电力系统基本知识
- 格式:docx
- 大小:17.05 KB
- 文档页数:3
原理图一、电力系统基本概念1、基本概念电能是一种十分重要的二次能源,它方便、经济地从蕴藏于自然界中的一次能源(煤炭、石油、天然气、太阳能、水力、风能等)转换而来,并且可以转换为其他能量供人们使用。
电能是由发电厂生产的,大容量发电厂往往建在燃料、水力资源丰富的地方,而用户往往远离发电厂需要建设较长的输电线路进行输电,建设升压和降压变电所进行变电,通过配电线路向各类用户供电。
电力系统-由发电、输电、变电、配电和用电连接成的统一整体。
是现代社会中最重要、最庞杂的系统工程之一电力网-由输电、变电、配电所组成的部分。
它包括升、降压变压器和各种电压的输电线路。
它的任务就是把远处发电厂生产的电能输送到负荷中心,同是还联系区域电力网行程跨省、跨地区的大电力系统,如我国的东北、华北、华中、华东、西北和南方电网等,就属于这种类型。
动力网-在电力系统的基础上,把发电厂的动力部分(如火力发电厂的锅炉、汽轮机和水力发电厂的水库、水轮机以及核动力发电厂的反应堆等)包含在内的系统2、电力系统组成由发电厂的发电机、升压及降压变电设备、电力网及电能用户(用电设备)组成的系统统称为电力系统。
(1)发电厂:生产电能。
(2)电力网:分为输电网和配电网。
输电网:以高压甚至超高压电将发电厂、变电所或变电所之间连接起来的输电网络,所以又称为电力网中的主网架。
配电网:直接将电能送到用户的网络。
它的作用是将电能分配给各类不同的用户,变换电压、传送电能。
电力网按电压等级分类:低压网:电压等级在1kV以下;中压网:1~35kV;高压网:高于35kV、低于330kV;超高压网:低于750kV;特高压网:1000kV及以上。
(3)用电设备:消耗电能。
二、大型电力系统的优点:1、提高供电可靠性;2、减少系统的备用容量;3、降低系统的高峰负荷;4、提高供电质量;5、便于利用大型动力资源三、电力生产的特点:1、同时性,电能不能大量存储,各环节组成的统一整体不可分割,过渡过程非常迅速,瞬间生产的电力必须等于瞬间取用的电力,所以电力生产的发电输电、配电到用户的每一环节都非常重要;2、集中性,电力生产是高度集中、统一的,无论多少发电厂、供电公司、电网必须统一调度、统一管理标准,统一管理办法;安全生产,组织纪律,职业品德都有严格的要求;3、适用性,电力行的的服务对象是全方位的,涉及到全社会所有人群,电能质量,电价水平与广大电力用户的利益密切相关。
电力系统基本知识一、电力系统的基本知识1.1电力系统的基本概念1.1.1电力系统及电力网1.1.1.1电力系统的定义把发电、变电、电网、配电和用电等各种电器设备相连接在一起的整体,称作电力系统。
它包含发电厂的电气部分、降压变压器、升压变压器、输配电线路及各类用电设备等。
1.1.1.2电力网的定义、作用、分类1.定义:由相同电压等级的变电所和输配电线路形成的网络结构称作电力网。
2.作用:汇聚、传输、变换、分配电能。
3.分类:为了分析排序电力网可以分成地方电网、区域电网和远距离输电网。
地方电网电压较低(110kv以下),运送功率较小,线路较短(100km以下),排序时可以搞较多精简;区域电网电压较低(110kv-330kv),运送功率很大,线路较长(100km-300km),排序时就可以搞一定精简;远距离输电网(电压在330kv及以上),运送线路少于300km,排序时无法精简。
按电压多寡,电力网可以分成扰动电网,(1kv及以下)、中压电网(3、6、10kv)、高压电网(35、60、110、220kv)、超高压电网(330kv、差值500、差值600、差值750)、特高压电网(差值800、1000kv)。
按接线方式,电力网分成一端电源可供电网、两端电源可供电网、多端电源可供电网。
1.1.2对电力系统的基本要求电能做为一种特定的商品,它的生厂、运送、分配和采用同时展开;生产与国民经济及人名生活关系密切;电力系统运行的过度过程非常短暂。
要求具有较高的自动化程度,需要继电保护、自动装置的投入,实施实时监控。
1.最大限度的满足用户的建议;2.安全、平衡、可信的供电;3.为电力用户提供更多优质的电能;4.满足系统运行的经济性。
电力系统运行的经济性应考虑合理分配各个发电厂的负荷、降低发电厂燃料消耗率、厂用电率、降低电力网的电能损耗和管理成本。
1.2电能质量的标准良好的电能质量可以使电气设备正常工作,并取得最佳的经济效果。
电力系统的基本知识1、什么叫电力系统的稳定和振荡?答:电力系统正常运行时,原动机供应发电机的功率总是等于发电机送给系统供负荷消耗的功率,当电力系统受到扰动,使上述功率平衡关系受到破坏时,电力系统应能自动地恢复到原来的运行状态,或者凭借掌握设备的作用过度到新的功率平衡状态运行,即谓电力系统稳定。
这是电力系统维持稳定运行的力量,是电力系统同步稳定(简称稳定)讨论的课题。
电力系统稳定分为静态稳定和暂态稳定。
静态稳定是指电力系统受到微小的扰动(如负载和电压较小的变化)后,能自动地恢复到原来运行状态的力量。
暂态稳定对应的是电网受到大扰动的状况。
系统的各点电压和电流均作往复摇摆,系统的任何一点电流与电压之间的相位角都随功角δ的变化而转变、频率下降等我们通常把这种现象叫电力系统振荡。
2、电力系统振荡和短路的区分是什么?答:电力系统振荡和短路的主要区分是:振荡时系统各点电压和电流值均作往复摇摆,而短路时电流、电压值是突变的。
此外,振荡时电流、电压值的变化速度较慢,而短路时的电流、电压值突变量很大。
振荡时系统任何一点电流与电压之间的相位角随功角δ的变化而转变;而短路时,电流与电压之间的相位是基本不变的。
振荡时无零序和负序重量,短路时有零序和负序重量。
3、电力系统振荡时,对继电爱护装置有那些影响?那些爱护装置不受影响?答:电力系统振荡时,对继电爱护装置的电流继电器、阻抗继电器有影响。
对电流继电器的影响。
当爱护装置的时限大于1.5-2秒时,就可能躲过振荡不误动作。
对阻抗继电器的影响。
I↑U↓爱护动作,I↓U↑爱护返回。
距离ⅠⅡ段采纳振荡闭锁原理躲开系统振荡,以防止阻抗继电器误动作。
原理上不受振荡影响的的爱护有相差动爱护,和电流差动纵联爱护,零序电流爱护等。
4、我国电力系统中性点接地有几种方式?它们对继电爱护的要求是什么?答:我国电力系统中性点接地有三种方式:①中性点直接接地方式;②中性点经过消弧线圈接地方式;③中性点不接地方式。
电力系统基本知识电力系统是现代社会不可或缺的基础设施之一,电力系统由主要的发电、输电和配电三部分组成。
在这个过程中,能量从能源的来源通过输电,最终到达消费者。
在这篇文章中,我将讨论电力系统的基础知识,包括电力系统结构、电力系统组成部分、电力系统的运行原理和安全问题。
一、电力系统结构电力系统结构包括三个方面:发电系统、输电系统和配电系统。
发电系统提供电力,输电系统负责把电力从发电站传输到各个城市、地区、企业,配电系统则是把输送来的电力传递给住宅和商业用户等最终消费者。
二、发电系统发电系统主要包括燃煤发电、水力发电、核能发电、风能发电、太阳能发电等。
不同的发电方式,有不同的优缺点。
燃煤发电是最常见的一种发电方式。
它的优点是成本低,因为燃煤是易得的。
然而,这个方法会产生大量的温室气体,加重环境负担。
水力发电由于具有稳定性、可持续性和环保性等优势,是比较理想的一种发电方式。
然而,其缺点是需要特定的条件,比如水资源,而且在干旱时期会产生一定的影响。
核能发电仍然是一种有争议的发电方式,尽管核能发电的成本很低,且排放温室气体少。
但是,其使用有核废料的问题还没有得到有效解决。
而太阳能发电和风能发电是没有排放有害气体,同时也可以在很多地方使用。
然而,这些发电方式的成本较高,且其能量产生是受天气因素影响。
三、输电系统输电系统包括输电线路、变电站和输电设备等。
输电线路载有高压电流,因此需要选择安全可靠的材料、设备和设施等,以避免电力发生故障。
变电站是将高压电流转变为低压电压的设施。
输电设备的特点是需要经过高强度和持续的运行考验,尤其对于输电设备来说,在防直击雷的稳定性上更有要求。
四、配电系统配电系统包括变电站、配电设备、输电线路、变压器等。
变电站将输电线路的高压电流变成适合家庭和企业使用的低压电流。
配电设备包括开关、断路器,电表等。
变压器为配电系统提供了稳定可靠的电源。
五、电力系统的运行原理在电力系统中,能量从势能和动能转换到电能,再由高压变成稳定的低压供给用户。
第一章电力系统基础知识继电保护、自动装置对电力系统起到保护和安全控制的作用,因此首先应明确所要保护和控制对象的相关情况,涉及的内容包括:电力系统的构成,电力系统中性点接地方式及其特点,电力系统短路电流计算及其相关概念.这是学习继电保护、自动装置等本书内容的基础。
>〉第一节电力系统基本概念一、电力系统构成电力系统是由发电厂、变电站(所)、送电线路、配电线路、电力用户组成的整体。
其中,联系发电厂与用户的中间环节称为电力网,主要由送电线路、变电所、配电所和配电线路组成,如图1-1中的虚框所示。
电力系统和动力设备组成了动力系统,动力设备包括锅炉、汽轮机、水轮机等。
在电力系统中,各种电气设备多是三相的,且三相系统基本上呈现或设计为对称形式,所以可以将三相电力系统用单相图表述。
动力系统、电力系统及电力网之间的关系示意图如图1-l所示。
图1-1 动力系统、电力系统及电力网示意图需要指出的是,为了保证电力系统一次电力设施的正常运行,还需要配置继电保护、自动装置、计量装置、通信和电网调度自动化设施等。
电力系统主要组成部分和电气设备的作用如下。
(1)发电厂。
发电厂是把各种天然能源转换成电能的工厂.天然能源也称为一次能源,例如煤炭、石油、天然气、水力、风力、太阳能等,根据发电厂使用的一次能源不同,发电厂分为火力发电厂(一次能源为煤炭、石油或天然气)、水力发屯厂、风力发电厂等。
(2)变电站(所)。
变电站是电力系统中联系发电厂与用户的中间环节,具有汇集电能和分配电能、变换电压和交换功率等功能,是一个装有多种电气设备的场所。
根据在电力系统中所起的作用,可分为升压变电站和降压变电站;根据设备安装位置,可分为户外变电站、户内变电站、半户外变电站和地下变电站。
变电站内一次电气设备主要有变压器、断路器、隔离开关、避雷器、电流互感器、电压互感器、高压熔断器、负荷开关等。
变电站内还配备有继电保护和自动装置、测量仪表、自动控制系统及远动通信装置等。
电力系统分析基础知识一、电力系统的基本概念No.1 电力系统的组成和接线方式1、电力系统的四大主要元件:发电机、变压器、电力线路、负荷。
2、动力系统包括动力部分(火电厂的锅炉和汽轮机、水电厂的水库和水轮机、核电厂的核反应堆和汽轮机)和电力系统。
3、电力网包括变压器和电力线路。
4、用户只能从一回线路获得电能的接线方式称为无备用接线方式。
No.2 电力系统的运行特点1、电能的生产、传输、分配和消费具有:①重要性、②快速性、③同时性。
2、电力系统运行的基本要求:①安全可靠持续供电(首要要求)、②优质、③经济3、根据负荷的重要程度(供电可靠性)将负荷分为三级。
4、电压质量分为:①电压允许偏差、②三相电压允许不平衡度、③公网谐波、④电压允许波动与闪变5、衡量电能质量的指标:①电压、②频率、③波形(电压畸变率)6、10kV公用电网电压畸变率不超过4%。
7、抑制谐波的主要措施:①变压器星三角接线、②加装调谐波器、③并联电容/串联电抗、④增加整流器的脉冲次数8、衡量电力系统运行经济性的指标:①燃料损耗率、②厂用电率、③网损率9、线损包括:①管理线损、②理论线损、③不明线损10、线损计算方法:①最大负荷损耗时间法②最大负荷损失因数法③均方根电流法No.3 电力系统的额定频率和额定电压1、电力线路的额定电压(也称电力网的额定电压)与用电设备的额定电压相同。
2、正常运行时电力线路首端的运行电压常为用电设备额定电压的105%,末端电压为额定电压。
3、发电机的额定电压比电力网的额定电压高5%。
4、变压器的一次绕组相当于用电设备,其额定电压与电力线路的额定电压相同;但变压器直接与发电机相连时,其额定电压与发电机额定电压相同,即为该电压级额定电压的105%。
5、变压器的二次绕组相当于电源,其输出电压应较额定电压高5%,但因变压器本身漏抗的电压损耗在额定负荷时约为5%,所以变压器二次侧的额定电压规定比额定电压高10%。
6、降压变压器二次侧连接10kV线路,当短路电压百分比小于7.5%(变压器本身漏抗的电压损耗较小)时,比线路额定电压高5%。
电力系统的基本知识范本电力系统是由发电、输电、配电和用电四个环节组成的能源系统,用于向各个领域和行业提供电力供应。
了解电力系统的基本知识对于我们理解电力供应、用电安全等方面具有重要意义。
以下将对电力系统的基本知识进行全面介绍。
1. 发电发电是电力系统的起始环节,通过转换能源形式,将其转化为电能。
常见的发电方式有火力发电、水力发电、核能发电以及新能源发电等。
火力发电利用燃煤、燃油等燃料燃烧产生蒸汽,使用蒸汽驱动涡轮机发电;水力发电则利用水能转换为电能,通过水轮机驱动发电机发电;核能发电则通过核反应将核能转换为热能,再利用热能转换为电能;新能源发电包括太阳能发电和风能发电等,利用太阳能和风能转换为电能。
2. 输电输电是将发电厂产生的电能通过输电线路传输到各个用电地点。
输电线路分为高压线路和低压线路两种。
高压线路通常用于长距离输电,采用高电压可以减小线路损耗。
常见的高压线路有220千伏、500千伏等;低压线路则用于将电能从变电站输送到各个用户,通常采用较低的电压,如10千伏、0.4千伏等。
3. 配电配电是将输电过来的电能分配给各个用户的过程。
在配电过程中,通常会设置变电站和配电变压器。
变电站用于将高压电能转换为低压电能,以适应不同用户的需求。
配电变压器则用于将低压电能进一步降压,以满足用户的用电需求。
4. 用电用电是电力系统的最终环节,包括各个领域和行业对电能的利用。
常见的用电设备有家庭用电器、工业生产设备、商业用电设备等。
用电设备的功率大小和运行时间会影响电力系统的负荷大小,电力系统需要根据负荷变化来控制发电和配电。
在电力系统中,安全是一个重要的考虑因素。
为了确保电力系统的安全运行,需要进行电力系统保护和监控。
电力系统保护主要是保护设备和人员不受电力系统故障带来的危害,常见的保护装置有断路器、熔断器、隔离开关等。
电力系统的监控则是通过监测电流、电压等参数,及时发现和处理电力系统的异常情况,以保证电力系统的稳定运行。
电力系统的基本知识1. 什么是电力系统?电力系统是指由发电、输电、变电、配电和用电等环节组成的整个电能供应系统,其中发电、输电、变电和配电的集合称为电力生产和输送系统,供电系统称为电力分配和用电系统。
2. 电力系统的组成电力系统主要由以下几个部分组成:2.1 发电系统发电系统是指将各种能源如煤、天然气、水力、核能等,转化为电能的设备和系统。
常见的电力发电机有水轮发电机,汽轮发电机等。
在发电过程中会产生电能损耗(例如电阻损耗和绕组损耗),通常会通过冷却系统散热来保证机组的正常运行。
2.2 输电系统输电系统是指将电能从发电厂输送到各个用电地点的一系列设备和系统。
输电系统通常包括高压变电站,高压输电线路,中压配电变电站等。
在输电过程中,为保证电能的稳定运输,在网络中通常会引入多种保护装置,例如过电压保护,过载保护等。
2.3 变电系统变电系统是指将电能的电压从高压变换为中低压或低压的设备和系统。
变电系统通常包括输电线路连接点的变电站、配电系统中的变电站等。
变电站有功率变压器和自耦变压器两种。
为了保证变电站的运行安全,常见的保护控制系统包括过流保护,接地保护,绝缘监测等。
2.4 配电系统配电系统是指将电能从变电站输送到终端用户的设备和系统。
通常包括低压配电变压器,低压开关设备和用户终端设备等。
为了保证配电系统的正常运行,配电系统通常会引入多种故障检测手段,例如故障指示器,跳闸器等。
2.5 用电系统用电系统是指在最终用户处使用电能的设备和系统。
照明、电器设备和各种电动机都属于用电系统的范畴。
在用电过程中,通常需要保证用电设备的电源稳定以及电器设备的额定功率范围内运行。
3. 电力系统的分类电力系统主要可以根据电源类型、供电方式等多方面进行分类。
根据电源类型,电力系统可以分为非可再生能源电力系统和可再生能源电力系统。
根据供电方式,电力系统可以分为径流式电力系统和非径流式电力系统。
根据用电负载形式,电力系统可以分为直流供电和交流供电。
电力系统基本知识
1、什么叫电力系统的稳定和振荡?
答:电力系统正常运行时,原动机供给发电机的功率总是等于发电机送给系统供负荷消耗的功率,当电力系统受到扰动,使上述功率平衡关系受到破坏时,电力系统应能自动地恢复到原来的运行状态,或者凭借控制设备的作用过度到新的功率平衡状态运行,即谓电力系统稳定。
这是电力系统维持稳定运行的能力,是电力系统同步稳定(简称稳定)研究的课题。
电力系统稳定分为静态稳定和暂态稳定。
静态稳定是指电力系统受到微小的扰动(如负载和电压较小的变化)后,能自动地恢复到原来运行状态的能力。
暂态稳定对应的是电网受到大扰动的情况。
系统的各点电压和电流均作往复摆动,系统的任何一点电流与电压之间的相位角都随功角&delta的变化而改变、频率下降等我们通常把这种现象叫电力系统振荡。
2、电力系统振荡和短路的区别是什么?
答:电力系统振荡和短路的主要区别是:
振荡时系统各点电压和电流值均作往复摆动,而短路时电流、电压值是突变的。
此外,振荡时电流、电压值的变化速度较慢,而短路时的电流、电压值突变量很大。
振荡时系统任何一点电流与电压之间的相位角随功角&delta的变化而改变;而短路时,电流与电压之间的相位是基本不变的。
振荡时无零序和负序分量,短路时有零序和负序分量。
3、电力系统振荡时,对继电保护装置有那些影响?那些保护装置不受影响?
答:电力系统振荡时,对继电保护装置的电流继电器、阻抗继电器有影响。
对电流继电器的影响。
当保护装置的时限大于1.5-2秒时,就可能躲过振荡不误动作。
对阻抗继电器的影响。
I&uarrU&darr保护动作,I&darrU&uarr 保护返回。
距离ⅠⅡ段采用振荡闭锁原理躲开系统振荡,以防止阻抗继电器误动作。
原理上不受振荡影响的的保护有相差动保护,和电流差动纵联保护,零序电流保护等。
4、我国电力系统中性点接地有几种方式?它们对继电保护的要求是什么?
答:我国电力系统中性点接地有三种方式:①中性点直接接地方式;②中性点经过消弧线圈接地方式;③中性点不接地方式。
110KV以上电网的中性点均采用第①种接地方式。
在这种系统中,发生单相接地故障时接地短路电流很大,故称大接地电流系统。
在大接地系统中,发生单相接地故障的几率较高,可占短路故障的70%左右,因此要求其接地保护能灵敏、可靠、快速、有选择地切除短路接地故障,以免危及电气设备的安全。
3-35KV电网的中性点采用第②或第③种接地方式。
在这种系统中,发生单相接地故障时接地短路电流较小,故称小接地电流系统。
在小接地电流系统中发生单相接地故障时,并不破坏系统线电压的对称性,系统还可以继续运行1-2个小时,同时由绝缘监察装置发出无选择性信号,由值班人员采取措施加以消除。
5、小接地电流系统中,为什么采用中性点经消弧线圈接地?
答:中性点非直接接地系统发生单相接地故障时,接地点将通过接地线路对应电压等级电网的全部对地电容电流。
如果此电容电流相当大,就会在接地点产生间歇性电弧,引起过电压,从而使非故障相对地电压极大增加。
在电弧接地过电压的作用下,可能导致绝缘损坏,造成两点或多点的接地短路,使事故扩大。
为此,我国采取的措施是:当各级电压电网单相接地故障时,如果接地电容电流超过一定数值(35KV电网为10A、10KV电网为20A、3-6KV电网为30A),就在中性点装设消弧线圈,其目的是利用消弧线圈的感性电流补偿接地故障时的容性电流,使接地故障电流减少,以至自动消弧,保证继续供电。
6、什么是消弧线圈的欠补偿、全补偿、过补偿?中性点经消弧线
圈接地系统为什么普遍采用过补偿运行方式?
答:中性点装设消弧线圈的目的是利用消弧线圈的感性电流补偿接地故障时的容性电流,使接地故障电流减少。
通常这种补偿有三种不同的运行方式,即欠补偿、全补偿和过补偿。
① 欠补偿:补偿后电感电流小于电容电流。
② 过补偿:补偿后电感电流大于电容电流。
③ 全补偿:补偿后电感电流等于电容电流。
中性点经消弧线圈接地系统采用全补偿时,无论不对称电压的大小如何,都将因发生串联共振而使消弧线圈感受到很高的电压。
因此,要避免全补偿运行方式的发生,而采用过补偿的方式或欠补偿的方式,但实际上一般都采用过补偿的运行方式,其主要原因如下:
① 欠补偿电网发生故障时,容易出现很高的过电压。
例如,当电网中因故障或其它原因而切除部分线路后,在欠补偿电网中就有可能形成全补偿的运行方式而造成串联共振,从而引起很高的中性点位移电压与过电压,在欠补偿电网中也会出现很大的中性点位移而危及绝缘。
只要采用欠补偿的运行方式,这一缺点是无法避免的。
② 欠补偿电网在正常运行时,如果三相不对称度较大,还有可能出现数值很大的铁磁共振过电压。
这种过电压是因欠补偿的消弧线圈(它的WL>1/3WC0)和线路电容3C0发生铁磁共振而引起。
如采用过补偿运行方式,就不会出现这种铁磁共振现象。
③ 电力系统往往是不断发展和扩大的,电网的对地电容亦将随之增大。
如果采用过补偿,原装的消弧线圈仍可以使用一段时间,至多由过补偿转变为欠补偿运行,但如果原来就采用欠补偿的运行方式,则系统一有发展就必须立即补偿容量。
④ 由于过补偿时流过接地点的是电感电流,熄弧后故障相电压恢复速度较慢,因而接地电弧不易重燃。
⑤ 采用过补偿时,系统频率的降低只能使过补偿度暂时增大,这在正常运行时毫无问题;反之,如果欠补偿,系统频率的降低使之接近于全补偿,从而引起中性点位移电压的增大。