向量数量积教案
- 格式:docx
- 大小:12.59 KB
- 文档页数:5
θab1.8平面向量的基本概念与线性运算(优质课)教案教学目标:1掌握平面向量数量积的概念、几何意义、性质、运算律及坐标表示. 2平面向量数量积的应用.教学过程:一、平面向量数量积的物理背景及定义:以物理学中的做功为背景引入问题:观察讨论做功的公式中左右两端的量分别是什么量?什么影响了功的大小?如何精确的给出数学中的定义?力做的功:W = |F |⋅|s |cos θ,θ是F 与s 的夹角1、两个非零向量夹角的概念:已知非零向量a 与b ,作OA =a ,OB =b ,则∠AOB=θ(0≤θ≤π)叫a 与b 的夹角说明:(1)当θ=0时,a 与b 同向; (2)当θ=π时,a 与b 反向; (3)当θ=2π时,a 与b 垂直,记a ⊥b ; (4)注意在两向量的夹角定义,两向量必须是同起点的范围0︒≤θ≤180︒2、平面向量数量积(内积)的定义:已知两个非零向量a 与b ,它们的夹角是θ,则数量|a ||b |cos θ叫a 与b 的数量积,记作a ⋅b ,即有a ⋅b = |a ||b |cos θ,(0≤θ≤π)并规定0与任何向量的数量积为03、两个向量的数量积的性质:设a 、b 为两个非零向量,e 是与b 同向的单位向量C①e⋅a = a⋅e =|a|cosθ②a⊥b⇔a⋅b = 0③a⋅a = |a|2或||aa a=④cosθ =||||a ba b⑤|a⋅b| ≤ |a||b|4、向量数量积满足的运算率:①a b b a=;②()a b c a c b c+=+;③()()()a b a b a bλλλ==二、向量数量积的坐标运算1、已知两个向量),(11yxa=,),(22yxb=,则ba⋅2121yyxx+=.2、设),(yxa=,则=||a.3、平面内两点间的距离公式如果表示向量a的有向线段的起点和终点的坐标分别为),(11yx、),(22yx,那么=||a.4、向量垂直的判定两个非零向量),(11yxa=,),(22yxb=,则ba⊥⇔02121=+yyxx.5、两向量夹角的余弦co sθ ==⋅⋅||||baba222221212121yxyxyyxx+++=(πθ≤≤0).6、向量在轴上的正射影:作图定义:|b|cosθ叫做向量b在a所在轴上的正射影正射影也是一个数量,不是向量;当θ为锐角时正射影为正值;当θ为钝角时正射影为负值;当θ为直角时正射影为0;当θ = 0︒时正射影为|b|;当θ = 180︒时正射影为-|b|类型一、平面向量数量积的运算: 例题1 已知下列命题:①()0a a +-=; ②()()a b c a b c ++=++; ③()()a b c a b c =; ④()a b c a c b c +=+ 其中正确命题序号是 ②、④ .点评: 掌握平面向量数量积的含义,平面数量积的运算律不同于实数的运算律.例题2 已知2,5,(1)||a b a b ==若; (2) a b ⊥;(3) a b 与的夹角为030,分别求a b .解(1)当 ||a b 时, a b =0cos025110a b =⨯⨯=或a b =0cos18025(1)10a b =⨯⨯-=-. (2)当a b ⊥时, a b =0cos902500a b =⨯⨯=.(3)当a b 与的夹角为030时, ab =0cos3025a b =⨯= 练习:已知0000(cos 23,cos 67),(cos 68,cos 22)a b ==,求a b解:0000cos 23cos68cos67cos 22a b =+= 00000cos 23sin 22sin 23cos 22sin 45+==点评: 熟练应用平面向量数量积的定义式求值,注意两个向量夹角的确定及分类完整. 类型二、夹角问题:例题3 (2005年北京)若1,2,a b c a b ===+,且c a ⊥,则向量a 与向量b 的夹角为 ( ) A. 030 B. 060 C. 0120 D. 0150 解:依题意2()0cos 0a a b a a b θ⋅+=⇒+= 1cos 2θ⇒=- 0120θ∴= 故选C 练习:① 已知2,3,7a b a b ==-=,求向量a 与向量b 的夹角.② 已知(1,2),(4,2)a b =-=,)a a b -与(夹角为θ,则cos θ= . 解: ① 7a b -=⇒ 2227a a b b -+= 31cos ,232a b a b a b⇒〈〉===⨯,故夹角为060. ②依题意得)(3,4)a b -=--(()cos 5a a b a a bθ-⇒===⨯-. 练习:已知,a b 是两个非零向量,同时满足a b a b ==-,求a a b +与的夹角.法一 解:将a b a b ==-两边平方得 221122a b a b ==, 2223a b a a b b a ∴+=++=则222221()32cos 23a aa ab a a b a a b a a b a aθ+++====++, 故a a b +与的夹角.为030.法二: 数形结合点评:注意两个向量夹角共起点,灵活应用两个向量夹角的两种求法. 类型三、向量模的问题例题4 已知向量,a b 满足6,4a b ==,且a b 与的夹角为060,求3a b a b +-和. 解:6,4a b ==,且a b 与的夹角为060 12a b ∴=22276a b a a b b ∴+=++==; 22369108a b a a b b -=-+==练习 :①(2005年湖北)已知向量(2,2),(5,)a b k =-=,若a b +不超过5,则k 的取值范围 ( ) A. [4,6]- B. [6,4]- C. [6,2]- D. [2,6]-②(2006年福建) 已知a b 与的夹角为0120,3a =,13a b += ,则b 等于( ) A 5 B. 4 C. 3 D. 1解: ①(3,2)5a b k +=+=≤,62k ⇒-≤≤ 故选C②2222a b a a b b +=++, 222cos12013a a b b ∴++=,解得4b =,故选B点评:涉及向量模的问题一般利用22a a a a ==,注意两边平方是常用的方法. 类型四、平面向量数量积的综合应用例题5 (2006年全国卷)已知向量(sin ,1),(1,cos ),22a b ππθθθ==-<<.(1) 若,a b θ⊥求 ; (2)求a b +的最大值 . 解:(1)若a b ⊥,则sin cos 0θθ+=,tan 1,()224πππθθθ⇒=--<<∴=-.(2) a b +==3,,22444πππππθθ-<<∴-<+<sin()(4πθ∴+∈4πθ∴=当时,a b +的最大值为1==.例题6已知向量(cos ,sin ),(cos ,sin )a b ααββ==,且,a b 满足3ka b a kb +=-,k R +∈ (1) 求证()()a b a b +⊥- ; (2)将a 与b 的数量积表示为关于k 的函数()f k ; (3)求函数()f k 的最小值及取得最小值时向量a 与向量b 的夹角θ. 解:(1)(cos ,sin ),(cos ,sin )a b ααββ==2222()()||||110a b a b a b a b ∴+-=-=-=-=, 故 ()()a b a b +⊥-(2)3ka b a kb +=-,2222223,121363,ka b a kb a b k ka b ka b k ∴+=-∴==∴++=-+又21,(0)4k a b k k +∴=> 故21(),(0)4k f k k k+=>.(3) 21111()2444442k k k f k k k k +==+≥=,此时当1,()k f k =最小值为12. 1cos 2a b a bθ∴==,量a 与向量b 的夹角θ 3π=一、选择题1.若a ·c =b ·c (c ≠0),则( ) A .a =b B .a ≠b C .|a |=|b |D .a 在c 方向上的正射影的数量与b 在c 方向上的正射影的数量必相等 [答案] D[解析] ∵a ·c =b ·c ,∴|a |·|c |cos<a ,c >=|b |·|c |cos<b ,c >, 即|a |cos<a ,c >=|b |cos<b ,c >,故选D.2.若|a |=4,|b |=3,a ·b =-6,则a 与b 的夹角等于( ) A .150° B .120° C .60° D .30°[答案] B[解析] cos θ=a ·b |a ||b |=-64×3=-12.∴θ=120°.3.若|a|=4,|b|=2,a 和b 的夹角为30°,则a 在b 方向上的投影为( ) A .2 B . 3 C .2 3 D .4 [答案] C[解析] a 在b 方向上的投影为|a |cos<a ,b >=4×cos30°=2 3. 4.|m |=2,m·n =8,<m ,n >=60°,则|n |=( )A .5B .6C .7D .8[答案] D[解析] ∵m·n|m|·|n|=cos<m ,n >,∴82|n |=12,∴|n |=8. 5.向量a 的模为10,它与x 轴的夹角为150°,则它在x 轴上的投影为( ) A .-5 3 B .5 C .-5 D .5 3[答案] A[解析] a 在x 轴上的投影为|a |·cos150°=-5 3.6.若向量a 、b 满足|a |=1,|b |=2,a 与b 的夹角为60°,则b·b +a·b 等于( ) A .3 B .4 C .5 D .6 [答案] C[解析] b·b +a·b =|b|2+|a|·|b |cos<a ,b >=4+1=5. 二、填空题7.已知向量a 和向量b 的夹角为30°,|a |=2,|b |=3,则向量a 和向量b 的数量积a ·b =____. [答案] 3[解析] a ·b =|a ||b |cos 〈a ,b 〉=2×3×cos30° =2×3×32=3. 8.若|a |=6,|b |=4,a 与b 的夹角为135°,则a 在b 方向上的投影为________. [答案] -3 2[解析] ∵|a|=6,|b|=4,a 与b 的夹角为135°, ∴a 在b 方向上的投影为|a|cos135°=6×(-22)=-3 2. 三、解答题9.已知正六边形P 1P 2P 3P 4P 5P 6的边长为2,求下列向量的数量积. (1)P 1P 2→·P 1P 3→; (2)P 1P 2→·P 1P 4→; (3)P 1P 2→·P 1P 5→; (4)P 1P 2→·P 1P 6→.[解析] (1)∵<P 1P 2→,P 1P 3>=π6,|P 1P 3→|=2 3.∴P 1P 2→·P 1P 3→=|P 1P 2→|·|P 1P 3→|cos π6=2×23×32=6. (2)∵<P 1P 2→,P 1P 4→>=π3,|P 1P 4→|=4,∴P 1P 2→·P 1P 4→=2×4×cos π4=4 2.(3)∵<P 1P 2→,P 1P 5→>=π2,∴P 1P 2→·P 1P 5→=0.(4)∵<P 1P 2→,P 1P 6→>=2π3,∴P 1P 2→·P 1P 6→=2×2×cos 2π3=-2._________________________________________________________________________________ _________________________________________________________________________________基础巩固一、选择题1.已知a =(2,1)、b =(1,-2),则向量a 与b 的夹角为( ) A .π6B .π4C .π3D .π2[答案] D[解析] 由a ·b =2×1+1×(-2)=0,∴a ⊥b .2.已知点A (1,2)、B (2,3)、C (-2,5),则AB →·AC →等于( ) A .-1 B .0 C .1 D .2 [答案] B[解析] AB →=(1,1),AC →=(-3,3),AB →·AC →=1×(-3)+1×3=0.3.已知A 、B 、C 是坐标平面上的三点,其坐标分别为A (1,2)、B (4,1)、C (0,-1),则△ABC 的形状为( )A .直角三角形B .等腰三角形C .等腰直角三角形D .以上均不正确[答案] C[解析] AB →=(3,-1),AC →=(-1,-3), AB →·AC →=3×(-1)+(-1)×(-3)=0,且|AB →|=|AC →|=10.∴△ABC 为等腰直角三角形.4.已知a =(-3,2),b =(-1,0),向量λa +b 与a -2b 垂直,则实数λ的值为( ) A .-17B .17C .-16D .16[答案] A[解析] ∵a =(-3,2),b =(-1,0), ∴λa +b =(-3λ-1,2λ)a -2b =(-3,2)-2(-1,0)=(-1,2), 由(λa +b )⊥(a -2b ), 得4λ+3λ+1=0,∴λ=-17.5.已知向量a =(2,1),a ·b =10,|a +b |=52,则|b |=( ) A . 5 B .10 C .5 D .25 [答案] C[解析] ∵|a +b|2=a 2+2a·b +b 2 =5+20+b 2=50,∴b 2=25,∴|b |=5.6.(2014·重庆理,4)已知向量a =(k,3)、b =(1,4)、c =(2,1),且(2a -3b )⊥c ,则实数k =( ) A .-92B .0C .3D .152[答案] C[解析] 本题考查了平面向量的坐标运算与向量的垂直,因为2a -3b =(2k -3,-6),又因为(2a -3b )⊥c ,所以,(2a -3b )·c =0,即(2k -3,-6)·(2,1)=0,∴4k -6-6=0,解得k =3,本题根据条件也可以转化为2a ·c -3b ·c =0化简求解.二、填空题7.(2014·安徽宿州市朱仙庄煤矿中学高一月考)已知向量a =(-4,3)、b =(-3,4),b 在a 方向上的投影是________.[答案]245[解析] b 在a 方向上的投影为|b |cos 〈b ,a 〉=a ·b |a |=(-4)×(-3)+3×45=245.8.设向量a =(1,2m ),b =(m +1,1),c =(2,m ),若(a +c )⊥b ,则|a |=________. [答案]2[解析] a +c =(3,3m ),∵(a +c )⊥b , ∴(a +c )·b =0,即(3,3m )·(m +1,1)=0, ∴3(m +1)+3m =0,6m +3=0,∴m =-12,∴a =(1,-1),∴|a |= 2. 三、解答题9.已知A (2,3)、B (5,1)、C (9,7)、D (6,9)四点,试判断四边形ABCD 的形状. [解析] ∵AB →=(3,-2),DC →=(3,-2),∴AB →=DC →. 又BC →=(4,6),∴AB →·BC →=3×4-2×6=0,∴AB →⊥BC →.∵|AB →|=9+4=13,|BC →|=16+36=213,∴|AB →|≠|BC →|, 故四边形ABCD 是矩形.能力提升一、选择题1.(2014·山东文,7)已知向量a =(1,3)、b =(3,m ),若向量a 、b 的夹角为π6,则实数m =( )A .2 3B . 3C .0D .- 3[答案] B[解析] 本题考查向量的坐标运算及数量积. a ·b =3+3m =|a |·|b |·cos π6=2×9+m 2×32.解得,m = 3. 2.已知m =(1,0)、n =(1,1),且m +k n 恰好与m 垂直,则实数k 的值为( ) A .1 B .-1 C .1或-1 D .以上都不对[答案] B[解析] m +k n =(1,0)+k (1,1)=(1+k ,k ), ∵m +k n 与m 垂直,∴(1+k )×1+k ×0=0,得k =-1.3.若向量a =(1,2)、b =(1,-1),则2a +b 与a -b 的夹角等于( )A .-π4B .π6C .π4D .3π4[答案] C[解析] 本题考查了向量的坐标运算.∵a =(1,2),b =(1,-1),则2a +b =(3,3),a -b =(0,3),则cos<2a +b ,a -b >=3×0+932·3=22,∴2a +b ,a -b =π4.4.已知a =(2,4),则与a 垂直的单位向量的坐标是( ) A .⎝⎛⎭⎫55,-255或⎝⎛⎭⎫-55,-255 B .⎝⎛⎭⎫55,-255或⎝⎛⎭⎫-55,255 C .⎝⎛⎭⎫255,-55或⎝⎛⎭⎫-255,-55 D .⎝⎛⎭⎫-255,55或⎝⎛⎭⎫255,-55 [答案] D[解析] 设与a 垂直的单位向量的坐标是(x ,y ),则⎩⎪⎨⎪⎧x 2+y 2=12x +4y =0,解得⎩⎨⎧x =-255y =55,或⎩⎨⎧x =255y =-55.二、填空题5.(2014·湖北理,11)设向量a =(3,3)、b =(1,-1),若(a +λb )⊥(a -λb ),则实数λ=________. [答案] ±3[解析] 因为a +λb =(3+λ,3-λ),a -λb =(3-λ,3+λ),又(a +λb )⊥(a -λb ),所以(a +λb )·(a -λb )=(3+λ)(3-λ)+(3-λ)(3+λ)=0,解得λ=±3.6.(2014·四川文,14)平面向量a =(1,2)、b =(4,2)、c =m a +b (m ∈R ),且c 与a 的夹角等于c 与b 的夹角,则m =________.[答案] 2[解析] 本题考查了平面向量的坐标运算、数量积等基础知识c =m a +b =(m +4,2m +2),由题意有:a·c |a||c |=b·c|b||c|即:a·c |a|=b·c|b|,代入得:m +4+4m +45=4m +16+4m +420,解得m =2.三、解答题7.设a =(4,-3)、b =(2,1),若a +t b 与b 的夹角为45°,求实数t 的值.[解析] a +t b =(4,-3)+t (2,1)=(4+2t ,t -3),(a +t b )·b =(4+2t ,t -3)·(2,1)=5t +5,|a +t b |=(4+2t )2+(t -3)2=5(t +1)2+20,由(a +t b )·b =|a +t b ||b |cos45°,得5t +5=522(t +1)2+4, 即t 2+2t -3=0,解得t =-3或t =1.经检验知t =-3不符合题意,舍去.所以t =1.8.已知a =(1,2),b =(1,λ)分别确定λ的取值范围,使得:(1)a 与b 夹角为90°;(2)a 与b 夹角为钝角;(3)a 与b 夹角为锐角.[解析] 设<a ,b >=θ,(1)由a ⊥b 得λ=-12. (2)cos θ=1+2λ5(1+λ2),由cos θ<0且 cos θ≠-1得λ<-12. (3)由cos θ>0且cos θ≠1,得λ>-12,且λ≠2. 9.已知a =(3,4)、b =(4,3),求x 、y 的值使(x a +y b )⊥a ,且|x a +y b |=1.[解析] ∵a =(3,4),b =(4,3),∴x a +y b =(3x +4y,4x +3y ).又(x a +y b )⊥a ,∴(x a +y b )·a =0,∴3(3x +4y )+4(4x +3y )=0,即25x +24y =0,①又|x a +y b |=1,∴|x a +y b |2=1,∴(3x +4y )2+(4x +3y )2=1.整理得25x 2+48xy +25y 2=1,即x (25x +24y )+24xy +25y 2=1.② 由①②有24xy +25y 2=1,③ 将①变形代入③可得y =±57. 当y =57时,x =-2435, 当y =-57时,x =2435.所以⎩⎨⎧ x =2435y =-57或⎩⎨⎧ x =-2435y =57.。
两个向量的数量积一、教材分析空间两个向量的夹角、数量积是高中数学向量的重要内容,也是高考的重要考查内容。
从知识的网络结构上看,空间向量夹角、数量积既是平面向量夹角、数量积概念的延续和拓展,又是后续空间向量数量积的计算坐标化和空间向量在立体几何中应用的教学基础。
二、教学目标根据上述教材分析,考虑到学生已有的认知心理特征,制定如下教学目标:1.知识目标:掌握空间向量夹角和模的概念及表示方法;掌握空间向量的数量积及其运算律。
2.能力目标:体会类比和归纳的数学思想,并能利用两个向量的数量积公式解决立体几何中的一些简单问题。
3.情感目标:激发学生的学习热情和求知欲,培养严谨的学习态度以及空间想象的能力。
三、教学重点和难点本着课程标准,在吃透教材基础上,我确立了如下教学重点和难点:教学重点:空间两个向量的夹角、数量积的概念、计算方法及其应用。
教学难点:空间向量数量积的几何意义以及立体几何问题的转化。
下面,为了讲清楚重点、难点,使学生能达到本节课设定的教学目标,我再从教法上谈谈:四、教法分析1.本节属于概念教学,可采用以语言传递信息、分析概念的讲授法。
2.本节涉及到一些比较抽象的概念,可以借助多媒体,利用三维动态演示,来提高学生对概念的理解。
3.在重点和难点上,采用举例的方法来提高学生的实际解题能力。
4.通过知识对比来加强学生的知识迁移能力,顺便对已学过知识的复习。
最后我来具体谈一谈这节课的教学过程:五、教学过程学生是认知的主体,遵循学生的认知规律和本节课的特点,我设计了如下的教学过程:1.复习旧课,引入新课1)让学生回顾平面向量数量积及其运算律。
定义夹角几何意义:数量积a.b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积。
性质运算律2)举两个实际例子进行练习,并引出空间两个向量数量积课题。
设计意图:从学生已有认知平面向量相关知识出发,为类比出空间向量夹角和数量积概念做铺垫。
2.运用例子,理解概念,说明定义1、两向量夹角的定义已知两个非零向量a 、b,在空间任取一点O,做OA=a 、OB=b,则∠AOB ,叫做向a与b的夹角,记作<a ,b>。
新教材高中数学教案新人教A 版选择性必修第一册:1.1.2 空间向量的数量积运算学习 目 标核 心 素 养1.掌握空间向量夹角的概念及表示方法.2.掌握空间向量的数量积的定义、性质、运算律及计算方法.(重点)3.掌握投影向量的概念.(重点)4.能用向量的数量积解决立体几何问题.(难点)1.通过学习空间向量的数量积运算,培养学生数学运算的核心素养.2.借助投影向量概念的学习,培养学生直观想象和逻辑推理的核心素养.3.借助利用空间向量数量积证明垂直关系、求夹角和距离运算,提升学生的逻辑推理和数学运算核心素养.已知两个非零向量a 与b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB =θ叫做向量a 与b 的夹角.如果a 与b 的夹角为90°,则称a 与b 垂直,记作a ⊥b .已知两个非零向量a 与b ,它们的夹角为θ,把a ·b =|a ||b |cos θ叫做a 与b 的数量积(或内积)类比探究一下:两个空间向量的夹角以及它们的数量积能否像平面向量那样来定义呢?1.空间向量的夹角 (1)夹角的定义已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向量a ,b 的夹角,记作〈a ,b 〉.(2)夹角的范围空间任意两个向量的夹角θ的取值范围是[0,π].特别地,当θ=0时,两向量同向共线;当θ=π时,两向量反向共线,所以若a ∥b ,则〈a ,b 〉=0或π;当〈a ,b 〉=π2时,两向量垂直,记作a ⊥b .2.空间向量的数量积(1)定义:已知两个非零向量a ,b ,则|a ||b |cos 〈a ,b 〉叫做a ,b 的数量积,记作a ·b .即a ·b =|a ||b |cos 〈a ,b 〉.规定:零向量与任何向量的数量积为0. (2)常用结论(a ,b 为非零向量) ①a ⊥b ⇔a ·b =0.②a ·a =|a ||a |cos 〈a ,a 〉=|a |2.③cos〈a ,b 〉=a ·b|a ||b |.(3)数量积的运算律数乘向量与数量积的结合律(λa )·b =λ(a ·b )=a ·(λb )交换律 a ·b =b ·a 分配律a ·(b +c )=a ·b +a ·ca b a b (2)若a ·b >0,则〈a ,b 〉一定是锐角吗?[提示] (1)若a ·b =0,则不一定有a ⊥b ,也可能a =0或b =0.(2)当〈a ,b 〉=0时,也有a ·b >0,故当a ·b >0时,〈a ·b 〉不一定是锐角. 3.投影向量 (1)投影向量在空间,向量a 向向量b 投影,可以先将它们平移到同一个平面内,进而利用平面上向量的投影,得到与向量b 共线的向量c ,c =|a |cos 〈a ,b 〉b|b |,则向量c 称为向量a 在向量b 上的投影向量,同理向量b 在向量a 上的投影向量是|b |cos 〈a ,b 〉a |a |. (2)向量a 在平面β上的投影向量向量a 向平面β投影,就是分别由向量a 的起点A 和终点B 作平面β的垂线,垂足分别为A ′,B ′,得到向量A ′B ′→,则向量A ′B ′→称为向量a 在平面β上的投影向量.这时,向量a ,A ′B ′→的夹角就是向量a 所在直线与平面β所成的角.[提醒] (1)两个向量的数量积是数量,而不是向量,它可以是正数、负数或零; (2)向量数量积的运算不满足消去律、作商和乘法的结合律 ,即a ·b =a ·c ⇒b =c ,a ·b =k ⇒b =ka,(a ·b )·c =a ·(b·c )都不成立.1.思考辨析(正确的打“√”,错误的打“×”) (1)对于非零向量a ,b ,〈a ,b 〉与〈a ,-b 〉相等.( )(2)对于任意向量a ,b ,c ,都有(a ·b )c =a (b ·c ). ( ) (3)若a ·b =b ·c ,且b ≠0,则a =c . ( ) (4)(3a +2b )·(3a -2b )=9|a |2-4|b |2. ( )[提示] (1)× (2)× (3)× (4)√2.(教材P 8练习T 1改编)在正三棱柱ABC A 1B 1C 1中,若AB =BB 1,则AB 1与BC 1所成角的余弦值为( )A .38B .14C .34D .18B [令底面边长为1,则高也为1,AB 1→=AB →+BB 1→,BC 1→=B C →+CC 1→,∴AB 1→·BC 1→=(AB →+BB 1→)·(BC →+CC 1→)=AB →·BC →+BB 1→·CC 1→=1×1×cos 120°+12=12,又|AB 1→|=|BC 1→|= 2.∴cos〈AB 1,BC 1〉=122×2=14.故选B.] 3.已知a =3p -2q ,b =p +q ,p 和q 是相互垂直的单位向量,则a·b =( ) A .1 B .2 C .3 D .4A [由题意知,p·q =0,p 2=q 2=1.所以a ·b =(3p -2q )·(p +q )=3p 2+p ·q -2q 2=3-2=1.]4.设a ⊥b ,〈a ,c 〉=π3,〈b ,c 〉=π6,且|a |=1,|b |=2,|c |=3,则向量a +b +c的模是________.17+63 [因为|a +b +c |2=(a +b +c )2=|a |2+|b |2+|c |2+2(a ·b +a ·c +b ·c )=1+4+9+2⎝ ⎛⎭⎪⎫0+1×3×12+2×3×32=17+63,所以|a +b +c |=17+6 3.]空间向量数量积的运算则AB →·CD →等于( )A .-2B .2C .-2 3D .2 3(2)在四面体OABC 中,棱OA ,OB ,OC 两两垂直,且OA =1,OB =2,OC =3,G 为△ABC 的重心,求OG →·(OA →+OB →+OC →)的值.(1)A [∵CD →=AD →-AC →,∴AB →·CD →=AB →·(AD →-AC →)=AB →·AD →-AB →·AC →=0-2×2×cos 60°=-2.](2)[解] OG →=OA →+AG →=OA →+13(AB →+AC →)=OA →+13[(OB →-OA →)+(OC →-OA →)]=13OB →+13OC →+13OA →. ∴OG →·(OA →+OB →+OC →)=⎝ ⎛⎭⎪⎫13OB →+13OC →+13OA →·(OA →+OB →+OC →)=13OB →2+13OC →2+13OA →2=13×22+13×32+13×12=143.在几何体中求空间向量的数量积的步骤1首先将各向量分解成已知模和夹角的向量的组合形式.2利用向量的运算律将数量积展开,转化成已知模和夹角的向量的数量积. 3根据向量的方向,正确求出向量的夹角及向量的模. 4代入公式a·b =|a ||b |cos 〈a ,b 〉求解.[跟进训练]1.在长方体ABCD A 1B 1C 1D 1中,AB =AA 1=2,AD =4,E 为侧面AA 1B 1B 的中心,F 为A 1D 1的中点,求下列向量的数量积:(1)BC →·ED 1→;(2)BF →·AB 1→.[解] 如图,设AB →=a ,AD →=b ,AA 1→=c ,则|a |=|c |=2,|b |=4,a·b =b·c =c·a =0.(1)BC →·ED 1→=BC →·(EA 1→+A 1D 1→)=b ·12(c -a )+b =|b |2=42=16.(2)BF →·AB 1→=(BA 1→+A 1F →)·(AB →+AA 1→)=c -a +12b ·(a +c )=|c |2-|a |2=22-22=0.利用数量积证明空间垂直关系【例2】 已知空间四边形OABC 中,∠AOB =∠BOC =∠AOC ,且OA =OB =OC ,M ,N 分别是OA ,BC 的中点,G 是MN 的中点,求证:OG ⊥BC .[思路探究] 首先把向量OG →和BC →均用OA →、OB →、OC →表示出来,通过证明OG →·BC →=0来证得OG ⊥BC .[证明] 连接ON ,设∠AOB =∠BOC =∠AOC =θ, 又设OA →=a ,OB →=b ,OC →=c , 则|a |=|b |=|c |. 又OG →=12(OM →+ON →)=12⎣⎢⎡⎦⎥⎤12OA →+12OB →+OC→=14(a +b +c ),BC →=c -b . ∴OG →·BC →=14(a +b +c )·(c -b )=14(a ·c -a ·b +b ·c -b 2+c 2-b ·c ) =14(|a |2·cos θ-|a |2·cos θ-|a |2+|a |2)=0.∴OG →⊥BC →,即OG ⊥BC .用向量法证明垂直关系的步骤 (1)把几何问题转化为向量问题; (2)用已知向量表示所证向量;(3)结合数量积公式和运算律证明数量积为0; (4)将向量问题回归到几何问题.[跟进训练]2.如图,四棱锥P ABCD 中,底面ABCD 为平行四边形,∠DAB =60°,AB =2AD ,PD ⊥底面ABCD .证明:PA ⊥BD .[证明] 由底面ABCD 为平行四边形,∠DAB =60°,AB =2AD 知,DA ⊥BD ,则BD →·DA →=0.由PD ⊥底面ABCD 知,PD ⊥BD ,则BD →·PD →=0.又PA →=PD →+DA →,∴PA →·BD →=(PD →+DA →)·BD →=PD →·BD →+DA →·BD →=0,即PA ⊥BD .夹角问题b 〉为( )A .30°B .45°C .60°D .以上都不对(2)如图,在空间四边形OABC 中,OA =8,AB =6,AC =4,BC =5,∠OAC =45°,∠OAB =60°,求异面直线OA 与BC 的夹角的余弦值.[思路探究] (1)根据题意,构造△ABC ,使AB →=c ,AC →=b ,BC →=a ,根据△ABC 三边之长,利用余弦定理求出向量a 与b 之间的夹角即可.(2)求异面直线OA 与BC 所成的角,首先来求OA →与BC →的夹角,但要注意异面直线所成角的范围是⎝⎛⎦⎥⎤0,π2,而向量夹角的取值范围为[0,π],注意角度的转化.(1)D [∵a +b +c =0,|a |=2,|b |=3,|c |=4, ∴以这三个向量首尾相连组成△ABC ;令AB →=c ,AC →=b ,BC →=a ,则△ABC 三边之长分别为BC =2,CA =3,AB =4;由余弦定理,得:cos∠BCA =BC 2+CA 2-AB 22BC ·CA =22+32-422×2×3=-14,又向量BC →和CA →是首尾相连,∴这两个向量的夹角是180°-∠BCA , ∴cos〈a ,b 〉=14,即向量a 与b 之间的夹角〈a ,b 〉不是特殊角.](2)[解] ∵BC →=AC →-AB →,∴OA →·BC →=OA →·AC →-OA →·AB →=|OA →|·|AC →|·cos〈OA →,AC →〉-|OA →|·|AB →|·cos 〈OA →,AB →〉=8×4×cos 135°-8×6×cos 120° =24-16 2.∴cos〈OA →,BC →〉=OA →·BC →|OA →|·|BC →|=24-1628×5=3-225,∴异面直线OA 与BC 的夹角的余弦值为3-225.利用向量数量积求夹角问题的思路(1)求两个向量的夹角有两种方法:①结合图形,平移向量,利用空间向量夹角的定义来求,但要注意向量夹角的范围;②先求a ·b ,再利用公式cos 〈a ,b 〉=a ·b|a ||b |求出cos 〈a ,b 〉的值,最后确定〈a ,b 〉的值.(2)求两条异面直线所成的角,步骤如下:①根据题设条件在所求的异面直线上取两个向量(即直线的方向向量); ②将异面直线所成角的问题转化为向量夹角问题; ③利用数量积求向量夹角的余弦值或角的大小;④异面直线所成的角为锐角或直角,利用向量数量积求向量夹角的余弦值时应将余弦值加上绝对值,从而求出异面直线所成的角的大小.[跟进训练]3.如图,在正方体ABCD A 1B 1C 1D 1中,求BC 1→与AC →夹角的大小.[解] 不妨设正方体的棱长为1,则BC 1→·AC →=(BC →+CC 1→)·(AB →+BC →) =(AD →+AA 1→)·(AB →+AD →)=AD →·AB →+AD →2+AA 1→·AB →+AA 1→·AD → =0+AD 2→+0+0=AD 2→=1, 又∵|BC 1→|=2,|AC →|=2,∴cos〈BC 1→,AC →〉=BC 1→·AC →|BC 1→||AC →|=12×2=12.∵〈BC 1→,AC →〉∈[0,π],∴〈BC 1→,AC →〉=π3.即BC 1→与AC →夹角的大小为π3.距离问题1.用数量积解决的距离问题一般有哪几种? [提示] 线段长度即点点距、点线距、点面距. 2.求模的大小常用哪些公式?[提示] 由公式|a |=a ·a 可以推广为|a ±b |=a ±b2=a 2±2a ·b +b 2.3.如图,已知线段AB ⊥平面α,BC ⊂α,CD ⊥BC ,DF ⊥平面α,且∠DCF =30°,D 与A 在平面α的同侧,若AB =BC =CD =2,试求A ,D 两点间的距离.[提示] ∵AD →=AB →+BC →+CD →,∴|AD →|2=(AB →+BC →+CD →)2=|AB →|2+|BC →|2+|CD →|2+2AB →·BC →+2AB →·CD +2BC →·CD →=12+2(2·2·cos 90°+2·2·cos 120°+2·2·cos 90°)=8,∴|AD →|=22,即A ,D 两点间的距离为2 2.【例4】 如图所示,在平行四边形ABCD 中,AB =AC =1,∠ACD =90°,沿着它的对角线AC 将△ACD 折起,使AB 与CD 成60°角,求此时B ,D 间的距离.[思路探究] BD →=BA →+AC →+CD →―→|BD →|2注意对〈BA →,CD →〉的讨论,再求出B ,D 间距离.[解] ∵∠ACD =90°,∴AC →·CD =0,同理可得AC →·BA →=0.∵AB 与CD 成60°角,∴〈BA →,CD →〉=60°或〈BA →,CD →〉=120°.又BD →=BA →+AC →+CD →,∴|BD →|2=|BA →|2+|AC →|2+|CD →|2+2BA →·AC→+2BA →·CD →+2AC →·CD →=3+2×1×1×cos〈BA →,CD →〉.∴当〈BA →,CD →〉=60°时,|BD →|2=4,此时B ,D 间的距离为2;当〈BA →,CD →〉=120°时,|BD →|2=2,此时B ,D 间的距离为 2.求两点间的距离或线段长的方法(1)将相应线段用向量表示,通过向量运算来求对应向量的模.(2)因为a ·a =|a |2,所以|a |=a·a ,这是利用向量解决距离问题的基本公式.另外,该公式还可以推广为|a ±b |=a ±b2=a 2±2a ·b +b 2.(3)可用|a ·e |=|a ||cos θ|(e 为单位向量,θ为a ,e 的夹角)来求一个向量在另一个向量所在直线上的投影.[跟进训练]4.如图所示,在平面角为120°的二面角αAB β中,AC ⊂α,BD ⊂β,且AC ⊥AB ,BD ⊥AB ,垂足分别为A ,B .已知AC =AB =BD =6,求线段CD 的长.[解] ∵AC ⊥AB ,BD ⊥AB ,∴CA →·AB →=0,BD →·AB →=0.∵二面角αAB β的平面角为120°,∴〈CA →,BD →〉=180°-120°=60°. ∴CD →2=(CA →+AB →+BD →)2=CA →2+AB →2+BD →2+2CA →·AB →+2CA →·BD →+2BD →·AB →=3×62+2×62×cos 60°=144,∴CD =12.1.空间两向量的数量积与平面向量的数量积类似,由于数量积不满足结合律,因此在进行数量积运算时,一次、二次式与实数运算相同,运算公式也相同,三次及以上必须按式中的运算顺序依次进行运算.2.空间向量数量积运算的两种方法(1)利用定义:利用a ·b =|a ||b |cos 〈a ,b 〉并结合运算律进行计算.(2)利用图形:计算两个向量的数量积,可先将各向量移到同一顶点,利用图形寻找夹角,再代入数量积公式进行运算.3.在几何体中求空间向量数量积的步骤(1)首先将各向量分解成已知模和夹角的向量的组合形式.(2)利用向量的运算律将数量积展开,转化为已知模和夹角的向量的数量积. (3)代入a ·b =|a ||b |cos 〈a ,b 〉求解.4.空间向量中求两向量夹角与平面向量中的求法完全相同,都是应用公式cos 〈a ,b 〉=a·b |a |·|b |,解题的关键就是求a ·b 和|a |、|b |.求模时注意|a |2=a ·a 的应用.1.如图,空间四边形ABCD 的每条边和对角线的长都等于1,E ,F ,G 分别是AB ,AD ,DC的中点,则FG →·AB →=( )A .34 B .14 C .12 D .32B [由题意可得FG →=12AC →,∴FG →·AB →=12×1×1×cos 60°=14.] 2.已知两异面直线的方向向量分别为a ,b ,且|a |=|b |=1,a·b =-12,则两直线的夹角为( )A .30°B .60°C .120°D .150°B [设向量a ,b 的夹角为θ,则cos θ=a·b |a ||b |=-12,所以θ=120°,则两个方向向量对应的直线的夹角为180°-120°=60°.]3.在空间四边形ABCD 中,AB →·CD →+BC →·AD →+CA →·BD →=________.0 [原式=AB →·CD →+BC →·AD →+CA →·(AD →-AB →)=AB →·(CD →-CA →)+AD →·(BC →+CA →)=AB →·AD →+AD →·BA →=0.]4.如图所示,在一个直二面角αAB β的棱上有两点A ,B ,AC ,BD 分别是这个二面角的两个面内垂直于AB 的线段,且AB =4,AC =6,BD =8,则CD 的长为________.229 [∵CD →=CA →+AB →+BD →=AB →-AC →+BD →,∴CD →2=(AB →-AC →+BD →)2=AB →2+AC →2+BD →2-2AB →·AC →+2AB →·BD →-2AC →·BD →=16+36+64=116,∴|CD →|=229.]5.如图,已知空间四边形ABCD 的每条边和对角线的长都等于a ,点M ,N 分别是边AB ,CD 的中点.(1)求证:MN 为AB 和CD 的公垂线;(2)求MN 的长;(3)求异面直线AN 与MC 所成角的余弦值.[解] 设AB →=p ,AC →=q ,AD →=r .由题意,可知|p |=|q|=|r|=a ,且p ,q ,r 三向量两两夹角均为60°.(1)证明:MN →=AN →-AM →=12(AC →+AD →)-12AB →=12(q +r -p ),∴MN →·AB →=12(q +r -p )·p=12(q ·p +r ·p -p 2)=12(a 2·cos 60°+a 2·cos 60°-a 2)=0∴MN ⊥AB ,同理可证MN ⊥CD .∴MN 为AB 与CD 的公垂线.(2)由(1)可知MN →=12(q +r -p ),∴|MN →|2=(MN →)2=14(q +r -p )2=14[q 2+r 2+p 2+2(q ·r -q·p -r ·p )]=14(a 2+a 2+a 2+2⎝ ⎛⎭⎪⎫a22-a22-a22]=14×2a 2=a22.∴|MN →|=22a ,∴MN 的长度为22a .(3)设向量AN →与MC →的夹角为θ,∵AN →=12(AC →+AD →)=12(q +r ),MC →=AC →-AM →=q -12p ,∴AN →·MC →=12(q +r )·⎝ ⎛⎭⎪⎫q -12p =12⎝ ⎛⎭⎪⎫q 2-12q ·p +r·q -12r ·p =12⎝ ⎛⎭⎪⎫a 2-12a 2·cos 60°+a 2cos 60°-12a 2·cos 60° =12⎝ ⎛⎭⎪⎫a 2-a24+a22-a24=a22.又∵|AN →|=|MC →|=32a , ∴AN →·MC →=|AN →|·|MC →|·cos θ=32a ·32a ·cos θ=a22.∴cos θ=23.∴向量AN →与MC →的夹角的余弦值为23.从而异面直线AN 与MC 所成角的余弦值为23.。
§2.4平面向量的数量积第7课时一、 平面向量的数量积的物理背景及其含义教学目的:1.掌握平面向量的数量积及其几何意义;2.掌握平面向量数量积的重要性质及运算律;3.了解用平面向量的数量积可以处理有关长度、角度和垂直的问题;4.掌握向量垂直的条件. 教学重点:平面向量的数量积定义教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用 授课类型:新授课教 具:多媒体、实物投影仪 内容分析:本节学习的关键是启发学生理解平面向量数量积的定义,理解定义之后便可引导学生推导数量积的运算律,然后通过概念辨析题加深学生对于平面向量数量积的认识.主要知识点:平面向量数量积的定义及几何意义;平面向量数量积的5个重要性质;平面向量数量积的运算律. 教学过程: 一、复习引入:1. 向量共线定理 向量b 与非零向量a共线的充要条件是:有且只有一个非零实数λ,使b =λa .2.平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2使a=λ11e +λ22e 3.平面向量的坐标表示分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底.任作一个向量a ,由平面向量基本定理知,有且只有一对实数x 、y ,使得yj xi a 把),(y x 叫做向量a 的(直角)坐标,记作),(y x a 4.平面向量的坐标运算若),(11y x a ,),(22y x b ,则b a ),(2121y y x x ,b a ),(2121y y x x ,),(y x a .若),(11y x A ,),(22y x B ,则 1212,y y x x AB5.a ∥b (b0)的充要条件是x 1y 2-x 2y 1=06.线段的定比分点及λP 1, P 2是直线l 上的两点,P 是l 上不同于P 1, P 2的任一点,存在实数λ,使 P P 1=λ2PP,λ叫做点P 分21P P 所成的比,有三种情况:λ>0(内分) (外分) λ<0 (λ<-1) ( 外分)λ<0 (-1<λ<0)7. 定比分点坐标公式:若点P 1(x 1,y 1) ,P2(x 2,y 2),λ为实数,且P P 1=λ2PP ,则点P 的坐标为(1,12121y y x x ),我们称λ为点P 分21P P 所成的比.8. 点P 的位置与λ的范围的关系:①当λ>0时,P P 1与2PP 同向共线,这时称点P 为21P P 的内分点. ②当λ<0(1 )时,P P 1与2PP 反向共线,这时称点P 为21P P 的外分点. 9.线段定比分点坐标公式的向量形式:在平面内任取一点O ,设1OP =a,2OP =b, 可得OP =b a b a1111.10.力做的功:W = |F | |s |cos ,是F 与s 的夹角.二、讲解新课:1.两个非零向量夹角的概念已知非零向量a与b,作OA =a,OB =b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角.说明:(1)当θ=0时,a与b同向;(2)当θ=π时,a与b反向; (3)当θ=2时,a与b垂直,记a⊥b; (4)注意在两向量的夹角定义,两向量必须是同起点的.范围0 ≤ ≤1802.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a ||b |cos 叫a与b的数量积,记作a b ,即有a b = |a ||b |cos ,(0≤θ≤π).并规定0与任何向量的数量积为0. 探究:两个向量的数量积与向量同实数积有很大区别 (1)两个向量的数量积是一个实数,不是向量,符号由cos的符号所决定.(2)两个向量的数量积称为内积,写成a b ;今后要学到两个向量的外积a ×b ,而a b 是两个向量的数量的积,书写时要严格区分.符号“· ”在向量运算中不是乘号,既不能省略,也不能用“×”代替. (3)在实数中,若a 0,且a b =0,则b =0;但是在数量积中,若a 0,且a b =0,不能推出b =0.因为其中cos有可能为0.(4)已知实数a 、b 、c (b 0),则ab=bc a=c .但是a b = b c a = c如右图:a b = |a ||b |cos= |b ||OA|,b c = |b ||c |cos = |b ||OA|a b = b c 但ac(5)在实数中,有(a b )c = a (b c ),但是(a b )ca (bc )显然,这是因为左端是与c共线的向量,而右端是与a 共线的向量,而一般a 与c 不共线.3.“投影”的概念:作图定义:|b |cos叫做向量b 在a 方向上的投影.投影也是一个数量,不是向量;当为锐角时投影为正值;当为钝角时投影为负值;当C为直角时投影为0;当 = 0时投影为 |b |;当 = 180时投影为 |b |.4.向量的数量积的几何意义:数量积a b 等于a 的长度与b 在a 方向上投影|b |cos 的乘积.5.两个向量的数量积的性质:设a 、b 为两个非零向量,e 是与b 同向的单位向量. 1 e a = a e =|a |cos2 aba b = 03当a 与b 同向时,a b = |a ||b |;当a 与b 反向时,a b = |a ||b |. 特别的a a = |a |2或a a a ||4 cos =||||b a ba5|a b | ≤ |a ||b |三、讲解范例:例1 已知|a |=5, |b |=4, a 与b 的夹角θ=120o ,求a ·b . 例2 已知|a |=6, |b |=4, a 与b 的夹角为60o 求(a+2b)·(a-3b).例3 已知|a |=3, |b |=4, 且a 与b 不共线,k 为何值时,向量a+kb 与a-kb 互相垂直. 例4 判断正误,并简要说明理由.①a·0=0;②0·a=0;③0-AB =BA ;④|a·b|=|a||b|;⑤若a≠0,则对任一非零b有a·b≠0;⑥a·b=0,则a与b中至少有一个为0;⑦对任意向量a,b,с都有(a·b)с=a(b·с);⑧a与b是两个单位向量,则a2=b2. 解:上述8个命题中只有③⑧正确;对于①:两个向量的数量积是一个实数,应有0·a=0;对于②:应有0·a=0; 对于④:由数量积定义有|a·b|=|a|·|b|·|cos θ|≤|a||b|,这里θ是a与b的夹角,只有θ=0或θ=π时,才有|a·b|=|a|·|b|;对于⑤:若非零向量a、b垂直,有a·b=0; 对于⑥:由a·b=0可知a⊥b可以都非零; 对于⑦:若a与с共线,记a=λс.则a·b=(λс)·b=λ(с·b)=λ(b·с), ∴(a·b)·с=λ(b·с)с=(b·с)λс=(b·с)a 若a与с不共线,则(a·b)с≠(b·с)a.评述:这一类型题,要求学生确实把握好数量积的定义、性质、运算律.例6 已知|a|=3,|b|=6,当①a∥b,②a⊥b,③a与b的夹角是60°时,分别求a·b.解:①当a∥b时,若a与b同向,则它们的夹角θ=0°,∴a·b=|a|·|b|cos0°=3×6×1=18; 若a与b反向,则它们的夹角θ=180°,∴a·b=|a||b|cos180°=3×6×(-1)=-18; ②当a⊥b时,它们的夹角θ=90°, ∴a·b=0;③当a与b的夹角是60°时,有a·b=|a||b|cos60°=3×6×21=9评述:两个向量的数量积与它们的夹角有关,其范围是[0°,180°],因此,当a∥b时,有0°或180°两种可能. 四、课堂练习:1.已知|a |=1,|b |=2,且(a -b )与a 垂直,则a 与b 的夹角是( ) A.60° B .30° C.135° D.45°2.已知|a |=2,|b |=1,a 与b 之间的夹角为3,那么向量m =a -4b 的模为( ) A.2 B .23 C.6 D.12 3.已知a 、b 是非零向量,则|a |=|b |是(a +b )与(a -b )垂直的( ) A.充分但不必要条件 B .必要但不充分条件 C.充要条件 D.既不充分也不必要条件 4.已知向量a 、b 的夹角为3,|a |=2,|b |=1,则|a +b |·|a -b |= . 5.已知a +b =2i -8j ,a -b =-8i +16j ,其中i 、j 是直角坐标系中x 轴、y 轴正方向上的单位向量,那么a ·b = . 6.已知a ⊥b 、c 与a 、b 的夹角均为60°,且|a |=1,|b |=2,|c |=3,则(a +2b -c )2=______. 7.已知|a |=1,|b |=2,(1)若a ∥b ,求a ·b ;(2)若a 、b 的夹角为60°,求|a +b |;(3)若a -b 与a 垂直,求a 与b 的夹角.8.设m 、n 是两个单位向量,其夹角为60°,求向量a =2m +n 与b =2n -3m 的夹角. 9.对于两个非零向量a 、b ,求使|a +tb |最小时的t 值,并求此时b 与a +tb 的夹角. 五、小结(略) 六、课后作业(略) 七、教学后记:第8课时二、平面向量数量积的运算律教学目的:1.掌握平面向量数量积运算规律;2.能利用数量积的5个重要性质及数量积运算规律解决有关问题;3.掌握两个向量共线、垂直的几何判断,会证明两向量垂直,以及能解决一些简单问题. 教学重点:平面向量数量积及运算规律.教学难点:平面向量数量积的应用授课类型:新授课教具:多媒体、实物投影仪内容分析:启发学生在理解数量积的运算特点的基础上,逐步把握数量积的运算律,引导学生注意数量积性质的相关问题的特点,以熟练地应用数量积的性质.教学过程:一、复习引入:1.两个非零向量夹角的概念已知非零向量a与b,作OA=a,OB=b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角.2.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a||b |cos叫a与b的数量积,记作a b ,即有a b = |a||b|cos,(0≤θ≤π).并规定0与任何向量的数量积为0.3.“投影”的概念:作图C定义:|b|cos叫做向量b在a方向上的投影.投影也是一个数量,不是向量;当为锐角时投影为正值;当为钝角时投影为负值;当为直角时投影为0;当= 0时投影为|b|;当= 180时投影为|b|.4.向量的数量积的几何意义:数量积a b等于a的长度与b在a方向上投影|b|cos的乘积.5.两个向量的数量积的性质:设a、b为两个非零向量,e是与b同向的单位向量.1 e a = a e =|a |cos ;2 a b a b = 03当a 与b 同向时,a b = |a ||b |;当a 与b 反向时,a b =|a ||b |. 特别的a a = |a |2或a a a ||4cos =||||b a ba ;5|a b | ≤ |a ||b |二、讲解新课: 平面向量数量积的运算律 1.交换律:a b = b a证:设a ,b 夹角为,则a b = |a ||b |cos ,b a = |b ||a |cos∴a b = b a2.数乘结合律:( a ) b = (a b ) = a ( b ) 证:若 > 0,( a ) b = |a ||b |cos , (a b ) = |a ||b |cos,a ( b ) = |a ||b |cos , 若 < 0,( a ) b =| a ||b |cos() =|a ||b |(cos) = |a ||b |cos, (a b )= |a ||b |cos ,a (b ) =|a || b |cos() =|a ||b |(cos) = |a ||b |cos.3.分配律:(a + b ) c = a c + b c在平面内取一点O ,作OA = a , AB = b ,OC = c , ∵a + b (即OB )在c 方向上的投影等于a 、b 在c 方向上的投影和,即 |a + b | cos = |a | cos 1 + |b | cos 2∴| c | |a + b | cos =|c | |a | cos1 + |c | |b | cos2,∴c (a + b ) = c a + c b 即:(a + b ) c= a c + b c说明:(1)一般地,(a·b)с≠a(b·с)(2)a·с=b·с,с≠0a=b(3)有如下常用性质:a2=|a|2,(a+b)(с+d)=a·с+a·d+b·с+b·d (a+b)2=a2+2a·b+b2三、讲解范例:例1 已知a 、b 都是非零向量,且a + 3b 与7a 5b 垂直,a 4b 与7a2b 垂直,求a 与b 的夹角. 解:由(a + 3b )(7a 5b ) = 0 7a 2 + 16a b 15b 2 = 0 ①(a4b )(7a2b ) = 0 7a 230a b + 8b 2 = 0 ②两式相减:2a b = b 2 代入①或②得:a 2 = b 2设a 、b 的夹角为,则cos=21222 ||||||b b b a b a ∴ = 60例2 求证:平行四边形两条对角线平方和等于四条边的平方和.解:如图:平行四边形ABCD 中,DC AB ,BC AD ,AC =AD AB ∴|AC|2=AD AB AD AB AD AB 2||222而BD =AD AB , ∴|BD|2=AD AB AD AB AD AB 2||222∴|AC |2 + |BD |2 = 2222AD AB = 2222||||||||AD DC BC AB例3 四边形ABCD 中,AB =a,BC =b,CD =с,DA =d,且a·b=b·с=с·d=d·a,试问四边形ABCD 是什么图形?分析:四边形的形状由边角关系确定,关键是由题设条件演变、推算该四边形的边角量. 解:四边形ABCD 是矩形,这是因为:一方面:∵a+b+с+d=0,∴a+b=-(с+d),∴(a+b)2=(с+d)2即|a|2+2a·b+|b|2=|с|2+2с·d+|d|2由于a·b=с·d,∴|a|2+|b|2=|с|2+|d|2① 同理有|a|2+|d|2=|с|2+|b|2②由①②可得|a|=|с|,且|b|=|d|即四边形ABCD 两组对边分别相等. ∴四边形ABCD 是平行四边形另一方面,由a·b=b·с,有b(a-с)=0,而由平行四边形ABCD 可得a=-с,代入上式得b·(2a)=0,即a·b=0,∴a⊥b也即AB ⊥BC .综上所述,四边形ABCD 是矩形.评述:(1)在四边形中,AB ,BC ,CD ,DA 是顺次首尾相接向量,则其和向量是零向量,即a+b+с+d=0,应注意这一隐含条件应用;(2)由已知条件产生数量积的关键是构造数量积,因为数量积的定义式中含有边、角两种关系. 四、课堂练习:1.下列叙述不正确的是( )A.向量的数量积满足交换律 B .向量的数量积满足分配律 C.向量的数量积满足结合律 D.a ·b 是一个实数2.已知|a |=6,|b |=4,a 与b 的夹角为60°,则(a +2b )·(a -3b )等于( ) A.72 B .-72 C.36 D.-363.|a |=3,|b |=4,向量a +43b 与a -43b 的位置关系为( ) A.平行 B .垂直 C.夹角为3D.不平行也不垂直 4.已知|a |=3,|b |=4,且a 与b 的夹角为150°,则(a +b )2= . 5.已知|a |=2,|b |=5,a ·b =-3,则|a +b |=______,|a -b |= . 6.设|a |=3,|b |=5,且a +λb 与a -λb 垂直,则λ= . 五、小结(略) 六、课后作业(略) 七、板书设计(略) 八、课后记:第9课时三、平面向量数量积的坐标表示、模、夹角教学目的:⑴要求学生掌握平面向量数量积的坐标表示⑵掌握向量垂直的坐标表示的充要条件,及平面内两点间的距离公式. ⑶能用所学知识解决有关综合问题. 教学重点:平面向量数量积的坐标表示教学难点:平面向量数量积的坐标表示的综合运用 授课类型:新授课教 具:多媒体、实物投影仪 教学过程: 一、复习引入:1.两个非零向量夹角的概念已知非零向量a与b,作OA =a,OB =b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角.2.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a ||b |cos 叫a与b的数量积,记作a b ,即有a b = |a ||b |cos ,(0≤θ≤π).并规定0与任何向量的数量积为0. 3.向量的数量积的几何意义:C数量积a b 等于a 的长度与b 在a 方向上投影|b |cos 的乘积.4.两个向量的数量积的性质:设a 、b 为两个非零向量,e 是与b 同向的单位向量. 1 e a = a e =|a |cos; 2aba b = 03当a 与b 同向时,a b = |a ||b |;当a 与b 反向时,a b = |a ||b |. 特别的a a = |a |2或a a a ||4 cos =||||b a ba ;5|a b | ≤ |a ||b |5.平面向量数量积的运算律 交换律:a b = b a数乘结合律:( a ) b = (a b ) = a ( b ) 分配律:(a + b ) c = a c + b c 二、讲解新课:⒈ 平面两向量数量积的坐标表示已知两个非零向量),(11y x a ,),(22y x b ,试用a 和b 的坐标表示b a .设i 是x 轴上的单位向量,j 是y 轴上的单位向量,那么j y i x a 11 ,j y i x b 22 所以))((2211j y i x j y i x b a 2211221221j y y j i y x j i y x i x x 又1 i i ,1 j j ,0 i j j i ,所以b a 2121y y x x这就是说:两个向量的数量积等于它们对应坐标的乘积的和.即b a 2121y y x x 2. 平面内两点间的距离公式一、 设),(y x a ,则222||y x a 或22||y x a.(2)如果表示向量a 的有向线段的起点和终点的坐标分别为),(11y x 、),(22y x ,那么221221)()(||y y x x a (平面内两点间的距离公式)二、 向量垂直的判定设),(11y x a ,),(22y x b ,则b a 02121 y y x x 三、 两向量夹角的余弦( 0)co s =||||b a ba 222221212121y x y x y y x x四、 讲解范例:五、 设a = (5, 7),b = ( 6, 4),求a ·b 及a 、b 间的夹角θ(精确到1o ) 例2 已知A (1, 2),B (2, 3),C ( 2, 5),试判断△ABC 的形状,并给出证明. 例3 已知a = (3, 1),b = (1, 2),求满足x a = 9与x b = 4的向量x . 解:设x = (t , s ), 由429349s t s t b x a x32s t ∴x = (2, 3) 例4 已知a =(1,3),b =(3+1,3-1),则a 与b 的夹角是多少? 分析:为求a 与b 夹角,需先求a ·b 及|a |·|b |,再结合夹角θ的范围确定其值. 解:由a =(1,3),b =(3+1,3-1)有a ·b =3+1+3(3-1)=4,|a |=2,|b |=22.记a 与b 的夹角为θ,则cosθ=22b a b a 又∵0≤θ≤π,∴θ=4评述:已知三角形函数值求角时,应注重角的范围的确定.例5 如图,以原点和A (5, 2)为顶点作等腰直角△OAB ,使 B = 90 ,求点B 和向量AB 的坐标.解:设B 点坐标(x , y ),则OB = (x , y ),AB = (x 5, y 2) ∵OB AB ∴x (x 5) + y (y 2) = 0即:x 2 + y 2 5x 2y = 0 又∵|OB | = |AB | ∴x 2 + y 2 = (x 5)2 + (y 2)2即:10x + 4y = 29由2723232729410025221122y x y x y x y x y x 或∴B 点坐标)23,27( 或)27,23(;AB =)27,23( 或)23,27(例6 在△ABC 中,AB =(2, 3),AC =(1, k ),且△ABC 的一个内角为直角,求k 值.解:当A = 90 时,AB AC = 0,∴2×1 +3×k = 0 ∴k =23当B = 90 时,AB BC = 0,BC =AC AB = (1 2, k 3) = ( 1, k 3) ∴2×( 1) +3×(k 3) = 0 ∴k =311 当C = 90 时,AC BC = 0,∴ 1 + k (k 3) = 0 ∴k =2133 六、 课堂练习:1.若a =(-4,3),b =(5,6),则3|a |2-4a ·b =( ) A.23 B .57 C.63 D.83 2.已知A (1,2),B (2,3),C (-2,5),则△ABC 为( )A.直角三角形 B .锐角三角形 C.钝角三角形 D.不等边三角形 3.已知a =(4,3),向量b 是垂直a 的单位向量,则b 等于( ) A.)54,53(或)53,54( B .)54,53(或)54,53( C.)54,53( 或)53,54(D.)54,53( 或)54,53(4.a =(2,3),b =(-2,4),则(a +b )·(a -b )= .5.已知A (3,2),B (-1,-1),若点P (x ,-21)在线段AB 的中垂线上,则x = . 6.已知A (1,0),B (3,1),C (2,0),且a =,b =,则a 与b 的夹角为 . 七、 小结(略) 八、 课后作业(略) 九、 板书设计(略) 十、 课后记:。
§3.1.3 空间向量的数量积运算一.教学目标1.知识与技能(幻灯片2)(1)通过类比平面向量数量积的运算,掌握空间向量数量积的概念、性质和运算律; (2)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体 几何问题转化为向量问题;(3)通过向量的运算,研究空间中点、线、面之间的位置关系以及它们之间的距离和夹角等问题。
2.过程与方法引导学生注重知识间的联系,不断地与平面向量和立体几何知识进行类比,做到温故而知新,并且经历向量及其运算由平面到空间的推广过程,使学生的思维过程螺旋上升。
3.情感态度与价值观通过本节课的学习,使学生对于以往的知识有一个全新的认识,培养学生积极探索数学的本质,提高学生的数学素养。
二.教学重点空间向量数量积的概念以及实际应用。
三.教学难点建立空间向量与空间图形的内在联系; 四.教学过程 教学环节教学过程设计意图新 课 引入同学们,你们还记得平面向量数量积的定义吗?你能类比平面向量所成夹角说一说什么是空间中两条向量夹角及范围吗?注重了与旧知识的联系,使学生对知识的理解更为透彻。
学生容易对向量夹角和两直线夹角产生混淆,这里要对范围进行明确。
(幻灯片4) 讲 授 新 课零向量与任何向量的数量积为0。
性质1:这个性质是证明两向量垂直的依据;性质2: 这个性质是求向量模的依据。
思考:类比平面向量,你能说出空间向量数量积的几何意义吗?(幻灯片9)空间向量数量积和平面向量数量积相似,在教学中可采用类比的方法,并且还要向学生再次强调数量积的结果为常数,而不是向量。
空间向量数量积的几何意义同平面向量数量积是一样的。
只要让同学们理解空间中任意两个向量都是共面向量,此时就可以把空间向量的数量积转化为平面向量上来了。
(幻灯片5--8)(幻灯片10)=空间向量数量积的概念:已知两个非零向量a,,则a cos a,叫做a,的数量积.记作,即a cos a,.b b b b a b a b b b 22cos ,a a a a a a a a === cos 的几何意义:数量积等于的长度与在方向上的投影的乘积。
6.2.4 向量的数量积第2课时向量的向量积本节课选自《普通高中课程标准数学教科书-必修第二册》(人教A版)第六章《平面向量及其应用》,本节内容教材共分为两课时,其中第一课时主要研究数量积的概念,第二课时主要研究数量积的运算律,本节课是第二课时,本节课主要学习平面向量的数量积的运算律及其运用。
向量的数量积是继向量的线性运算(加法、减法、向量的数乘)后的又一种新的运算,它的内容很丰富。
包括定义、几何意义、性质与运算律,而且在物理和几何中具有广泛的应用。
向量数量积是代数、几何与三角的结合点,很好地体现了数形结合的数学思想。
但它与向量的线性运算有着本质的区别,运算结果是一个数量。
A.掌握数量积的运算律;B.利用数量积的运算律进行化简、求值;1.教学重点:数量积的运算律;2.教学难点:利用数量积的运算律化简、求值。
教学方法:以学生为主探究式学习合作学习教学工具:多媒体课件相关资料教学过程多媒体一、复习回顾,温故知新 1.向量的数乘的运算律【答案】设a 、b 为任意向量,λ、μ为任意实数,则有:(1) a a )()(λμμλ=(2)a a a μλμλ+=+)((3)b a b a λλλ+=+)(2.平面向量的数量积定义:θcos ||||b a b a =⋅平面向量的数量积的结果是数量。
二、探索新知1.平面向量数量积的运算律探究:类比数的乘法运算律,结合向量的线性运算的运算律,你能得到数量积运算的哪些运算律?你能证明吗?平面向量数量积的运算律证明:(1)因为θcos ||||b a b a =⋅,θcos ||||a b a b =⋅所以,a b b a ⋅=⋅。
(2)当的夹角与的夹角、与时,b a b a λλ0>一样。
因为)(cos ||||cos ||||)(b a b a b a b a ⋅===⋅λθλθλλ,)(cos ||||cos ||||)(b a b a b a b a ⋅===⋅λθλθλλ同理,当)()()(0b a b a b a λλλλ⋅=⋅=⋅<时,成立。
2023高中数学平面向量的数量积教案范文2020高中数学平面向量的数量积教案范文一一、教学内容分析1、教学主要内容(1)平面向量数量积及其几何意义(2)用平面向量处理有关长度、角度、直垂问题2、教材编写特点本节是必修4第二章第3节的内容,在教材中起到层上启下的作用。
3、教学内容的核心教学思想用数量积求夹角,距离及平面向量数量积的坐标运算,渗透化归思想以及数形结合思想。
4、我的思考本节数学的目标为让学生掌握平面向量数量积的定义,及应用平面向量数量积的定义处理相关夹角距离及垂直的问题。
因此,让学生们学会把数学问题转化到图形中,及能在图形中把图形转化成相关的数学问题尤其重要。
二、学生分析1、在学平面向量的数量积之前,学习已经认识并会找向量的夹角,及用坐标表示向量的知识。
因此,对于a·b=∣b∣︳a︴cosθ(θ=),容易进行相应的简单计算,但对于理解这个式子上存在一定的问题,因此,需把a·b=∣a∣∣b∣ cosθ转化到图形a·b=∣OM∣·∣OB∣=∣b∣cosθ∣a∣即a·b=∣a∣∣b∣cosθ理解并记忆。
对于cosθ= ,等的变形应用,同学们甚感兴趣。
2、我的思考对于基础薄弱的学生而言,学习本节知识,在处理例题成练习上,计算量不易过大。
三、学习目标1、知识与技能(1)掌握平面向量数量积及其几何意义。
(2)平面向量数量积的应用。
2、过程与方法通过学生小组探究学习,讨论并得出结论。
3、情感态度与价值观培养学生运算推理的能力。
四、教学活动内容师生互动设计意图时间 1、课题引入师:请同学请回忆我们所学过的相关同里的运算。
生:加法、减法,数乘师:这些运算所得的结果是数还是向量。
生:向量。
师:今天我们来学习一种有关向量的新的运输,数里积(板书课题) 由旧知引出新知,让学生知道我们学习是层层深入,知识永不止境,从而把学生引入到新的课程学习中来。
3min 2、平面向里的数量积定义师:平面向星数量积(内积或点积)的定义:已知两个非零向星a·b,它们的夹角是θ,则数量∣a∣·∣b∣cosθ叫a与b的数量积,记作a·b,即a·b=∣a∣∣b∣cosθ,注:①a·b≠a×b≠ab②O与任何向量的数里积为O。
8.1.3向量数量积的坐标运算【教学目标】1.掌握平面向量数量积的坐标表示及其运算.2.会运用向量的坐标运算求解向量垂直、夹角等相关问题.3.分清向量平行与垂直的坐标表示.4.能用向量方法证明两角差的余弦公式.【教学重点】数量积坐标表示的推理过程.【教学难点】公式的建立与应用.【教学过程】一、课前预习预习课本,思考并完成以下问题(1)平面向量数量积的坐标表示是什么?(2)如何用坐标表示向量的模、夹角、垂直?二、课前小测1.若向量a =(x,2),b =(-1,3),a ·b =3,则x 等于( )A .3B .-3 C.53 D .-53答案:A解析:a ·b =-x +6=3,x =3,故选A.2.已知a =(2,-1),b =(2,3),则a·b =________,|a +b |=________.答案:1 2 5解析:a ·b =2×2+(-1)×3=1,a +b =(4,2),|a +b |=42+22=2 5.3.已知向量a =(1,3),b =(-2,m ),若a ⊥b ,则m =______.答案:23解析:因为a ⊥b ,所以a ·b =1×(-2)+3m =0,解得m =23.4.已知a =(3,4),b =(5,12),则a 与b 夹角的余弦值为________.答案:6365解析:因为a ·b =3×5+4×12=63,|a |=32+42=5,|b |=52+122=13,所以a 与b 夹角的余弦值为a·b |a ||b |=635×13=6365.三、新知探究1.平面向量数量积的坐标表示设向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ.2.向量模的公式设a =(x 1,y 1),则|a |=x 21+y 21.3.两点间的距离公式若A (x 1,y 1),B (x 2,y 2),则|AB →|=(x 2-x 1)2+(y 2-y 1)2.4.向量的夹角公式设两非零向量a =(x 1,y 1),b =(x 2,y 2),a 与b 夹角为θ,则cos θ=a ·b |a ||b |=x 1x 2+y 1y 2x 21+y 21x 22+y 22. 思考:已知向量a =(x ,y ),你知道与a 共线的单位向量的坐标是什么吗?与a 垂直的单位向量的坐标又是什么?[提示] 设与a 共线的单位向量为a 0,则a 0=±1|a |a =±⎝⎛⎭⎫x |a |,y |a |=±⎝ ⎛⎭⎪⎫x x 2+y 2,y x 2+y 2,其中正号、负号分别表示与a 同向和反向.易知b =(-y ,x )和a =(x ,y )垂直,所以与a 垂直的单位向量b 0的坐标为±⎝ ⎛⎭⎪⎫-y x 2+y2,x x 2+y 2,其中正、负号表示不同的方向.四、题型突破题型一 平面向量数量积的坐标运算【例1】 (1)如图,在矩形ABCD 中,AB =2,BC =2,点E 为BC 的中点,点F 在边CD 上,若AB →·AF →=2,则AE →·BF →的值是________.(2)已知a 与b 同向,b =(1,2),a·b =10.①求a 的坐标;②若c =(2,-1),求a ·(b ·c )及(a·b )·c .(1)答案:2解析:以A 为坐标原点,AB 为x 轴、AD 为y 轴建立平面直角坐标系,则B (2,0),D (0,2),C (2,2),E (2,1).可设F (x,2),因为AB →·AF →=(2,0)·(x,2)=2x =2,所以x =1,所以AE →·BF →=(2,1)·(1-2,2)= 2.(2)解:①设a =λb =(λ,2λ)(λ>0),则有a·b =λ+4λ=10,∴λ=2,∴a =(2,4).②∵b·c =1×2-2×1=0,a·b =10,∴a ·(b·c )=0·a =0,(a·b )·c =10(2,-1)=(20,-10).【反思感悟】数量积运算的途径及注意点(1)进行向量的数量积运算,前提是牢记有关的运算法则和运算性质,解题时通常有两条途径:一是先将各向量用坐标表示,直接进行数量积运算;二是先利用数量积的运算律将原式展开,再依据已知计算.(2)对于以图形为背景的向量数量积运算的题目,只需把握图形的特征,并写出相应点的坐标即可求解.【跟踪训练】1.向量a =(1,-1),b =(-1,2),则(2a +b )·a =( )A .-1B .0C .1D .2答案:C解析:∵a =(1,-1),b =(-1,2),∴(2a +b )·a =(1,0)·(1,-1)=1.2.在平面直角坐标系xOy 中,已知四边形ABCD 是平行四边形,AB →=(1,-2),AD →=(2,1),则AD →·AC →=( )A .5B .4C .3D .2答案:A解析:由AC →=AB →+AD →=(1,-2)+(2,1)=(3,-1),得AD →·AC →=(2,1)·(3,-1)=5.题型二 向量模的坐标表示【例2】 (1)设平面向量a =(1,2),b =(-2,y ),若a ∥b ,则|2a -b|等于( )A .4B .5C .3 5D .4 5(2)若向量a 的始点为A (-2,4),终点为B (2,1),求:①向量a 的模;②与a 平行的单位向量的坐标;③与a 垂直的单位向量的坐标.(1)答案:D解析:由a ∥b 得y +4=0,∴y =-4,b =(-2,-4),∴2a -b =(4,8),∴|2a -b |=4 5.故选D.(2)解:①∵a =AB →=(2,1)-(-2,4)=(4,-3),∴|a |=42+(-3)2=5.②与a 平行的单位向量是±a |a |=±15(4,-3), 即坐标为⎝⎛⎭⎫45,-35或⎝⎛⎭⎫-45,35. ③设与a 垂直的单位向量为e =(m ,n ),则a·e =4m -3n =0,∴m n =34. 又∵|e |=1,∴m 2+n 2=1.解得⎩⎨⎧ m =35,n =45或⎩⎨⎧ m =-35,n =-45, ∴e =⎝⎛⎭⎫35,45或e =⎝⎛⎭⎫-35,-45.【反思感悟】求向量的模的两种基本策略(1)字母表示下的运算:利用|a |2=a 2,将向量模的运算转化为向量与向量的数量积的问题.(2)坐标表示下的运算:若a =(x ,y ),则a·a =a 2=|a |2=x 2+y 2,于是有|a |=x 2+y 2.【跟踪训练】3.已知平面向量a =(3,5),b =(-2,1).(1)求a -2b 及其模的大小;(2)若c =a -(a ·b )·b ,求|c |.解:(1)a -2b =(3,5)-2(-2,1)=(7,3),|a -2b |=72+32=58.(2)a ·b =(3,5)·(-2,1)=3×(-2)+5×1=-1,∴c =a -(a ·b )·b =(3,5)+(-2,1)=(1,6),∴|c |=1+62=37.题型三 向量的夹角与垂直问题[探究问题]1.设a ,b 都是非零向量,a =(x 1,y 1),b =(x 2,y 2),θ是a 与b 的夹角,那么cos θ如何用坐标表示?[提示] cos θ=a ·b |a ||b |=x 1x 2+y 1y 2x 21+y 21·x 22+y 22. 2.已知向量a =(1,2),向量b =(x ,-2),且a ⊥(a -b ),则实数x 等于多少?[提示] 由已知得a -b =(1-x,4).∵a ⊥(a -b ),∴a ·(a -b )=0.∵a =(1,2),∴1-x +8=0,∴x =9.【例3】 (1)已知向量a =(2,1),b =(1,k ),且a 与b 的夹角为锐角,则实数k 的取值范围是( )A .(-2,+∞) B.⎝⎛⎭⎫-2,12∪⎝⎛⎭⎫12,+∞ C .(-∞,-2) D .(-2,2)(1)答案:B解析:当a 与b 共线时,2k -1=0,k =12,此时a ,b 方向相同,夹角为0°,所以要使a 与b 的夹角为锐角,则有a·b>0且a ,b 不同向.由a·b =2+k >0得k >-2,且k ≠12,即实数k 的取值范围是⎝⎛⎭⎫-2,12∪⎝⎛⎭⎫12,+∞,选B. (2)已知在△ABC 中,A (2,-1),B (3,2),C (-3,-1),AD 为BC 边上的高,求|AD →|与点D 的坐标.解:设点D 的坐标为(x ,y ),则AD →=(x -2,y +1),BC →=(-6,-3),BD →=(x -3,y -2).∵点D 在直线BC 上,即BD →与BC →共线,∴存在实数λ,使BD →=λBC →,即(x -3,y -2)=λ(-6,-3),∴⎩⎪⎨⎪⎧x -3=-6λ,y -2=-3λ, ∴x -3=2(y -2),即x -2y +1=0.① 又∵AD ⊥BC ,∴AD →·BC →=0,即(x -2,y +1)·(-6,-3)=0,∴-6(x -2)-3(y +1)=0,即2x +y -3=0.② 由①②可得⎩⎪⎨⎪⎧x =1,y =1, 即D 点坐标为(1,1),AD →=(-1,2),∴|AD →|=(-1)2+22=5,综上,|AD →|=5,D (1,1).【多维探究】1.将本例(1)中的条件“a =(2,1)”改为“a =(-2,1)”,“锐角”改为“钝角”,求实数k 的取值范围.解:当a 与b 共线时,-2k -1=0,k =-12, 此时a 与b 方向相反,夹角为180°,所以要使a 与b 的夹角为钝角,则有a ·b <0,且a 与b 不反向.由a·b =-2+k <0得k <2.由a 与b 不反向得k ≠-12, 所以k 的取值范围是⎝⎛⎭⎫-∞,-12∪⎝⎛⎭⎫-12,2.2.将本例(1)中的条件“锐角”改为“π4”,求k 的值. 解:cos π4=a·b |a ||b |=2+k 5·1+k 2, 即22=2+k 5·1+k 2,整理得3k 2-8k -3=0, 解得k =-13或3. 【反思感悟】1.利用数量积的坐标表示求两向量夹角的步骤(1)求向量的数量积.利用向量数量积的坐标表示求出这两个向量的数量积.(2)求模.利用|a|=x 2+y 2计算两向量的模.(3)求夹角余弦值.由公式cos θ=x 1x 2+y 1y 2x 21+y 21·x 22+y 22求夹角余弦值. (4)求角.由向量夹角的范围及cos θ求θ的值.2.涉及非零向量a ,b 垂直问题时,一般借助a ⊥b ⇔a·b =x 1x 2+y 1y 2=0来解决.五、达标检测1.判断正误若a =(x 1,y 1),b =(x 2,y 2)(1)a ⊥b ⇔x 1x 2+y 1y 2=0.( )(2)a ·b <0⇔a 与b 的夹角为钝角.( )(3)若a ·b ≠0,则a 与b 不垂直.( )(4)|AB →|表示A ,B 两点之间的距离.( )答案:(1)√ (2)× (3)√ (4)√2.已知a =(3,-1),b =(1,-2),则a 与b 的夹角为( )A.π6B.π4C.π3D.π2答案:B解析:a·b=3×1+(-1)×(-2)=5,|a|=32+(-1)2=10,|b|=12+(-2)2=5,设a与b的夹角为θ,则cos θ=a·b|a||b|=510×5=22.又0≤θ≤π,∴θ=π4.3.设a=(2,4),b=(1,1),若b⊥(a+m b),则实数m=________.答案:-3解析:a+m b=(2+m,4+m),∵b⊥(a+m b),∴(2+m)×1+(4+m)×1=0,得m=-3.4.已知平面向量a=(1,x),b=(2x+3,-x),x∈R.(1)若a⊥b,求x的值;(2)若a∥b,求|a-b|.解:(1)若a⊥b,则a·b=(1,x)·(2x+3,-x)=1×(2x+3)+x(-x)=0,即x2-2x-3=0,解得x=-1或x=3.(2)若a∥b,则1×(-x)-x(2x+3)=0,即x(2x+4)=0,解得x=0或x=-2.当x=0时,a=(1,0),b=(3,0),a-b=(-2,0),|a-b|=2.当x=-2时,a=(1,-2),b=(-1,2),a-b=(2,-4),|a-b|=4+16=2 5.综上,|a-b|=2或2 5.六、本课小结1.平面向量数量积的定义及其坐标表示,提供了数量积运算的两种不同的途径.准确地把握这两种途径,根据不同的条件选择不同的途径,可以优化解题过程.同时,平面向量数量积的两种形式沟通了“数”与“形”转化的桥梁,成为解决距离、角度、垂直等有关问题的有力工具.2.应用数量积运算可以解决两向量的垂直、平行、夹角以及长度等几何问题,在学习中要不断地提高利用向量工具解决数学问题的能力.3.注意区分两向量平行与垂直的坐标形式,二者不能混淆,可以对比学习、记忆.若a=(x1,y1),b=(x2,y2),则a∥b⇔x1y2-x2y1=0,a⊥b⇔x1x2+y1y2=0.4.事实上应用平面向量的数量积公式解答某些平面向量问题时,向量夹角问题却隐藏了许多陷阱与误区,常常会出现因模糊“两向量的夹角的概念”和忽视“两向量夹角”的范围,稍不注意就会带来失误与错误.七、课后作业完成本讲配套练习《高一必修三8.1.3向量数量积的坐标运算课时精练(配套2)》.。
3.1.3 空间向量的数量积运算一、教学目标(一)核心素养通过本节课的学习,同学们能掌握空间向量数量积运算的法则及运算律,能借助图形进行空间向量的运算,并通过空间几何体加深对运算的理解.会利用数量积的性质求空间向量的夹角和模,并能熟练应用于立体几何证明与求值.(二)学习目标1.了解向量夹角的定义,掌握空间向量数量积的运算法则及运算律.2.掌握利用数量积求空间向量夹角和模的方法.3.培养学生数形结合的思想和空间想象能力,并能解决向量的综合问题.(三)学习重点1.空间向量的数量积运算法则及运算律.2.空间向量的模长公式和夹角公式.3.空间向量数量积在立体几何中的应用.(四)学习难点1.利用空间向量的数量积求模与夹角.2.将立体几何问题转化为空间向量的数量积问题.二、教学设计(一)课前设计1.预习任务(1)读一读:阅读教材第90页至第91页,填空: 已知两个非零向量a ,b ,在空间任取一点O ,作a OA =,b OB =,则AOB ∠叫做向量a ,的夹角,记作><,. 如果2,π>=<,那么向量,互相垂直,记作⊥. 已知两个非零向量,,则><b a b a ,cos ||||叫做,的的数量积,记作⋅. 零向量与任何向量数量积为0. 特别地,⋅=><,cos ||||2||=.(2)写一写:和平面向量类似,空间向量的数量积满足哪些运算律? ①数乘结合律:)()(b a b a ⋅=⋅λλ, ②交换律:⋅=⋅, ③分配率:⋅+⋅=+⋅)(.和平面向量类似,空间向量的数量积有哪些性质? ①若为单位向量,则⋅=><,cos ||; ②若,⊥⇔⋅0=; ③==a ||;④若,为非零向量,则>=<,cos ||||a ba b ⋅; ⑤||||||≤⋅(当且仅当a ,b 共线时等号成立). 2.预习自测(1)已知向量,满足:3||=,2||=,⋅6-=,则>=<,( )A .0B .3πC .2πD .π 【知识点】空间向量的夹角公式.【解题过程】∵6cos ,123||||a b a b a b ⋅-<>===-⨯rr r r r r ,∴>=<b a ,π.【思路点拨】理解并熟记空间向量的夹角公式.【答案】D .(2)在正三棱柱111C B A ABC -中,若12BB AB =,则1AB 与B C 1所成角的大小为()A . 60B . 90C . 75D . 105【知识点】空间向量的垂直.【解题过程】设m BB =||1,则m AB 2||=,∴C AB 11⋅)()(11C BB +⋅+=C BB 11⋅+⋅= 180cos 60cos 22⋅⋅+⋅⋅=m m m m 022=-=m m ,故1AB 与B C 1所成角的大小为 90.【思路点拨】空间向量的垂直的充要条件数量积等于0.【答案】B .(3)在平行六面体1111D C B A ABCD -中,4=AB ,3=AD ,51=AA , 90=∠BAD ,6011=∠=∠DAA BAA ,则=||1AC .【知识点】空间向量的模长. 【解题过程】=21||AC 2121)(AA AC ++=112122222AA AA AA ⋅+⋅+⋅+++=21532215420534222⨯⨯⨯+⨯⨯⨯++++=85=,故=||1AC 85.【思路点拨】利用空间向量的模长公式,转化为数量积的运算. 【答案】85.(4)已知线段AB ,BD 在平面α内,AB BD ⊥,线段α⊥AC ,且a AB =,b BD =,c AC =,则C ,D 间的距离为 .【知识点】空间向量的模长. 【解题过程】222)(||++==⋅+⋅+⋅+++=222222000222+++++=c b a 222c b a ++=,故C ,D 间的距离为222c b a ++.【思路点拨】利用空间向量的模长公式,转化为数量积的运算. 【答案】222c b a ++.(二)课堂设计1.知识回顾(1)空间向量线性运算法则和运算律;(2)共线向量定理的两种表达形式;(3)共面向量定理的两种表达形式.2.问题探究探究一 由平面向量类比空间向量的数量积运算★●活动① 类比提炼概念前面我们说过,两个非零向量a r ,b r 一定是共面向量.那在平面向量中,我们是怎样定义两个向量的夹角的呢?(抢答) 已知两个非零向量,,在空间任取一点O ,作OA a =uu r r ,OB b =uu u r r ,则AOB ∠叫做向量,的夹角,记作><,.如果2,π>=<,那么向量,互相垂直,记作⊥.也就是说,两个空间向量夹角的定义与平面向量一致.【设计意图】两个非零向量一定是共面,因此向量夹角的概念自然地从平面到空间,让学生体会概念的类比过程,为数量积的定义作好准备.●活动② 巩固理解,深入探究同样的,那数量积的定义呢?(抢答) 已知两个非零向量a ,b ,则><,cos ||||叫做a ,b 的的数量积(inner product ),记作a b ⋅r r .零向量与任何向量数量积为0.特别地,2=||||cos ,||a a a a a a a ⋅<>=r r r r r r r .【设计意图】通过抢答,使学生深入探究,进而得到数量积定义.●活动③ 深入探究,发现规律和平面向量类似,空间向量的数量积满足哪些运算律?(抢答) ①数乘结合律:)()(⋅=⋅λλ, ②交换律:⋅=⋅, ③分配率:⋅+⋅=+⋅)(.【设计意图】类比平面向量,得出空间向量数量积的运算律,理解更加深入.探究二 探究空间向量数量积的性质★▲●活动① 类比探究,研究性质和平面向量类似,空间向量的数量积有哪些性质?(抢答) ①若为单位向量,则=||cos ,a e a a e ⋅<>r r r r r ;(解释:1||=,转化为投影) ②若,为非零向量,则0a b a b ⊥⇔⋅=r r r r ;(解释:,cos 022a b ππ<>==r r ,)③||==;(解释:,0cos 01a b <>==r r ,) ④若,为非零向量,则||||,cos b a b a >=<;(解释:定义的变形式) ⑤||||||≤⋅(当且仅当,共线时等号成立).(解释:,[0,]cos ,[1,1]a b a b π<>∈<>∈-r r r r ,)【设计意图】通过类比,得到空间向量数量积的各种性质,并给予合理解释,突破难点. ●活动② 巩固理解,深入探究以上五个性质中,大家认为最重要的有哪些,它们有什么作用?(抢答)第②条,0a b a b ⊥⇔⋅=r r r r ,可用于证明空间向量垂直;第③条,||=,是空间向量的模长公式;第④条,||||,cos b a b a >=<,是空间向量的夹角公式.【设计意图】让学生进行思考,在深刻理解性质的同时,指出公式的作用,为后面的计算打好基础.探究三 探究空间向量数量积的具体应用★▲●活动① 归纳梳理、理解提升通过前面的学习,由于两个向量必然共面,所以空间向量数量积的运算法则和运算律和平面向量基本一致.同时,我们理解了数量积的三个重要应用是?(抢答)模长、垂直、夹角.它们都是向量a ,b 的二次运算,是非线性的.【设计意图】通过学生归纳知识点和定理,培养学生数学对比、归类、整理意识. ●活动② 互动交流、初步实践例1 设,,是任意的非零向量,且它们相互不共线,下列命题中:①()()0a b c c a b ⋅-⋅=r r r r r r ;②=||22a b b a =r r r r ; ④22||4||9)23()23(-=-⋅+.正确的是( )A .①②B .②③C .③④D .②④【知识点】空间向量的数量积运算法则和运算律.【数学思想】转化思想.【解题过程】向量的数量积不满足结合律,所以①不正确;由向量的数量积的定义知,②正确;,不一定共线,向量不一定相等,所以③不正确;利用数量积的运算律,④正确.【思路点拨】空间向量数量积运算不满足结合律.【答案】D .同类训练 已知空间四边形ABCD 的每条边和对角线长都等于a ,点E ,F ,G 分别为AB ,AD ,DC 的中点,则以下运算结果为2a 的是( )A .⋅2B .⋅2C .CA FG ⋅2D .CB EF ⋅2【知识点】空间几何体中向量的数量积运算.【数学思想】数形结合思想. 【解题过程】由已知可得3,π>=<, 所以><=⋅,cos ||||22223cos 2a a ==π. 【思路点拨】在空间几何体中先找出向量的夹角再根据定义计算.【答案】B .【设计意图】通过空间几何体中的向量,让学生对数量积的定义和运算更加熟练. 活动③ 巩固基础、检查反馈例2 已知空间四边形OABC 中,OB =OC ,且3π=∠=∠AOC AOB ,则><BC OA ,cos 的值为( )A .0B .21C .22D .23 【知识点】空间向量的线性表示及夹角公式.【数学思想】数形结合思想. 【解题过程】设a OA =,b OB =,c OC =,由已知得3,,π>=>=<<,且||||=. 所以()OA BC a c b a c a b ⋅=⋅-=⋅-⋅uu r uu u r r r r r r r r 3cos ||||3cos ||||ππ-=0|)||(|||21=-=, 所以0||||,cos =>=<BC OA .【思路点拨】求向量夹角的重点就是求数量积和模长.【答案】A .同类训练 已知空间向量,,两两夹角为 60,其模都为1,则|2|+-等于( )A .5B .5C .6D .6【知识点】空间向量的模长公式.【数学思想】转化思想. 【解题过程】∵1||||||===c b a , 60,,,>=>=<>=<<a c c b b a ,∴21=⋅=⋅=⋅, ∴2|2|+-a c c b b a c b a ⋅+⋅-⋅-++=4424222214214212411⨯+⨯-⨯-++=5=, ∴|2|+-5=. 【思路点拨】先计算⋅,⋅,⋅,再利用模长公式展开计算.【答案】A .【设计意图】运用向量的夹角和模长公式,学生对数量积的运算更加熟练,基础更加牢固. ●活动④ 强化提升、灵活应用例3 已知PO ,P A 分别是平面α的垂线、斜线,AO 是P A 在平面α内的射影,α⊂l 且OA l ⊥,求证:PA l ⊥.【知识点】利用空间向量数量积解决直线垂直问题.【数学思想】数形结合思想.【解题过程】取直线l 的方向向量,同时取向量PA ,,∵OA l ⊥,∴0=⋅.∵α⊥PO ,且α⊂l ,∴PO l ⊥,∴0=⋅. 又∵=⋅)(+⋅0=⋅+⋅=,∴PA l ⊥.【思路点拨】将向量用,来表示,从而利用数量积解决垂直问题.这是三垂线定理的向量证法,同理也可用来证明:若PA l ⊥,则OA l ⊥.【答案】见解题过程.同类训练 已知m ,n 是平面α内的两条相交直线,如果m l ⊥,n l ⊥,求证:α⊥l .【知识点】利用空间向量数量积解决线面垂直问题.【数学思想】数形结合思想.【解题过程】在α内任作一直线g ,分别在l ,m ,n ,g 上取非零向量l ,m ,,. ∵m 与n 相交,∴向量,不平行,由向量共面的充要条件知,存在唯一的有序实数对),(y x ,使y x +=. ∵0=⋅m l ,0=⋅n l ,∴y x ⋅+⋅=⋅0=,即g l ⊥.∴l 垂直于α内的任意直线,∴α⊥l .【思路点拨】将α内的任意直线的方向向量表示为,的线性组合,从而利用数量积证明0=⋅g l ,再由线面垂直的定义可证.这是线面垂直判定定理的向量证法.【答案】见解题过程.【设计意图】垂直问题的证明是常见题型,通过数量积的计算,避免了立体几何中辅助线的添加,极大地降低了难度.3. 课堂总结知识梳理(1)已知两个非零向量,,在空间任取一点O ,作=,=,则AOB ∠叫做向量,的夹角,记作><,.如果2,π>=<b a ,那么向量,互相垂直,记作⊥. (2)已知两个非零向量,,则><,cos ||||叫做,的的数量积(inner product ),记作⋅.零向量与任何向量数量积为0.特别地,⋅=><,cos ||||2||=.空间向量的数量积满足的运算律有:①数乘结合律:)()(⋅=⋅λλ,②交换律:⋅=⋅,③分配率:⋅+⋅=+⋅)(.(3)空间向量的数量积的性质有:①若e 为单位向量,则a e ⋅=><,cos ||;②若a ,b 为非零向量,则a b ⊥⇔a b ⋅0=;③||==a ,b 为非零向量,则||||,cos b a >=<;⑤||||||≤⋅(当且仅当,共线时等号成立).重难点归纳(1)空间向量的数量积是向量的二维计算,是三个实数的乘积,不满足结合律.(2)空间向量的数量积主要解决向量的垂直,模长和夹角问题,在立体几何中应用非常广泛.(三)课后作业基础型 自主突破1.下列命题中正确的是( )A .222)(⋅=⋅ B .||||||≤⋅C .)()(⋅⋅=⋅⋅D .若)(-⊥,则0=⋅=⋅【知识点】向量数量积的概念和运算.【数学思想】转化思想. 【解题过程】对于A 项,><=⋅,cos )(222222≤,故A 错误;对于C 项,数量积不满足结合律,故C 错误;对于D 项,有0)(=-⋅,所以⋅=⋅,但不一定等于0,故D 错误.B 项是数量积的性质.【思路点拨】深刻理解各种概念和运算.【答案】B . 2.已知,为单位向量,其夹角为 60,则=⋅-)2(( )A .1-B .0C .1D .2【知识点】向量数量积的运算.【数学思想】转化思想. 【解题过程】∵1||||==,>=<, 60, ∴=⋅-)2(22-⋅0||60cos ||||22=-= .【思路点拨】熟练掌握空间向量数量积的运算法则.【答案】B . 3.在三棱锥BCD A -中,2===AD AC AB , 90=∠BAD , 60=∠BAC ,则=⋅( )A .2-B .2C .32-D .32 【知识点】空间向量数量积的运算.【数学思想】数形结合思想. 【解题过程】=⋅)(-⋅⋅-⋅= 60cos 220⨯⨯-=2-=.【思路点拨】在空间几何体中找到夹角再根据定义计算.【答案】A .4.在三棱锥ABC D -中,已知)()2(AC AB DA DC DB -⋅-+0=,则ABC ∆是( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形 【知识点】空间向量数量积的运算.【数学思想】转化思想. 【解题过程】∵)()2(-⋅-+)()(-⋅-+-=0)()(22=-=-⋅+=AC AB AC AB AC AB ,∴22||||AC AB =,即AC AB =.【思路点拨】熟练掌握空间向量数量积的各种变形.【答案】B .5.已知A ,B ,C 为圆O 上的三点,若+=与的夹角 为 .【知识点】空间向量的夹角.【数学思想】数形结合思想.【解题过程】∵+=,∴点O 是BC 中点,故BC 为直径,根据圆的性质,有 90=∠BAC ,即<AB ,> 90=.【思路点拨】利用几何性质,点O 是BC 中点,BAC ∠是直角所对的圆周角.【答案】 90. 6.已知,,中每两个向量的夹角都是3π,且4||=a ,6||=b ,2||=c ,试求出||++的值.【知识点】向量模长公式.【数学思想】转化思想. 【解题过程】∵2||++⋅+⋅+⋅+++=222222422664264222⨯+⨯+⨯+++=100=,∴||++10=. 【思路点拨】利用模长公式进行数量积的计算.【答案】10.能力型 师生共研7.已知23|=a ,4|=b ,+=,λ+=,43,π>=<,若⊥, 则=λ .【知识点】向量垂直与数量积的关系. 【数学思想】转化思想.【解题过程】∵⊥,∴0=⋅,即⋅+)(0)(=+λ,则0)1(22=⋅+++λλ,即043cos 234)1(4)23(22=⨯⨯⨯+++πλλ,∴064=+λ,23-=λ. 【思路点拨】利用向量垂直的性质,列出方程求解.【答案】23-. 8.直三棱柱111C B A ABC -中, 90=∠BCA ,M ,N 分别是11B A ,11C A 的中点,1CC CA BC ==,则BM 与AN 所成角的余弦值为( )A .101 B .52 C .1030 D .22 【知识点】向量夹角公式求空间几何体中异面直线所成角. 【数学思想】数形结合思想.【解题过程】设=.=,CC =1,1||||||===,∴0=⋅=⋅=⋅,∵BM +=,+=,∴BM ⋅432=+=,又∵26||=BM ,25||=AN ,∴<cos ⋅>||||AN BM =1030252643=⨯=. 【思路点拨】将与用.,表示,再利用向量夹角公式得到所求角的余弦值.【答案】C .探究型 多维突破9.在正三棱柱111C B A ABC -中,若侧面对角线11BC AB ⊥,求证:11AB C A ⊥. 【知识点】在空间几何体中利用数量积解决直线垂直问题. 【数学思想】数形结合思想.【解题过程】设=,=,BB =1,m ==||||,n =||, ∵11BC AB ⊥,且11BB AB AB +=+-=,=1BC +, ∴11BC AB ⋅⋅+-=)()(+2+⋅-=02122=-=m n ,∴222n m =, ∴A AB 11⋅⋅+-=)()(1BC AB A A ++⋅+-=)()(+--b a c a ⋅--=22021222=--=m n m ,∴11AB C A ⊥. 【思路点拨】将1AB ,1BC ,C A 1用,,表示,再把垂直关系与数量积为零进行转化. 【答案】见解题过程.10.三棱柱111 C B A ABC -中,2221===AC AB AA , 6011=∠=∠=∠BAC AC A AB A ,在平行四边形C C BB 11内是否存在一点O ,使得⊥O A 1平面C C BB 11?若存在,试确定O 点的位置;若不存在,说明理由.【知识点】利用数量积运算解决动点存在性问题. 【数学思想】数形结合思想.【解题过程】设a AB =,b AC =,AA =1,假设存在点O ,使得⊥O A 1平面C C BB 11,不妨设n BB m +=1,则)(n m -+=m n n ++-=,而+=m n n ++-=)1(,∴11AA A -=m n n )1()1(-++-=, 要使⊥O A 1平面C C BB 11,只需⊥O A 11BB ,⊥O A 1BC ,即01=⋅A ,0)(1=-⋅A , ∴])1()1[(m n n -++-0=⋅c ,])1()1[(m n n -++-0)(=-⋅,解得43=m ,21=n ,+=O ,使得⊥O A 1平面C C BB 11.【思路点拨】在平面C C BB 11内将表示为n BB m +1,利用垂直条件列式解出m ,n 的值,从而确定点O 的位置.【答案】见解题过程.自助餐1.下列命题中,①a =||m m ⋅=⋅)()(λλ;③⋅+=+⋅)()(;④a b b a 22=. 其中真命题的个数为( )A .1个B .2个C .3个D .4个【知识点】向量数量积的概念和运算. 【数学思想】转化思想.【解题过程】①②③正确,④不正确,因为与的方向不一定相同,故不一定相等. 【思路点拨】深刻理解各种概念和运算. 【答案】C .2.已知向量,满足2||=,2||=,且与-2互相垂直,则>=<, .【知识点】向量数量积的运算,夹角公式. 【数学思想】转化思想.【解题过程】∵与a b -2互相垂直,∴0)2(=-⋅,即022=-⋅,∴2=⋅b a ,∴22||||,cos =>=<b a ,故 45,>=<b a . 【思路点拨】先求出b a ⋅,再利用向量夹角公式.【答案】 45.3.设A ,B ,C ,D 是空间不共面的四点,且满足0=⋅,0=⋅,0=⋅,则BCD ∆( )A .是钝角三角形B .是锐角三角形C .是直角三角形D .无形状不确定【知识点】数量积定义的应用.【数学思想】转化思想【解题过程】∵⋅)()(-⋅-=2+⋅-⋅-⋅=02>=,∴0||||,cos >>=<BD BC ,故CBD ∠为锐角,同理BCD ∠与BDC ∠均为锐角. 【思路点拨】锐角、钝角可由数量积的正负进行判定. 【答案】B .4.已知a ,b 是两异面直线,A ,a B ∈,C ,b D ∈,b AC ⊥,b BD ⊥,且2=AB ,1=CD ,则直线a ,b 所成的角为( ) A . 30B . 60C . 90D . 45【知识点】利用向量夹角公式计算异面直线所成角. 【数学思想】数形结合思想.【解题过程】∵++=,∴⋅++=⋅)(12==,故21||||,cos =>=<CD AB ,即 60,>=<CD AB . 【思路点拨】先求出⋅,再利用向量夹角公式. 【答案】B .5.在一个直二面角βα--l 的棱上有两点A ,B ,AC ,BD 分别是这个二面角的两个面内垂直于l 的线段,且4=AB ,6=AC ,8=BD ,则CD 的长为 . 【知识点】向量模长的计算. 【数学思想】转化思想.【解题过程】∵++=,∴22)(++=⋅+⋅+⋅+++=222222116864222=++=,∴292||=CD .【思路点拨】将拆分成已知长度的向量,再使用向量模长公式. 【答案】292.6.在长方体1111D C B A ABCD -中,设11==AA AD ,2=AB ,P 是11D C 的中点,则C B 1与A 1所成角的大小为 .【知识点】向量夹角公式的运用. 【数学思想】数形结合思想.【解题过程】∵A B 11⋅()(1AA ⋅+-=2=1=,由题意得211==C B PA ,则21||||,cos 1111=>=<P A C B A B ,故 60,11>=<P A C B . 【思路点拨】灵活运用向量夹角公式,关键是计算出A B 11⋅.【答案】 60.。
教案高中数学向量数量积
教学目标:
1. 了解向量数量积的定义和性质;
2. 掌握向量数量积的计算方法;
3. 能够运用向量数量积解决实际问题。
教学重点:
1. 向量数量积的定义;
2. 向量数量积的计算方法;
3. 向量数量积的性质。
教学步骤:
一、导入(5分钟)
教师引入向量数量积的概念,并与学生讨论向量数量积在实际生活中的应用。
二、讲解(20分钟)
1. 向量数量积的定义;
2. 向量数量积的计算方法;
3. 向量数量积的性质。
三、练习(25分钟)
1. 练习向量数量积的计算方法;
2. 解决一些实际问题。
四、总结(5分钟)
教师总结本节课的重点内容,强调向量数量积在解决实际问题中的应用。
五、作业布置(5分钟)
布置相关作业,巩固学生对向量数量积的理解和应用。
教学手段:
1. 多媒体课件;
2. 教学实例;
3. 练习题;
4. 白板和彩色笔。
教学评价:
1. 学生课堂表现;
2. 课堂练习成绩;
3. 作业完成情况。
向量数量积教案【篇一:向量数量积教案】平面向量数量积的教学设计及反思教学目的: 1.了解平面向量数量积的物理背景及其物理意义; 2.了解平面向量的数量积与向量投影的关系及数量积的几何意义 3.理解掌握数量积的性质和运算律,并能运用性质和运算律进行相关的判断和运算;教学重难点:重点:1.平面向量数量数量积的概念和性质 2.平面向量数量数量积的运算律的探究和应用难点:平面向量数量数量积的定义及对运算律的探究平面向量数量数量积的应用课时安排: 2 课时教学过程一.导入 ??的作用下产生位移 s??,那么力 f一个物体在力 f??所做的功:coss??fw??=,即功的大小是力与位移的大小及其夹角余弦的乘积。
f??是力的大小,是数量也就是物理上的标量, s??是位移的大小是标量, cos是力与位移夹角的余弦值,也是标量,所以w 是一个标量,它是由力和位移这两个向量决定的。
这给我们一个启示:功是否是两个向量的某种运算的结果呢?二.新授 1.平面向量数量积(内积)的定义:已知两个非零向量a??与 b??,它们的夹角是,则数量| a??| | b??| cos 叫 a??与 b??的数量积(内积),记作 a?? b??,即 a?? b?? = | a??| | b??| cos , (0) ,前面所说的功就是力与位移的数量积。
并规定 0??与任何向量的数量积为 0 注意:(1)不能省略,也不能用 ???? 代替。
(2 ) 00a =,而不是00a?? =????。
2.牛刀小试:例 1. 已知| a??|=5, |b??|=4,(1) a??与 b??的夹角是 60 ;(2) a??与 b??的夹角是 120 ;(3) a??与 b??垂直;(4) a??与 b??平行,求 a?? b?? 解: (1) a?? b??=|a??||b??|cos60 =10 (2) a?? b??=| a??||b??|cos120 =-10 (3) a?? b??=| a??||b??|cos90 =0 (4) a??与 b??同向时a?? b??=|a??||b??|cos0 =20 a??与 b??反向时a?? b??=| a??||b??|cos180 =-20 3.投影(也叫射影)的概念及数量积的几何意义: ?? = | a??||b由数量积定义 a?? b??|cos 可知影响数量积大小的因素有| a??|, |b??|, cos ,投影的定义:我们把│ b │ cos (│ a │ cos )叫做向量b 在 a 方向上( a 在b方向上)的投影,记做:ob1=│b │ cos (投影的几何图形) b??在 a??方向上的投影:(1)投影│ b │ cos 是一个数量,不是向量。
coss??fw??=中,就是力 f??在s??方向上的投影 cosf??对物体做功。
(2)当为锐角时,投影为正值,数量积为正值;当为钝角时,投影为负值,数量积为负值;当为直角时,投影为 0,数量积为0;当 = 0 时, a??与 b??同向时,投影为 | b??| ,ba??ba??????= ,当 = 180 时, a??与 b??反向时,投影为 | b??| ,ba??ba??????= ,可见数量积ba?? ??的几何意义:向量a??与 b??的数量积 a?? b??等于 a??的长度 a??与b??在 a??的方向上的投影 cosb??的积.请判断:角的范围 0 90 =90 0 180a b 的符号 + 0 - 即数量积的符号由 4.归纳数量积的性质: ???? cos的符号决定,即由两向量的夹角决定。
① 0= ba??ba??(力垂直与物体移动方向时,力对物体不做功)②当 a??与 b??同向时, a?? b??=| a??||b??|,(此时 a?? b??最大,力对物体做功最大);当 a??与 b??反向时, a?? b??=| a??||b??|,(此时 a?? b??最小,力对物体做功最小)。
特别地2a??a??a??= ③ba??ba?????? 下面考察向量数量积的运算律:数量积是向量间的一个新的运算,自然要对它的运算律进行讨论,看它的运算律与实数的运算律有什么联系 ??????是任意向量设 , , ,a b c 是任意实数,, ,a b c实数的运算律向量数量积的运算律 ( )()( )( )??()( ??)()()abbaa b ??b a ??a bababa??bab ??a??bab cacbcabc??ac + ?? ??b c ==== =??= +=++ =???????????? 证明第三个即交换律成立 a??b+??(即 ob??)c??方向上的投影等于 , a b????在c??方向上的投影和,即 |ab+????| cos = | a??| cos 1 + | b??| cos 2 | c??| | ab+????| cos =| c??| | a??| cos 1 + | c??| | b??| cos 2, c ?? ( ab+????) = cac b+ ?? ???? ?? 即: ()a??bc??a c + ?? ??b c+ =?????? 注意:(1)在实数中,满足结合律(a b) c = a(b c) ,向量运算有吗?没有!即 ()()a b ??c??a??b c ??????这是因为两个向量数量积结果是一个实数,左端是与 c??共线的向量,而右端是与 a??共线的向量,而一般a??与c??不共线. 数量积运算不满足结合律。
解题过程参见课本例 4 已知| a | =3,| b | =4, 且a 与 b 不共线, k 为何值时,向量a +kb 与 a -kb 互相垂直?分析:两向量相互垂直时,它们的数量积为0. 解题过程参见课本四.小结:(1)本节课主要学习了向量的数量积和投影;(2)类比功,得到了向量的重要性质;(3)类比实属运算律,得到了向量数量积的运算律,但注意,有些实数具备的运算律,向量的数量积却不具备。
五.作业:反思:数量积在几何证明中有重要的应用,特别是2a??a??a??= ,看着很平常,但有很重要的作用。
比如今年陕西高考题中的余弦定理的证明,实际就是这些性质的应用。
这些性质应要求学生熟练掌握。
【篇二:向量数量积教案】本节课是高中数学3(必修)第三章概率的第二节古典概型的第一课时,是在学习随机事件的概率之后,几何概型之前,尚未学习排列组合的情况下教学的。
古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位。
学好古典概型可以为其它概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些简单事件的概率,有利于解释生活中的一些现象与问题。
二、学情分析学生在初中已经学习了解直角三角形的内容,这为学习正弦定理打下了良好的基础。
但本节内容涉及代数推理,定理的推导和证明中可能涉及多方面的知识方法,综合性强,因此学生在学习过程中难免会有困难。
四、教学重点、难点教学重点: 1.正弦定理的推导. 2.正弦定理的运用教学难点:1.正弦定理的推导. 2.正弦定理的运用.五、教学过程(一)创设情境、引入新课我们知道,在任意三角形中有大边对大角,小边对小角的边角关系,我们是否能得到这个边、角关系的准确量化呢?【师生活动】教师指出在一个中,如果已知。
,我们要研究。
由此,引出本节课的主题——正弦定理。
特殊入手,探究证明直角三角形中角与边的等式关系:【师生活动】教师引导学生根据正弦函数的定义,得到三边与对应的角的正弦值的关系。
推广拓展,探究证明锐角三角形中角与边的等式关系:问题1:在锐角三角形abc中,如何构造、表示“a与sina、 b与sinb”的关系呢?追问:能否构造直角三角形,将问题化归为已知问题?【学情预设】此处,学生可能出现以下答案情形。
学生对直角三角形中证明定理的方法记忆犹新,可能通过以下两种方法构造直角三角形。
生1:过 c作bc边上的线cd,交ba的延长线于d,得到直角三角形dbc。
生2:过a作bc边上的高线ad,化归为两个直角三角形问题。
【师生活动】可由个别学生回答,教师根据学生的回答进行板书证明。
问题3:钝角三角形中如何推导正弦定理?【师生活动】教师引导学生对于钝角三角形的情况,类别锐角三角形,构造直角三角形,留给学生课后回去思考。
正弦定理的理解正弦定理:问题4:定理从结构上看有什么特征?有哪些变形式?【师生活动】教师引导学生观察定理的结构,用方程的观点看问题,每个方程含有四个量,知三求一。
【结论】(1)从结构看:各边与其对角的正弦严格对应,成正比例,体现了数学的和谐美。
3、学习目标知识与技能目标:经历观察、操作、推理、交流等活动,探索并掌握平行线的三个判定方法,并会正确识别图中的同位角、内错角和同旁内角。
能力与方法目标:经历探索直线平行的条件的过程,发展空间观念和有条理的表达能力。
情感与态度目标:在自己独立思考的基础上,积极参与小组活动对直线平行条件的讨论,敢于表达自已的观点,并从中受益。
重点难点分析:本节的重点是:平行线的判定公理及两个判定定理.一般的定义与第一个判定定理是等价的.都可以做判定的方法.但平行线的定义不好用来判定两直线相交还是不相交.这样,有必要借助两条直线被第三条直线截成的角来判定.因此,这一个判定公理和两个判定定理就显得尤为重要了.它们是判断两直线平行的依据,也为下一节,学习平行线的性质打下了基础.本节内容的难点是:理解由判定公理推出判定定理的过程.学生刚刚接触演绎推理方法,对几何说理还不太理解.有些同学甚至认为从直观图形即可辨认出的性质,没必要再进行证明.这些都使几何的入门教学困难重重.因此,教学中要有直观的演示和操作,也要有严格推理板书示范.创设情境,不断渗透,使学生初步理解说理的步骤和基本方法.教材分析:这节课是九年制义务教育初级中学教材浙教版八年级第二章第六节《探索勾股定理》第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。
它在数学的发展中起到重要的作用,在现时世界中也有着广泛的作用。
学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。
八年级学生已经具有了一定的几何图形的观察能力,同时他们的抽象思维能力、逻辑推理能力也有了一定的发展。
学生已经学过了三角形,全等三角形,等腰三角形以及简单多边形的相关性质,对本节课的学习有很大帮助。
本节内容思维量较大,对思维的严谨、归纳推理等能力有较高要求,学生学习起来有一定难度。
多边形的内角和一、教材分析:从教材的编排上,本节课作为第三章的第三节。
从三角形的内角和到四边形的内角和至多边形的内角和,环环相扣。