仅当4θ3π=,即4MFO π∠=时取等号.2.(2023全国甲卷文科21)设抛物线()2:20C y px p =>,直线210x y -+=与C 交于,A B两点,且AB =.(1)求p ;(2)设C 的焦点为F ,,M N 为抛物线C 上的两点,0MF NF ⋅=,求MNF △面积的最小值.【解析】设()11,A x y ,()22,B x y ,联立直线与抛物线的方程22102x y y px-+=⎧⎨=⎩,消x 得()2221y p y =-,即2420y py p -+=,()21212168821042p p p p y y p y y p ∆⎧=-=->⎪+=⎨⎪=⎩,12AB y ==-==,解得2p =,32p =-(舍).所以2p =.(2)解法一:由(1)知,抛物线的方程为24y x =,()1,0F ,设()33,M x y ,()44,N x y ,()233331,1,4y FM x y y ⎛⎫=-=- ⎪⎝⎭ ,()244441,1,4y FN x y y ⎛⎫=-=- ⎪⎝⎭ ,又FM FN ⊥ 得22343411044y y y y ⎛⎫⎛⎫--+= ⎪⎪⎝⎭⎝⎭,即22223434341164y y y y y y +++=.又()()22222233434434111111111222442164MNFy y y y y y S FM FN x x ⎛⎫⎛⎫⎛⎫+=⋅==++=++=++ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭ △()2223434344122816y y y y y y +⎛⎫=++= ⎪⎝⎭,又22223434341164y y y y y y +++=,得()()22343444y y y y +=-,因此343442y y y y +=-,即()343442y y y y +=-或()3434420y y y y ++-=,得()434222y y y +=-或()343222y y y +=-(这一步至关重要),()24442214162MNFy S y y ⎡+⎤=⋅+⎢⎥-⎣⎦△或()23332214162y y y ⎡+⎤⋅+⎢⎥-⎣⎦.设()22214,162MNFt S t t t ⎡+⎤=⋅+∈⎢⎥-⎣⎦R △()()22222214148181822442424242t t t t t t t t ⎛⎫⎛⎫+-+⎡⎤⎡⎤===-++=-+- ⎪ ⎪⎢⎥⎢⎥----⎣⎦⎣⎦⎝⎭⎝⎭.又()822t t -+-()822t t-+--则()(214434MNFS-=-△2t -=时,即32t y =-=时取最小值).解法二(极坐标):如图所示,设MF 与x 轴正半轴的夹角为θ,则有22,1cos 1sin MF NF θθ==-+,从而有()()()221cos 1sin 1sin cos sin cos MNF S θθθθθθ==-++--△()()()(22224443111112t t t ===-++++-.其中sin cos 4t θθθπ⎛⎫=-=- ⎪⎝⎭,显然当且仅当4MFO π∠=时取等号.3.(2023全国乙卷理科20,文科21)已知椭圆()2222:10y x C a b a b+=>>的离心率为3,点()2,0A -在C 上.(1)求C 的方程;(2)过点()2,3-的直线交C 于,P Q 两点,直线,AP AQ 与y 轴的交点分别为,M N ,求证:线段MN 中点为定点.【解析】(1)依题意,2b =,3c e a ==,则2224b a c =-=,得3a =,c =,曲线C 的方程为22194y x +=.(2)设()11,P x y ,()22,Q x y ,直线():32PQ y k x -=+,()11:22y AP y x x =++,令0x =,得1122M yy x =+,()22:22y AQ y x x =++,令0x =,得2222N yy x =+.MN 的中点坐标为12120,22y y x x ⎛⎫+ ⎪++⎝⎭,联立直线PQ 的方程和椭圆方程得()22239436y k x x y ⎧=++⎪⎨+=⎪⎩,消y 建立关于x 的一元二次方程,()229423360x k x +⎡++⎤-=⎣⎦,即()()222249162416480k x k k x k k +++++=,21222122162449164849k kx x k k k x x k ⎧++=-⎪⎪+⎨+⎪=⎪+⎩,又()()121212121223231123222222k x k x y y k x x x x x x ++++⎛⎫+=+=++ ⎪++++++⎝⎭()2221222121222162416364492323164832482444949k k k x x k k k k k k k x x x x k k --+++++=+⋅=+⋅+++++-+++3=.所以线段MN 过定点()0,3.【评注】本题为2022全国乙卷的变式题,难度有所降低,考查仍为极点、极线的性质,定点()0,3为()2,3P -关于椭圆22194y x +=的极线123x y +=-与y 轴的交点.本题以椭圆中极点极线理论的射影不变性为命题背景,考查椭圆中对称式的计算方法,要求考生具有较强的计算能力.除此之外,如果考生具有先猜再证的解题意识,本题中的定点可以通过极限思想进行猜想.4.(2023新高考II 卷21)已知双曲线C的中心为坐标原点,左焦点为()-.(1)求C 的方程;(2)记C 的左、右顶点分别为1A ,2A ,过点()4,0-的直线与C 的左支交于M ,N 两点,M 在第二象限,直线1MA 与2NA 交于点P ,求证:点P 在定直线上.【解析】(1)设双曲线方程为()22221,0x y a b a b-=>,且22220c a b =+=.又c e a a===,得2a =,因为c =,所以4b =,因此双曲线的方程为221416x y -=.(2)(设点设线).设()()1122,,,M x y N x y ,:4MN x ty =-.由(1)可得,()()122,0,2,0A A -,则()111:22y MA y x x =++,()222:22yNA y x x =--.联立12,MA NA 的方程,消y 得()()12122222y yx x x x +=-+-,即2121122212112122222266y x y ty ty y y x x x y ty y ty y y +--+=⋅=⋅=----.联立MN 的方程与双曲线221416x y -=,得224416x ty x y =-⎧⎨-=⎩,消x 得()224416ty y --=,即()224132480t y ty --+=.由韦达定理()()221221223244148032414841t t t y y t y y t ∆⎧=---⨯>⎪⎪⎪+=⎨-⎪⎪=⎪-⎩(非对称结构处理).()12122483412t ty y y y t ==+-,则()()1221212112331221222393236222y y y y y x x y y yy y +--+===--+--+,得1x =-.因此点P 在定直线1x =-上.5.(2023北京卷19)已知椭圆()2222:10x y E a b a b +=>>的离心率为53,,A C 分别是E 的上、下顶点,,B D分别是E 的左、右顶点,4AC =.(1)求椭圆E 的方程;(2)点P 为第一象限内E 上的动点,直线PD 与直线BC 交于点M ,直线AP 与直线2y =-交于点N .求证://MN CD .【分析】(1)结合题意得到c a =24b =,再结合222a c b -=,解之即可;(2)依题意求得直线BC 、PD 与PA 的方程,从而求得点,M N 的坐标,进而求得MN k ,再根据题意求得CD k ,得到MN CD k k =,由此得解.【解析】(1)依题意,得53c e a ==,则53c a =,又,A C 分别为椭圆上下顶点,4AC =,所以24b =,即2b =,所以2224a c b -==,即22254499a a a -==,则29a =,所以椭圆E 的方程为22194x y +=.(2)因为椭圆E 的方程为22194x y +=,所以()()()()0,2,0,2,3,0,3,0A C B D --,因为P 为第一象限E 上的动点,设()(),03,02P m n m n <<<<,则22194m n +=,易得022303BC k +==---,则直线BC 的方程为223y x =--,033PD n n k m m -==--,则直线PD 的方程为()33n y x m =--,联立()22333y x n y x m ⎧=--⎪⎪⎨⎪=-⎪-⎩,解得()332632612326n m x n m n y n m ⎧-+=⎪⎪+-⎨-⎪=⎪+-⎩,即()332612,326326n m n M n m n m ⎛-+⎫- ⎪+-+-⎝⎭,而220PA n n k m m --==-,则直线PA 的方程为22n y x m-=+,令=2y -,则222n x m --=+,解得42m x n -=-,即4,22m N n -⎛⎫- ⎪-⎝⎭,又22194m n +=,则22994n m =-,2287218m n =-,所以()()()()()()12264122326332696182432643262MN n n m n n m k n m n m n m n m m n m n -+-+--+-==-+-+-++---+--222222648246482498612369612367218n mn m n mn m n m mn m n m n n m -+-+-+-+==++---++--()()22222324126482429612363332412n mn m n mn m n mn m n mn m -+-+-+-+===-+-+-+-+,又022303CD k +==-,即MN CD k k =,显然,MN 与CD 不重合,所以//MN CD .第六节平面几何性质在圆锥曲线中的应用1.(2023全国甲卷理科12)已知椭圆22196x y +=,12,F F 为两个焦点,O 为原点,P 为椭圆上一点,123cos 5F PF ∠=,则OP =()A.25C.35【解析】因为1226PF PF a +==①,22212121122cos PF PF PF PF F PF F F +-⋅∠=,即2212126125PF PF PF PF +-⋅=②,联立①②,解得12152PF PF ⋅=,221221PF PF +=.由中线定理可知,()()222212122242OP F F PF PF +=+=,而12F F =,解得302OP =.故选B.2.(2023新高考II 卷10)设O为坐标原点,直线)1y x =-过抛物线()2:20C y px p =>的焦点,且与C 交于,M N 两点,l 为C 的准线,则()A .2p =B .83MN =C .以MN 为直径的圆与l 相切D .OMN △为等腰三角形【解析】由题意可得焦点为()1,0F ,所以12p =,2p =,A 正确;联立)214y x y x⎧=-⎪⎨=⎪⎩,消y 得231030x x -+=.设()()1122,,,M x y N x y ,由韦达定理得12103x x +=,所以12163MN MF NF x x p =+=++=,B 错误;设MN 的中点为Q ,分别过,,M N Q 向l 作垂线,垂足分别为111,,M N Q ,由梯形中位线性质及抛物线定义可得,()()111111222QQ MM NN MF NF MN r =+=+==,所以以MN 为直径的圆与准线l 相切,C 正确;由上述解题过程知,231030x x -+=,解得121,33x x ==,从而(1,3,3M N ⎛- ⎝⎭,易得OM ON MN ≠≠,OMN △不是等腰三角形,D 错误.综上,故选AC.。
圆锥曲线大题基础练-新高考数学复习分层训练(新高考通用)1.(2023春·广东揭阳·高三校考开学考试)已知抛物线C :22(0)y px p =>与直线2y x =+相切.(1)求C 的方程;(2)过C 的焦点F 的直线l 与C 交于A ,B 两点,AB 的中垂线与C 的准线交于点P ,若PA =,求l 的方程.2.(2023春·安徽亳州·高三校考阶段练习)已知椭圆()2222:10x y C a b a b+=>>的长轴长倍,且右焦点为()1,0F .(1)求椭圆C 的标准方程;(2)直线():2l y k x =+交椭圆C 于A ,B 两点,若线段AB 中点的横坐标为23-.求直线l 的方程.3.(2022秋·海南海口·高三校考期中)椭圆C 的中心在坐标原点O ,焦点在x 轴上,椭圆C 经过点()0,1且长轴长为(1)求椭圆C 的标准方程;(2)过点()1,0M 且斜率为1的直线l 与椭圆C 交于A ,B 两点,求弦长AB .4.(2022·江苏苏州·苏州市第六中学校校考三模)已知双曲线C :()222210,0x y a b a b-=>>过点(),渐近线方程为12y x =±,直线l 是双曲线C 右支的一条切线,且与C 的渐近线交于A ,B 两点.(1)求双曲线C 的方程;(2)设点A ,B 的中点为M ,求点M 到y 轴的距离的最小值.5.(2022·江苏泰州·统考模拟预测)已知1l ,2l 是过点()0,2的两条互相垂直的直线,且1l 与椭圆22:14x y Γ+=相交于A ,B 两点,2l 与椭圆Γ相交于C ,D 两点.(1)求直线1l 的斜率k 的取值范围;(2)若线段AB ,CD 的中点分别为M ,N ,证明直线MN 经过一个定点,并求出此定点的坐标.6.(2022秋·重庆长寿·高三统考期末)已知曲线22:1C ax by +=过点1,2⎛ ⎝⎭和1,2⎛- ⎝⎭.(1)求曲线C 的方程,并指出曲线类型;(2)若直线2x -y -2=0与曲线C 的两个交点为A ,B ,求△OAB 的面积(其中O 是坐标原点).7.(2022秋·辽宁沈阳·高三沈阳市第十中学校考阶段练习)已知椭圆Γ的方程为22184x y +=,圆C 与x 轴相切于点(2,0)T ,与y 轴正半轴相交于,A B 两点,且3AB =,如图.(1)求圆C 的方程;(2)如图,过点(0,1)的直线l 与椭圆Γ相交于,P Q 两点,求证:射线AO 平分PAQ ∠.8.(2022春·河北唐山·高三校考开学考试)如图,抛物线的顶点在原点,圆22(2)4x y -+=的圆心恰是抛物线的焦点.(1)求抛物线的方程;(2)一条直线的斜率等于2,且过抛物线焦点,它依次截抛物线和圆于A 、B 、C 、D 四点,求||||AB CD +的值.9.(2022春·重庆渝中·高三重庆巴蜀中学校考阶段练习)已知抛物线C ;()220y px p =>,F 为抛物线的焦点,直线x m =和抛物线交于不同两点A ,B ,直线2p x =-和x 轴交于点N ,直线AF 和直线BN 交于点()00,M x y .(1)若m p =,求三角形AMN 的面积AMN S (用p 表示);(2)求证:点M 在抛物线C 上10.(2022·重庆九龙坡·重庆市育才中学校考模拟预测)已知椭圆C :22221(0)x y a b a b+=>>经过点3(1,2P ,离心率12e =.(1)求椭圆C 的方程;(2)不过原点的直线l 与椭圆C 交于A ,B 两点,若AB 的中点M 在抛物线E :24y x =上,求直线l 的斜率k 的取值范围.11.(2022·重庆·统考模拟预测)已知抛物线C :()220y px p =>的焦点为F ,直线l 过F 且与抛物线C 交于A ,B 两点,线段AB 的中点为M ,当3AB p =时,点M 的横坐标为2.(1)求抛物线C 的方程;(2)若直线l 与抛物线C 的准线交于点D ,点D 关于x 轴的对称点为E ,当DME 的面积取最小值时,求直线l 的方程.12.(2023秋·浙江绍兴·高三统考期末)已知双曲线2222:1(0,0)x y C a b a b-=>>的离心率为2,右焦点F(1)求双曲线C 的标准方程;(2)过右焦点F 作直线AB 交双曲线于,A B 两点,过点A 作直线1:2l x =的垂线,垂足为M ,求证直线MB 过定点.13.(2023秋·重庆万州·高三重庆市万州第二高级中学校考期末)已知椭圆2222:1(0)x y C a b a b +=>>两个焦点分别为12,F F ,且过点.(1)求椭圆C 的标准方程;(2)P 是椭圆C 上的点,且123F PF π∠=,求三角形12F PF 的面积.14.(2022秋·广东梅州·高三大埔县虎山中学校考阶段练习)如图所示,椭圆221169x y +=的左、右焦点分别为1F 、2F ,一条直线l 经过1F 与椭圆交于A 、B 两点.(1)求2ABF ∆的周长;(2)若直线l 的倾斜角为45 ,求2ABF ∆的面积.15.(2022·海南·海南华侨中学校考模拟预测)已知椭圆2222:1(0)x y C a b a b+=>>,左焦点为()12,0F -,点(在椭圆上.(1)求椭圆C 的标准方程.(2)若直线()():20=+≠l y k x k 和椭圆交于,A B 两点,设点T 为线段AB 的中点,O 为坐标原点,求线段OT 长度的取值范围.16.(2023春·广东惠州·高三校考阶段练习)已知焦点在x 轴上的椭圆C :222210)x y a b a b +=>>(,短轴长为1.(1)求椭圆C 的标准方程;(2)如图,已知点2(,0)3P ,点A 是椭圆的右顶点,直线l 与椭圆C 交于不同的两点,E F ,,E F 两点都在x 轴上方,且APE OPF ∠=∠.证明直线l 过定点,并求出该定点坐标.17.(2022·海南海口·统考二模)已知椭圆()2222:10x y C a b a b +=>>的离心率为3,且经过点3⎫⎪⎪⎭.(1)求C 的方程;(2)动直线l 与圆22:1O x y +=相切,与C 交于M ,N 两点,求O 到线段MN 的中垂线的最大距离.18.(2022·湖南·校联考模拟预测)已知椭圆E :22221(0)x y a b a b+=>>的左、右顶点分别为A ,1A ,右焦点为点F ,点P 是椭圆E 上一动点,1APA △面积的最大值为2,当PF x ⊥轴时,12PF =.(1)求椭圆E 的方程;(2)已知直线l 与椭圆E 有且只有一个公共点,直线l 与直线x =N ,过点F 作x 轴的垂线,交直线l 于点M .求证:FM FN 为定值.19.(2022·辽宁·辽宁实验中学校考模拟预测)点()00,N x y 是曲线22:1ax by Γ+=上任一点,已知曲线Γ在点()00,N x y 处的切线方程为001ax x by y +=.如图,点P 是椭圆22:12x C y +=上的动点,过点P 作椭圆C 的切线l 交圆22:4O x y +=于点A 、B ,过A 、B 作圆O 的切线交于点M .(1)求点M 的轨迹方程;(2)求OPM 面积的最大值.20.(2022秋·江苏宿迁·高三沭阳县建陵高级中学校考阶段练习)设椭圆2222:1(0)x y C a b a b+=>>的左焦点坐标为()1,0F -,且其离心率为12.(1)求椭圆C 的方程;(2)若在y 轴上的截距为2的直线l 与椭圆C 分别交于A ,B 两点,O 为坐标原点,且直线OA ,OB 的斜率之和等于12,求ABF △的面积.21.(2023春·河北承德·高三河北省隆化存瑞中学校考阶段练习)已知双曲线:C :22221x y a b -=(0a >,0b >)与22142-=y x 有相同的渐近线,且经过点M .(1)求双曲线C 的方程;(2)已知直线0x y m -+=与双曲线C 交于不同的两点A 、B ,且线段AB 的中点在圆2220x y +=上,求实数m 的值.22.(2022秋·河北承德·高三承德市双滦区实验中学校考期末)已知椭圆C :22221(0)x y a b a b +=>>2.(1)椭圆C 的方程;(2)设直线l :12y x m =+交椭圆C 于A ,B两点,且AB =m 的值.23.(2022·河北石家庄·石家庄二中校考模拟预测)已知P (1,2)在抛物线C :y 2=2px 上.(1)求抛物线C 的方程;(2)A ,B 是抛物线C 上的两个动点,如果直线PA 的斜率与直线PB 的斜率之和为2,证明:直线AB 过定点.24.(2022·河北·模拟预测)已知抛物线2:2(0)C x py p =>,点(4,1)A -,P 为抛物线上的动点,直线l 为抛物线的准线,点P 到直线l 的距离为d ,||PA d +的最小值为5.(1)求抛物线C 的方程;(2)直线1y kx =+与抛物线相交于M ,N 两点,与y 轴相交于Q 点,当直线AM ,AN 的斜率存在,设直线AM ,AN ,AQ 的斜率分别为1k ,2k ,3k ,是否存在实数λ,使得12311k k k λ+=,若存在,求出λ;若不存在,说明理由.25.(2022秋·河北·高三校联考阶段练习)已知椭圆2222:1(0)x y C a b a b+=>>,左、右焦点分别为()11,0F -、()21,0F ,左、右顶点分别为,A B ,若T 为椭圆上一点,12FTF ∠的最大值为π3,点P 在直线4x =上,直线PA 与椭圆C 的另一个交点为M ,直线PB 与椭圆C 的另一个交点为N ,其中,M N 不与左右顶点重合.(1)求椭圆C 的标准方程;(2)从点A 向直线MN 作垂线,垂足为Q ,证明:存在点D ,使得DQ 为定值.26.(2022秋·福建龙岩·高三上杭县第二中学校考阶段练习)已知椭圆2222:1(0)x y C a b a b +=>>,离心率为2,点P 在椭圆C 上.(1)求椭圆C 的标准方程;(2)若12(1,0),(1,0)F F -,过1F 的直线l 交椭圆C 于M 、N 两点,且直线l 倾斜角为45︒,求2MF N 的面积.27.(2022秋·山东聊城·高三山东聊城一中校考阶段练习)已知双曲线2222C :1x y a b-=(a>0,b>0)(1)求双曲线C 的渐近线方程.(Ⅱ)当a=1时,直线x-y+m=0与双曲线C 交于不同的两点A,B,且线段AB 的中点在圆225x y +=上,求m 的值.28.(2022秋·江苏苏州·高三苏州中学校联考阶段练习)在平面直角坐标系xOy 中,已知点P 在抛物线21:4C y x =上,圆2222:(2)(02).C x y r r -+=<<(1)若1r =,Q 为圆2C 上的动点,求线段PQ 长度的最小值;(2)若点P 的纵坐标为4,过P 的直线,m n 与圆2C 相切,分别交抛物线1C 于,A B (异于点P ),求证:直线AB 过定点.29.(2022秋·湖北襄阳·高三期末)若两个椭圆的离心率相等,则称它们为“相似椭圆”.如图,在直角坐标系xOy 中,已知椭圆C 1:22163x y +=,A 1,A 2分别为椭圆C 1的左,右顶点.椭圆C 2以线段A 1A 2为短轴且与椭圆C 1为“相似椭圆”.(1)求椭圆2C 的方程;(2)设P 为椭圆C 2上异于A 1,A 2的任意一点,过P 作PQ ⊥x 轴,垂足为Q ,线段PQ 交椭圆C 1于点H .求证:12A H PA ⊥30.(2022·湖北十堰·高三十堰东风高级中学校考阶段练习)已知抛物线22(0)y px p =>的焦点为F ,点M 是抛物线的准线2x =-上的动点.(1)求p 的值和抛物线的焦点坐标;(2)设直线l 与抛物线相交于A 、B 两点,且,MF AB AF MB ⊥⊥,求直线l 在x 轴上截距b 的取值范围.。
专题18 圆锥曲线高频压轴解答题目录01 轨迹方程 (2)02 向量搭桥进行翻译 (3)03 弦长、面积背景的条件翻译 (4)04 斜率之和差商积问题 (5)05 弦长、面积范围与最值问题 (6)06 定值问题 (7)07 定点问题 (9)08 三点共线问题 (10)09 中点弦与对称问题 (11)10 四点共圆问题 (12)11 切线问题 (13)12 定比点差法 (14)13 齐次化 (16)14 极点极线问题 (16)15 同构问题 (18)16 蝴蝶问题 (19)01 轨迹方程1.(2024·重庆·高三重庆南开中学校考阶段练习)已知双曲线22221(0,0)x y a b a b-=>>的一条浙近线方程为y x =,且点P在双曲线上.(1)求双曲线的标准方程;(2)设双曲线左右顶点分别为,A B ,在直线1x =上取一点()()1,0P t t ¹,直线AP 交双曲线右支于点C ,直线BP 交双曲线左支于点D ,直线AD 和直线BC 的交点为Q ,求证:点Q 在定直线上.2.(2024·重庆·统考模拟预测)已知椭圆C :()222210x y a b a b+=>>的长轴长是短轴长的2倍,直线12y x =被椭圆截得的弦长为4.(1)求椭圆C 的方程;(2)设M ,N ,P ,Q 为椭圆C 上的动点,且四边形MNPQ 为菱形,原点О在直线MN 上的垂足为点H ,求H 的轨迹方程.3.(2024·福建莆田·统考一模)曲线C 上任意一点P 到点(2,0)F 的距离与它到直线4x =的距离之比等于(4,0)M 且与x 轴不重合的直线l 与C 交于不同的两点,A B .(1)求C 的方程;(2)求证:ABF △内切圆的圆心在定直线上.02 向量搭桥进行翻译4.(2024·陕西咸阳·校考模拟预测)已知椭圆2222:1(0)x y C a b a b +=>>的离心率是双曲线2213x y -=的离心率的倒数,椭圆C 的左、右焦点分别为12,F F ,上顶点为P ,且122PF PF ×=-uuu r uuu u r.(1)求椭圆C 的方程;(2)当过点()0,2Q 的动直线l 与椭圆C 相交于两个不同点,A B 时,设AQ QB l =uuu ruuu r,求l 的取值范围.5.(2024·上海奉贤·统考一模)已知椭圆22221(0)x y a b a b +=>>的焦距为,椭圆的左右焦点分别为1F 、2F ,直角坐标原点记为O .设点()0,P t ,过点P 作倾斜角为锐角的直线l 与椭圆交于不同的两点B 、C .(1)求椭圆的方程;(2)设椭圆上有一动点T ,求()12PT TF TF ×-uuu r uuu r uuu r的取值范围;(3)设线段BC 的中点为M ,当t ³Q ,使得非零向量OM uuuu r与向量PQ uuu r 平行,请说明理由.6.(2024·云南昆明·高三统考期末)已知动点P 到定点()0,4F 的距离和它到直线1y =距离之比为2;(1)求点P 的轨迹C 的方程;(2)直线l 在x 轴上方与x 轴平行,交曲线C 于A ,B 两点,直线l 交y 轴于点D .设OD 的中点为M ,是否存在定直线l ,使得经过M 的直线与C 交于P ,Q ,与线段AB 交于点N ,PM PN l =uuuu r uuu r ,MQ QN l =uuuur uuu r 均成立;若存在,求出l 的方程;若不存在,请说明理由.03 弦长、面积背景的条件翻译7.(2024·陕西榆林·统考一模)已知椭圆()2222:10x y C a b a b +=>>经过()830,1,,55A P æö-ç÷èø两点.(1)求C 的方程;(2)斜率不为0的直线l 与椭圆C 交于,M N 两点,且点A 不在l 上,AM AN ^,过点P 作y 轴的垂线,交直线=1x -于点S ,与椭圆C 的另一个交点为T ,记SMN V 的面积为1S ,TMN △的面积为2S ,求12S S .8.(2024·四川绵阳·高三绵阳南山中学实验学校校考阶段练习)已知椭圆()2222:10x y E a b a b +=>>的左、右焦点为1F ,2F ,若E 上任意一点到两焦点的距离之和为4,且点æççè在E 上.(1)求椭圆E 的方程;(2)在(1)的条件下,若点A ,B 在E 上,且14OA OB k k ×=-(O 为坐标原点),分别延长AO ,BO 交E 于C ,D 两点,则四边形ABCD 的面积是否为定值?若为定值,求四边形ABCD的面积,若不为定值,请说明理由.9.(2024·上海·高三上海市大同中学校考期末)已知双曲线H :2214x y -=的左、右焦点为1F ,2F ,左、右顶点为1A ,2A ,椭圆E 以1A ,2A 为焦点,以12F F 为长轴.(1)求椭圆E 的离心率;(2)设椭圆E 交y 轴于1B ,2B ,过1B 的直线l 交双曲线H 的左、右两支于C ,D 两点,求2B CD △面积的最小值;(3)设点(),M m n 满足224m n <.过M 且与双曲线H 的渐近线平行的两直线分别交H 于点P ,Q .过M 且与PQ 平行的直线交H 的渐近线于点S ,T .证明:MSMT为定值,并求出此定值.04 斜率之和差商积问题10.(2024·贵州铜仁·校联考模拟预测)在平面直角坐标系中,已知过动点(),M x y 作x 轴垂线,分别与1y =和4y =-交于P ,Q 点,且()12,0A -,()22,0A ,若实数l 使得212OP OQ MA MA l ×=×uuu r uuu r uuuu r uuuu r成立(其中O 为坐标原点).(1)求M l 为何值时M 点的轨迹为椭圆;(2)当l =()4,0B 的直线l 与轨迹M 交于y 轴右侧C ,D 两点,证明:直线1A C ,2A D 的斜率之比为定值.11.(2024·安徽·高三校联考期末)已知抛物线2:2(0)C y px p =>的焦点为F ,点()04,P y 是抛物线C 上一点,点Q 是PF 的中点,且Q 到抛物线C 的准线的距离为72.(1)求抛物线C 的方程;(2)已知圆22:(2)4M x y -+=,圆M 的一条切线l 与抛物线C 交于A ,B 两点,O 为坐标原点,求证:OA ,OB 的斜率之差的绝对值为定值.12.(2024·海南海口·统考模拟预测)在平面直角坐标系xOy 中,已知双曲线2222:1(0,0)x y C a b a b-=>>的左顶点为A ,焦点到渐近线的距离为2.直线l 过点(),0(02)P t t <<,且垂直于x 轴,过P 的直线l ¢交C 的两支于,G H 两点,直线,AG AH 分别交l 于,M N 两点.(1)求C 的方程;(2)设直线,AN OM 的斜率分别为12,k k ,若1212k k ×=,求点P 的坐标.05 弦长、面积范围与最值问题13.(2024·陕西商洛·镇安中学校考模拟预测)已知12,F F 分别为椭圆2222:1(0)x y M a b a b +=>>的左、右焦点,直线1l 过点2F 与椭圆交于,A B 两点,且12AF F △的周长为(2a +.(1)求椭圆M 的离心率;(2)直线2l 过点2F ,且与1l 垂直,2l 交椭圆M 于,C D 两点,若a =ACBD 面积的范围.14.(2024·河南·统考模拟预测)已知抛物线2:4C y x =的焦点为F ,过F 的直线l 交C 于,A B 两点,过F 与l 垂直的直线交C 于,D E 两点,其中,B D 在x 轴上方,,M N 分别为,AB DE 的中点.(1)证明:直线MN 过定点;(2)设G 为直线AE 与直线BD 的交点,求GMN V 面积的最小值.15.(2024·上海嘉定·统考一模)抛物线24y x =上有一动点(,),0P s t t >.过点P 作抛物线的切线l ,再过点P 作直线m ,使得m l ^,直线m 和抛物线的另一个交点为Q .(1)当1s =时,求切线l 的直线方程;(2)当直线l 与抛物线准线的交点在x 轴上时,求三角形OPQ 的面积(点O 是坐标原点);(3)求出线段||PQ 关于s 的表达式,并求||PQ 的最小值;06 定值问题16.(2024·全国·模拟预测)如图,已知12,F F 分别为椭圆C :()222210x y a b a b +=>>的左、右焦点,P 为椭圆C 上一点,若12124PF PF PF PF +=-=uuu r uuu u r uuu r uuu u r,122PF F S =△.(1)求椭圆C 的标准方程;(2)若点P 坐标为),设不过点P 的直线l 与椭圆C 交于A ,B 两点,A 关于原点的对称点为A ¢,记直线l ,PB ,PA ¢的斜率分别为k ,1k ,2k ,若1213k k ×=,求证:直线l 的斜率k 为定值.17.(2024·安徽·高三校联考阶段练习)已知双曲线221222:1(0,0),,x y C a b F F a b -=>>分别是C 的左、右焦点.若C 的离心率2e =,且点()4,6在C 上.(1)求C 的方程.(2)若过点2F 的直线l 与C 的左、右两支分别交于,A B 两点(不同于双曲线的顶点),问:2211AF BF -是否为定值?若是,求出该定值;若不是,请说明理由.18.(2024·全国·高三阶段练习)如图所示,已知抛物线()21,0,1,,y x M A B =-是抛物线与x 轴的交点,过点M 作斜率不为零的直线l 与抛物线交于,C D 两点,与x 轴交于点Q ,直线AC 与直线BD 交于点P .(1)求CM DM CD×的取值范围;(2)问在平面内是否存在一定点T ,使得TP TQ ×uur uuu r为定值?若存在,求出点T 的坐标;若不存在,请说明理由.07 定点问题19.(2024·广东广州·广东实验中学校考一模)设抛物线2:2(0)E y px p =>,过焦点F 的直线与抛物线E 交于点()11,A x y 、()22,B x y .当直线AB 垂直于x 轴时,2AB =.(1)求抛物线E 的标准方程.(2)已知点()1,0P ,直线AP 、BP 分别与抛物线E 交于点C 、D .求证:直线CD 过定点.20.(2024·宁夏银川·高三银川一中校考阶段练习)在平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b +=>>的左,右顶点分别为A 、B ,点F 是椭圆的右焦点,3AF FB =uuu r uuu r ,3AF FB ×=uuu r uuu r .(1)求椭圆C 的方程;(2)经过椭圆右焦点F 且斜率不为零的动直线l 与椭圆交于M 、N 两点,试问x 轴上是否存在异于点F 的定点T ,使||||||||MF NT NF MT ×=×恒成立?若存在,求出T 点坐标,若不存在,说明理由.21.(2024·四川甘孜·统考一模)在平面直角坐标系xOy 中,抛物线2:2(0)E y px p =>的焦点为,F E 的准线l 交x 轴于点K ,过K 的直线l 与抛物线E 相切于点A ,且交y 轴正半轴于点P .已知E 上的动点B 到点F 的距离与到直线2x =-的距离之和的最小值为3.(1)求抛物线E 的方程;(2)过点P 的直线交E 于,M N 两点,过M 且平行于y 轴的直线与线段OA 交于点T ,点H 满足MT TH =uuur uuu r.证明:直线HN 过定点.08 三点共线问题22.(2024·广东·高三校联考阶段练习)点F 是抛物线G :22y px =(0p >)的焦点,O 为坐标原点,过点F 作垂直于x 轴的直线l ,与抛物线G 相交于A ,B 两点,AB 4=,抛物线G 的准线与x 轴交于点K .(1)求抛物线G 的方程;(2)设C 、D 是抛物线G 上异于A 、B 两点的两个不同的点,直线AC 、BD 相交于点E ,直线AD 、BC 相交于点G ,证明:E 、G 、K 三点共线.23.(2024·贵州毕节·校考模拟预测)已知F 是抛物线2:2(0)C y px p =>的焦点,过点F 的直线交抛物线C 于,A B 两点,当AB 平行于y 轴时,2AB =.(1)求抛物线C 的方程;(2)若O 为坐标原点,过点B 作y 轴的垂线交直线AO 于点D ,过点A 作直线DF 的垂线与抛物线C 的另一交点为,E AE 的中点为G ,证明:,,G B D 三点共线.24.(2024·贵州贵阳·高三贵阳一中校考期末)已知A ,B 为椭圆()2222:10x y C a b a b+=>>的左、右顶点,P 为椭圆上异于A ,B 的一点,直线AP 与直线BP 的斜率之积为14-,且椭圆C 过点12ö÷ø.(1)求椭圆C 的标准方程;(2)若直线AP ,BP 分别与直线:4l x =相交于M ,N 两点,且直线BM 与椭圆C 交于另一点Q ,证明:A ,N ,Q 三点共线.09 中点弦与对称问题25.(2024·福建福州·高三福建省福州格致中学校考期末)已知椭圆()2222:10x y C a b a b+=>>的离心率为12,椭圆上的点到焦点的最小距离是3.(1)求椭圆C 的方程;(2)是否存在过点31,2Q æöç÷èø的直线交曲线C 于AB 两点,使得Q 为AB 中点?若存在,求该直线方程,若不存在,请说明理由.26.(2024·全国·高三专题练习)已知圆22:(3)4M x y ++=,圆22:(3)100N x y -+=,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C (1)求C 的方程;(2)是否存在过点31,2Q æöç÷èø的直线交曲线C 于AB 两点,使得Q 为AB 中点?若存在,求该直线方程,若不存在,请说明理由.27.(2024·贵州黔东南·高三校考阶段练习)已知椭圆C :()222210x y a b a b +=>>的一个焦点为()1,0F -,且点F 到C 的左、右顶点的距离之积为5.(1)求椭圆C 的标准方程;(2)过点F 作斜率乘积为1-的两条直线1l ,2l ,1l 与C 交于A ,B 两点,2l 与C 交于D ,E 两点,线段AB ,DE 的中点分别为M ,N .证明:直线MN 与x 轴交于定点,并求出定点坐标.10 四点共圆问题28.(2024·湖北·高三校联考阶段练习)已知双曲线22:1x C a =的离心率为2,过C 上的动点M 作曲线C 的两渐近线的垂线,垂足分别为A 和,B ABM V .(1)求曲线C 的方程;(2)如图,曲线C 的左顶点为D ,点N 位于原点与右顶点之间,过点N 的直线与曲线C 交于,G R 两点,直线l 过N 且垂直于x 轴,直线DG ,DR 分别与l 交于,P Q 两点,若,,,O D P Q 四点共圆,求点N 的坐标.29.(2024·河南·高三校联考阶段练习)已知椭圆2222:1x y C a b+=()0a b >>的左、右焦点分别为1F ,2F ,点D 在C 上,132DF =,252DF =,212DF F F >,且12DF F △的面积为32.(1)求C 的方程;(2)设C 的左顶点为A ,直线:6l x =-与x 轴交于点P ,过P 作直线交C 于G ,H 两点直线AG ,AH 分别与l 交于M ,N 两点,O 为坐标原点,证明:O ,A ,N ,M 四点共圆.30.(2024·江苏南通·统考模拟预测)已知动圆M 过点(1,0)F 且与直线=1x -相切,记动圆圆心M 的轨迹为曲线C .(1)求曲线C 的方程;(2)若直线():0l x m m =<与x 轴相交于点P ,点B 为曲线C 上异于顶点O 的动点,直线PB 交曲线C 于另一点D ,直线BO 和DO 分别交直线l 于点S 和T .若,,,O F S T 四点共圆,求m 的值.11 切线问题31.(2024·河南周口·高三校联考阶段练习)已知点()2,1A 的椭圆2222:1(0)x y M a b a b +=>>上,点,B C 为椭圆M 上异于点A 的两点.(1)求椭圆M 的方程;(2)若AB AC ^,过点,B C 两点分别作椭圆M 的切线,这两条切线的交点为D ,求AD 的最小值.32.(2024·山东德州·高三德州市第一中学校考阶段练习)如图所示,已知椭圆C :22163x y +=与直线l :163xy +=.点P 在直线l 上,由点P 引椭圆C 的两条切线PA 、PB ,A 、B 为切点,O 是坐标原点.(1)若点P 为直线l 与y 轴的交点,求PAB V 的面积S ;(2)若OD AB ^,D 为垂足,求证:存在定点Q ,使得DQ 为定值.(注:椭圆22221x ya b+=在其上一点处()00,M x y 的切线方程为00221x x y ya b+=)33.(2024·辽宁辽阳·高三统考期末)在平面直角坐标系xOy 内,已知定点()2,0F ,定直线3:2l x =,动点P 到点F 和直线l P 的轨迹为曲线E .(1)求曲线E 的方程.(2)以曲线E 上一动点M 为切点作E 的切线l ¢,若直线l ¢与直线l 交于点N ,试探究以线段MN 为直径的圆是否过x 轴上的定点.若过定点.求出该定点坐标;若不过,请说明理由.12 定比点差法34.(2024·吉林·统考一模)已知抛物线21:2(0)C y px p =>的焦点F 到其准线的距离为4,椭圆22222:1(0)x y C a b a b +=>>经过抛物线1C 的焦点F .(1)求抛物线1C 的方程及a ;(2)已知O 为坐标原点,过点(1,1)M 的直线l 与椭圆2C 相交于A ,B 两点,若=uuuu r uuurAM mMB ,点N 满足=-uuu r uuu r AN mNB ,且||ON 最小值为125,求椭圆2C 的离心率.35.(2024·江苏·高二专题练习)已知椭圆()2222:10x y a b a bG +=>>的离心率为23,半焦距为()0c c >,且1a c -=.经过椭圆的左焦点F ,斜率为()110k k ¹的直线与椭圆交于A 、B 两点,O 为坐标原点.(1)求椭圆G 的标准方程;(2)当11k =时,求AOB S V 的值;(3)设()1,0R ,延长AR ,BR 分别与椭圆交于C ,D 两点,直线CD 的斜率为2k ,求证:12k k 为定值.36.(2024·安徽合肥·统考一模)在平面直角坐标系xOy 中,F 是抛物线()2:20C x py p =>的焦点,M是抛物线C 上位于第一象限内的任意一点,过,,M F O 三点的圆的圆心为N ,点N 到抛物线C 的准线的距离为34.(1)求抛物线C 的方程;(2)当过点()4,1P 的动直线l 与抛物线C 相交于不同点,A B 时,在线段AB 上取点Q ,满足AP QB AQ PB ×=×u u u r u u u r u u u r u u r,证明:点Q 总在某定直线上.13 齐次化37.已知椭圆22:13x C y +=,()0,1B ,P ,Q 为上的两个不同的动点,23BP BQ k k =,求证:直线PQ 过定点.38.已知椭圆22:14x C y +=,设直线l 不经过点2(0,1)P 且与C 相交于A ,B 两点.若直线2P A 与直线2P B 的斜率的和为1-,证明:直线l 过定点.39.如图,椭圆22:12x E y +=,经过点(1,1)M ,且斜率为k 的直线与椭圆E 交于不同的两点P ,Q(均异于点(0,1)A -,证明:直线AP 与AQ 的斜率之和为2.14 极点极线问题40.(2024·江苏南通·高二统考开学考试)已知双曲线C :22221x y a b -=(0a >,0b >)实轴端点分别为()1,0A a -,()2,0A a ,右焦点为F ,离心率为2,过1A 点且斜率1的直线l 与双曲线C 交于另一点B ,已知1A BF △的面积为92.(1)求双曲线的方程;(2)若过F 的直线l ¢与双曲线C 交于M ,N 两点,试探究直线1A M 与直线2A N 的交点Q 是否在某条定直线上?若在,请求出该定直线方程;如不在,请说明理由.41.(2024·安徽六安·校联考一模)已知椭圆()2222:10x y C a b a b+=>>的离心率为12,短轴长为(1)求椭圆C 的方程;(2)设A ,B 分别为椭圆C 的左、右顶点,若过点()4,0P 且斜率不为0的直线l 与椭圆C 交于M 、N 两点,直线AM 与BN 相交于点Q .证明:点Q 在定直线上.42.(2024·北京海淀·统考模拟预测)已知椭圆M :22221x y a b +=(a >b >0)过A (-2,0),B (0,1)两点.(1)求椭圆M 的离心率;(2)设椭圆M 的右顶点为C ,点P 在椭圆M 上(P 不与椭圆M 的顶点重合),直线AB 与直线CP 交于点Q ,直线BP 交x 轴于点S ,求证:直线SQ 过定点.15 同构问题43.(2024·广东广州·统考一模)已知抛物线2:2(0)C y px p =>的焦点F 到准线的距离为2,圆M 与y 轴相切,且圆心M 与抛物线C 的焦点重合.(1)求抛物线C 和圆M 的方程;(2)设()()000,2P x y x ¹为圆M 外一点,过点P 作圆M 的两条切线,分别交抛物线C 于两个不同的点()()1122,,,A x y B x y 和点()()3344,,,Q x y R x y .且123416y y y y =,证明:点P 在一条定曲线上.44.(2024·湖北襄阳·襄阳五中校考一模)已知抛物线21:C y x =,圆()222:41C x y -+=.(1)求圆心2C 到抛物线1C 准线的距离;(2)已知点P 是抛物线1C 上一点(异于原点),过点P 作圆2C 的两条切线,交抛物线1C 于A 、B 两点,若直线2PC 的斜率为1k ,直线AB 的斜率为2k ,125·24k k =-,求点P 的坐标.45.(2024·内蒙古呼和浩特·统考一模)拋物线C 的顶点为坐标原点O ,焦点在x 轴上,直线l :2x =交C 于P ,Q 两点,且OP OQ ^.已知点M 的坐标为()4,0,M e 与直线l 相切.(1)求抛物线C 和M e 的标准方程;(2)已知点()8,4N ,点1A ,2A 是C 上的两个点,且直线1NA ,2NA 均与M e 相切.判断直线12A A 与M e 的位置关系,并说明理由.46.(2024·浙江杭州·高二萧山中学校考期末)已知圆C 的方程为:()()22210x y r r ++=>(1)已知过点15,22M æö-ç÷èø的直线l 交圆C 于,A B 两点,若1r =,求直线l 的方程;(2)如图,过点()1,1N -作两条直线分别交抛物线2y x =于点P ,Q ,并且都与动圆C 相切,求证:直线PQ 经过定点,并求出定点坐标.16 蝴蝶问题47.(2024·重庆渝中·高三重庆巴蜀中学校考阶段练习)如图,B ,A 是椭圆22:14x C y +=的左、右顶点,P ,Q 是椭圆C 上都不与A ,B 重合的两点,记直线BQ ,AQ ,AP 的斜率分别是BQ k ,AQ k ,AP k .(1)求证:14BQ AQ k k ×=-;(2)若直线PQ 过定点6,05æöç÷èø,求证:4AP BQ k k =.48.(2024·江苏宿迁·高二统考期末)已知椭圆2222:1(0)x y C a b a b +=>>的左焦点为1(F ,且过点P .(1)求椭圆C 的标准方程;(2)已知12,A A 分别为椭圆C 的左、右顶点,Q 为直线1x =上任意一点,直线12,AQ A Q 分别交椭圆C 于不同的两点,M N .求证:直线MN 恒过定点,并求出定点坐标.49.如图,椭圆的长轴12A A 与x 轴平行,短轴12B B 在y 轴上,中心为(0,)(0)M r b r >>.(1)写出椭圆的方程,求椭圆的焦点坐标及离心率;(2)直线1y k x =交椭圆于两点()()()11222,,,0C x y D x y y >;直线2y k x =交椭圆于两点()33,G x y ,()()444,0H x y y >.求证:1122341234k x x k x x x x x x =++;(3)对于(2)中的中的在C ,D ,G ,H ,设CH 交x 轴于P 点,GD 交x 轴于Q 点,求证:||||OP OQ =(证明过程不考虑CH 或GD 垂直于x轴的情形)。
高考大题专项(五)直线与圆锥曲线突破1圆锥曲线中的最值、范围问题1.(2020山东泰安一模,21)已知椭圆C:x2a2+y2b2=1(a>b〉0)的左、右焦点分别为F1,F2,直线l:y=kx+m与椭圆C相交于P,Q两点。
当直线l经过椭圆C的下顶点A和右焦点F2时,△F1PQ的周长为4√2,且l与椭圆C的另一个交点的横坐标为43。
(1)求椭圆C的方程;(2)点M为△POQ内一点,O为坐标原点,满足MP⃗⃗⃗⃗⃗⃗ +MO⃗⃗⃗⃗⃗⃗ +MQ⃗⃗⃗⃗⃗⃗ =0,若点M恰好在圆O:x2+y2=49上,求实数m的取值范围.2.(2020新高考全国2,21)已知椭圆C:x2a2+y2b2=1(a>b〉0)过点M(2,3),点A为其左顶点,且AM的斜率为12。
(1)求C的方程;(2)点N为椭圆上任意一点,求△AMN的面积的最大值.3.已知抛物线C:y2=2px(p〉0)上一点P(x0,2)到焦点F的距离|PF|=2x0。
(1)求抛物线C的方程;(2)过点P引圆M:(x—3)2+y2=r2(0<r≤√2)的两条切线PA,PB,切线PA,PB与抛物线C的另一交点分别为A,B,线段AB中点的横坐标记为t,求t的取值范围。
4.(2020江苏,18)在平面直角坐标系xOy中,已知椭圆E:x24+y23 =1的左、右焦点分别为F1,F2,点A在椭圆E上且在第一象限内,AF2⊥F1F2,直线AF1与椭圆E相交于另一点B。
(1)求△AF1F2的周长;(2)在x轴上任取一点P,直线AP与椭圆E的右准线相交于点Q,(3)设点M在椭圆E上,记△OAB与△MAB的面积分别为S1,S2.若S2=3S1,求点M的坐标.5.(2020山东高考预测卷)已知抛物线C:y2=2px(p>0)的焦点为F,点M(a,2√5)在抛物线C上。
(1)若|MF|=6,求抛物线的标准方程;(2)若直线x+y=t与抛物线C交于A,B两点,点N的坐标为(1,0),且满足NA⊥NB,原点O到直线AB的距离不小于√2,求p的取值范围。
历年高考数学圆锥曲线试题汇总(总20页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除高考数学试题分类详解——圆锥曲线一、选择题1.设双曲线22221x y a b-=(a >0,b >0)的渐近线与抛物线y=x 2 +1相切,则该双曲线的离心率等于( C )(A )3 (B )2 (C )5 (D )62.已知椭圆22:12x C y +=的右焦点为F ,右准线为l ,点A l ∈,线段AF 交C 于点B ,若3FA FB =,则||AF =(A). 2 (B). 2 (C).3 (D). 33.过双曲线22221(0,0)x y a b a b-=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线的交点分别为,B C .若12AB BC =,则双曲线的离心率是 ( )A .2B .3C .5D .104.已知椭圆22221(0)x y a b a b+=>>的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF x ⊥轴, 直线AB 交y 轴于点P .若2AP PB =,则椭圆的离心率是( )A .32 B .22 C .13 D .125.点P 在直线:1l y x =-上,若存在过P 的直线交抛物线2y x =于,A B 两点,且|||PA AB =,则称点P 为“点”,那么下列结论中正确的是( )A .直线l 上的所有点都是“点”B .直线l 上仅有有限个点是“点”C .直线l 上的所有点都不是“点”D .直线l 上有无穷多个点(点不是所有的点)是“点”6.设双曲线12222=-by a x 的一条渐近线与抛物线y=x 2+1 只有一个公共点,则双曲线的离心率为( ).A. 45B. 5C. 25D.57.设斜率为2的直线l 过抛物线2(0)y ax a =≠的焦点F,且和y 轴交于点A,若△OAF(O 为坐标原点)的面积为4,则抛物线方程为( ).A.24y x =±B.28y x =±C. 24y x =D. 28y x =8.双曲线13622=-y x 的渐近线与圆)0()3(222>=+-r r y x 相切,则r= (A )3 (B )2 (C )3 (D )69.已知直线)0)(2(>+=k x k y 与抛物线C:x y 82=相交A 、B 两点,F 为C 的焦点。
圆锥曲线目录【题型一】轨迹【题型二】新结构卷中19题“定义”型轨迹【题型三】直线所过定点不在坐标轴上【题型四】面积比值范围型【题型五】非常规型四边形面积最值型【题型六】“三定”型:圆过定点【题型七】“三定”型:斜率和定【题型八】“三定”型:斜率积定【题型九】圆锥曲线切线型【题型十】“韦达定理”不能直接用【题型十一】“非韦达”型:点带入型【题型一】轨迹求轨迹方程的常见方法有:(1)直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程;(2)定义法:如果能确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程;(3)相关点法:用动点Q的坐标x、y表示相关点P的坐标x0、y0,然后代入点P的坐标x0,y0所满足的曲线方程,整理化简可得出动点Q的轨迹方程;(4)参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一参数t得到方程,即为动点的轨迹方程;(5)交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程.1(2024·重庆·模拟预测)已知点F-1,0和直线m:x=2,点P到m的距离d=4-2PF.(1)求点P的轨迹方程;(2)不经过圆点O的直线l与点P的轨迹交于A,B两点. 设直线OA,OB的斜率分别为k1,k2,记k1k2 =t,是否存在t值使得△OAB的面积为定值,若存在,求出t的值;若不存在,说明理由.2(2024·辽宁·一模)已知平面上一动点P到定点F12,0的距离比到定直线x=-2023的距离小40452,记动点P的轨迹为曲线C.(1)求C的方程;(2)点A2,1,M,N为C上的两个动点,若M,N,B恰好为平行四边形MANB的其中三个顶点,且该平行四边形对角线的交点在第一、三象限的角平分线上,记平行四边形MANB的面积为S,求证:S≤86 9.3(2024·山东淄博·一模)在平面直角坐标系xOy 中,点.F 5,0 ,点P x ,y 是平面内的动点.若以PF 为直径的圆与圆D :x 2+y 2=1相切,记点P 的轨迹为曲线C .(1)求C 的方程;(2)设点A (1,0),M (0,t ),N (0,4-t )(t ≠2),直线AM ,AN 分别与曲线C 交于点S ,T (S ,T 异于A ),过点A 作AH ⊥ST ,垂足为H ,求|OH |的最大值.【题型二】新结构卷中19题“定义”型轨迹1(2024·新疆乌鲁木齐·二模)在平面直角坐标系xOy 中,重新定义两点A x 1,y 1 ,B x 2,y 2 之间的“距离”为AB =x 2-x 1 +y 2-y 1 ,我们把到两定点F 1-c ,0 ,F 2c ,0 c >0 的“距离”之和为常数2a a >c 的点的轨迹叫“椭圆”.(1)求“椭圆”的方程;(2)根据“椭圆”的方程,研究“椭圆”的范围、对称性,并说明理由;(3)设c =1,a =2,作出“椭圆”的图形,设此“椭圆”的外接椭圆为C ,C 的左顶点为A ,过F 2作直线交C 于M ,N 两点,△AMN 的外心为Q ,求证:直线OQ 与MN 的斜率之积为定值.2(2024·湖南·二模)直线族是指具有某种共同性质的直线的全体,例如x=ty+1表示过点(1,0)的直线,直线的包络曲线定义为:直线族中的每一条直线都是该曲线上某点处的切线,且该曲线上的每一点处的切线都是该直线族中的某条直线.(1)若圆C1:x2+y2=1是直线族mx+ny=1(m,n∈R)的包络曲线,求m,n满足的关系式;(2)若点P x0,y0不在直线族:Ω:(2a-4)x+4y+(a-2)2=0(a∈R)的任意一条直线上,求y0的取值范围和直线族Ω的包络曲线E;(3)在(2)的条件下,过曲线E上A,B两点作曲线E的切线l1,l2,其交点为P.已知点C0,1,若A,B,C三点不共线,探究∠PCA=∠PCB是否成立?请说明理由.3(2024·全国·模拟预测)已知复平面上的点Z对应的复数z满足z2-z2-9=7,设点Z的运动轨迹为W.点 O 对应的数是0.(1)证明W是一个双曲线并求其离心率e;(2)设W的右焦点为 F1 ,其长半轴长为L,点Z到直线x=Le的距离为d(点Z在W的右支上),证明:ZF1=ed;(3)设W的两条渐近线分别为 l1,l2 ,过Z分别作 l1,l2 的平行线l3,l4分别交l2,l1于点 P,Q ,则平行四边形OPZQ的面积是否是定值?若是,求该定值;若不是,说明理由.【题型三】直线所过定点不在坐标轴上存在性问题求解的思路及策略(1)思路:先假设存在,推证满足条件的结论,若结论正确则存在;若结论不正确则不存在.(2)策略:①当条件和结论不唯一时要分类讨论;②当给出结论而要推导出存在的条件时,先假设成立,再推出条件;③当条件和结论都不知,按常规法解题很难时,可先由特殊情况探究,再推广到一般情况.1已知点M 是抛物线C :x 2=2py p >0 的对称轴与准线的交点,过M 作抛物线的一条切线,切点为P ,且满足PM =22.(1)求抛物线C 的方程;(2)过A -1,1 作斜率为2的直线与抛物线C 相交于点B ,点T 0,t t >0 ,直线AT 与BT 分别交抛物线C 于点E ,F ,设直线EF 的斜率为k ,是否存在常数λ,使得t =λk ?若存在,求出λ值;若不存在,请说明理由.2已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的离心率为233,点P 2,3 到其左右焦点F 1,F 2的距离的差为2.(1)求双曲线C 的方程;(2)在直线x +2y +t =0上存在一点Q ,过Q 作两条相互垂直的直线均与双曲线C 相切,求t 的取值范围.3已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)上任意一点Q (异于顶点)与双曲线两顶点连线的斜率之积为19,E 在双曲线C 上,F 为双曲线C 的右焦点,|EF |的最小值为10-3.(1)求双曲线C 的标准方程;(2)过椭圆x 2m 2+y 2n2=1(m >n >0)上任意一点P (P 不在C 的渐近线上)分别作平行于双曲线两条渐近线的直线,交两渐近线于M ,N 两点,且|PM |2+|PN |2=5,是否存在m ,n 使得椭圆的离心率为223?若存在,求出椭圆的方程,若不存在,说明理由.【题型四】面积比值范围型圆锥曲线中取值范围问题的五种求解策略:(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新的参数的范围,解这类问题的核心是建立两个参数之间的等量关系;(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围;(4)利用已知的不等关系建立不等式,从而求出参数的取值范围;(5)利用求函数值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.1(2022·全国·高三专题练习)F c,0是椭圆C:x2a2+y2b2=1a>b>0的右焦点,其中c∈N*.点A、B分别为椭圆E的左、右顶点,圆F过点B与坐标原点O,P是椭圆上异于A、B的动点,且△PBF的周长小于8.(1)求C的标准方程;(2)连接BP与圆F交于点Q,若OQ与AP交于点M,求S△OPQS△MBQ的取值范围.2(2023下·福建福州·高三校考)如图,已知圆C:x2a2+y2b2=1(a>b>0)的左顶点A(-2,0),过右焦点F的直线l与椭圆C相交于M,N两点,当直线l⊥x轴时,|MN|=3.(1)求椭圆C的方程;(2)记△AMF,△ANF的面积分别为S1,S2,求S1S2的取值范围.3(2022·湖北黄冈·蕲春县第一高级中学校考模拟预测)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右顶点分别为A 1,A 2,左、右焦点分别为F 1,F 2,圆A 2:(x -2)2+y 2=r 2(r >0),椭圆C 与圆A 2交于点D ,且k DA2⋅k DA 1=-34.(1)求椭圆方程.(2)若过椭圆右焦点F 2的直线l 与椭圆C 交于P ,Q 两点,与圆A 2交于M ,N 两点,且S △A 1PQS △A 2MN=3,求r 的取值范围.【题型五】非常规型四边形面积最值型求非常规型四边形的面积最大值,首先要选择合适的面积公式,对于非常规四边形,如果使用的面积公式为S DMEN=12x N-x My1-y2,为此计算y1-y2,x N-x M代入转化为k的函数求最大值.1(2023·全国·高三专题练习)已知圆O:x2+y2=4,O为坐标原点,点K在圆O上运动,L为过点K的圆的切线,以L为准线的拋物线恒过点F1-3,0,F23,0,抛物线的焦点为S,记焦点S的轨迹为S.(1)求S的方程;(2)过动点P的两条直线l1,l2均与曲线S相切,切点分别为A,B,且l1,l2的斜率之积为-1,求四边形PAOB面积的取值范围.2(2023·全国·高三专题练习)已知F1,F2是椭圆C:x2a2+y2b2=1(a>b>0)的左右焦点,以F1F2为直径的圆和椭圆C在第一象限的交点为G,若三角形GF1F2的面积为1,其内切圆的半径为2-3.(1)求椭圆C的方程;(2)已知A是椭圆C的上顶点,过点P-2,1的直线与椭圆C交于不同的两点D,E,点D在第二象限,直线AD、AE分别与x轴交于M,N,求四边形DMEN面积的最大值.3(2023·全国·高三专题练习)如图.已知圆M :(x -2)2+y 2=81,圆N :(x +2)2+y 2=1.动圆S 与这两个圆均内切.(1)求圆心S 的轨迹C 的方程;(2)若P 2,3 、Q 2,-3 是曲线C 上的两点,A 、B 是曲线C 上位于直线PQ 两侧的动点.若直线AB 的斜率为12,求四边形APBQ 面积的最大值.【题型六】“三定”型:圆过定点圆过定点思维:1.可以根据特殊性,计算出定点,然后证明2.利用以“某线段为直径”,转化为向量垂直计算2.利用对称性,可以猜想出定点,并证明。
圆锥曲线高考大题
1. 已知圆锥曲线方程为x^2 + 2y^2 + 4x + 6y - 3 = 0,求该圆锥曲线的标准方程。
2. 根据给定的圆锥曲线方程3x^2 - 2y^2 + 6x - 4y + 5 = 0,判断该圆锥曲线的类型,并确定其离心率。
3. 某圆锥曲线的焦点坐标为(2, 4),离心率为2,求该圆锥曲线的方程。
4. 已知圆锥曲线的顶点为(-3, 2),过点(-1, 0)的切线斜率为2,求该圆锥曲线的方程。
5. 圆锥曲线方程2x^2 - 3y^2 + 4x - 6y + 1 = 0经平移后,新的圆锥曲线方程为3x^2 - y^2 + 12x + 4y + 9 = 0,求该平移向量的坐标。
6. 已知圆锥曲线的焦点坐标为(0, -2),准线与x轴平行,焦距为2,求该圆锥曲线的方程。
7. 某圆锥曲线的焦点坐标为(2, -1),离心率为3/2,求该圆锥曲线的方程。
8. 已知圆锥曲线方程6x^2 + y^2 + 8x - 2y - 9 = 0,求该圆锥曲线的顶点坐标。
9. 某圆锥曲线过点(1, 4),离心率为4/5,焦点在y轴上,求该圆锥曲线的方程。
10. 圆锥曲线方程4x^2 - 9y^2 + 8x + 12y - 15 = 0经旋转后,新的圆锥曲线方程为9x^2 - 4y^2 - 16x + 24y - 21 = 0,求该旋转的角度。