高中数学必修一《并集与交集》优秀教学设计
- 格式:docx
- 大小:73.44 KB
- 文档页数:3
§ 1.3.1集合的基本运算—交集与并集1、教学目标(1)通过实例,抽象概括两个集合的并集与交集的概念,从三种语言理解交集与并集含义,发展学生数学抽象素养;(2)会求两个简单集合的并集与交集,能用Venn 图表达集合的关系及运算,发展学生直观想象素养与数学运算素养.2、教学重点与难点教学重点:集合的交集与并集的概念; 用集合语言表达数学对象或数学内容. 教学难点: “且”、“或”的理解及正确进行集合的交与并.3、教学过程:环节1:呈现情境,提出问题我们知道,实数有加、减、乘、除等运算。
集合是否也有类似的运算呢?请观察、思考下列集合之间的关系:问题1:(1)记A={x|x 是有理数},B={x|x 是无理数},C={x|x 是实数},集合A,B,C 之间有什么关系?(2)某文具店现有铅笔、中性笔、直尺、笔记本、橡皮5种商品出售,现计划再进中性笔、直尺、笔记本、订书机、三角板5种商品。
那么进货后该文具店有哪些商品可出售?共几种?用集合A 、B 、C 分别表示文具店现有品种、计划进货品种、进货后共有品种,那么集合A,B,C 之间有怎样的关系?(或改为观察下面的集合,类比实数的加法运算,你能说出集合C 与集合A,B 之间的关系吗?(1){}5,3,1=A ,{}6,4,2=B ,{}6,5,4,3,2,1=C ; (2)A={x|x 是有理数},B={x|x 是无理数},C={x|x 是实数}.师生活动:学生讨论,教师引导完成。
(3)异分母分数41,31通分时,要先求它们的公分母。
记{}*∈==N k k x x A .3|, {}*∈==N k k x x B .4|,那么41,31的公分母的集合C 是什么?集合A,B,C 之间有怎样的关系?(4)设{}是矩形x x A |=,{}是菱形x x B |=,{}是正方形x x C |=,集合A,B,C 之间有怎样的关系?【设计意图】从具体、学生熟悉的例子入手,使学生感受建立集合运算的必要性,并通过归纳、抽象建构并集、交集概念。
交集并集一等奖说课稿1、交集并集一等奖说课稿各位领导和老师,大家好!我说课的内容是苏教版必修1第1章第3节第一课时《交集、并集》,下面我想谈谈我对这节课的教学构想:一、教材分析:与传统的教材处理不同,本章在学生通过观察具体集合得到集合的补集的概念后,上升到数学内部,将“补”理解为集合间的一种“运算”。
在此基础上,通过实例,使学生感受和掌握集合之间的另外两种运算—交和并。
设计的思路从具体到理论,再回到具体,螺旋上升。
集合作为一种数学语言,在后续的学习中是一种重要的工具。
因此,在教学过程中要针对具体问题,引导学生恰当使用自然语言、图形语言和集合语言来描述相应的数学内容。
有了集合的语言,可以更清晰的表达我们的思想。
所以,集合是整个数学的基础,在以后的学习中有着极为广泛的应用。
基于以上的分析制定以下的教学目标二、教学目标:1、理解交集与并集的概念;掌握有关集合的术语和符号,并会用它们正确表示一些简单的集合。
能用venn图表示集合之间的关系;掌握两个集合的交集、并集的求法。
2、通过对交集、并集概念的学习,培养学生观察、比较、分析、概括的能力,使学生认识由具体到抽象的思维过程。
3、通过对集合符号语言的学习,培养学生符号表达能力,培养严谨的学习作风,养成良好的学习习惯。
三、教学重点、难点:针对以上的分析我把教学重点放在交集与并集的概念,一些集合的交集和并集的求法上。
而把如何引导学生通过观察、比较、分析、概括出交集与并集的概念作为本节的教学难点。
四、教法、学法:针对我们师范学校学生的特点,我本着低起点、高要求、循序渐进,充分调动学生学习积极性的原则,采用“五环节教学法”。
同时利用多媒体辅助教学。
下面我重点说一说教学过程五、教学过程:第一个环节:问题情境通过实例:学校举办了排球赛,08小教(2)56名同学中有12名同学参赛,后来又举办了田径赛,这个班有20名同学参赛。
已知两项都参赛的有6名同学。
两项比赛中,这个班共有多少名同学没有参加过比赛?让学生感受到数学与我们的生活息息相关,从而激发学生的学习兴趣。
某某省某某中学高一数学《交集、并集》教案教学目的:理解交集、并集的含义,会求两个集合的交集和并集;理解区间的表示方法;掌握有关集合的术语与符号,并会用它们正确的表示一些简单的集合。
教学重点:交集、并集的含义,准确运用集合的术语和符号。
教学过程:一、问题情境:问题1、某校为了迎接新同学特举行一场迎新晚会,高一(1)派出了10人的演出小组参加演出,其中参加歌舞类表演的有6人,参加小品类表演的有7人,问两项都参加的是多少人?问题2、某高校医学系学生响应国家号召参加抗击非典型肺炎志愿者活动 .参加抗击非典热线服务的有 100 人,参加市区宣传非典防治活动的有125人,参加校园防疫的有 85人 .其中同时参加市区宣传和校园防疫的有 33人,没有参加志愿活动的有 16人 .问该校医学系共有多少学生?二、学生活动:1、设A ={参加歌舞类表演的同学},B ={参加小品类表演的同学},C ={两项都参加的同学}2、设D ={参加抗击非典热线服务的学生},E ={参加市区宣传非典防治活动的学生},F ={参加校园防疫的同学},G ={同时参加市区宣传和校园防疫的同学},H ={没有参加志愿活动的同学},M ={该校医学系学生}用韦恩图表示上面的问题1和2三、建构数学:A 在S 中的补集S A 是由给定的两个集合S 、A 得到的一个新的集合。
这种由两个集合得到一个新集合的过程称为集合的运算。
由两个集合(或几个集合)得到一个新集合的方法有多种,集合的交与并就是常用的两种运算。
一般地,由所有..属于A 且属于B 的元素构成的集合,称为A 与B 的交集,记作:A ∩B (读作“A 交B ”),即 A ∩B ={x | x ∈A ,且x ∈B}问题1的结果为C =A ∩B 。
关于交集有如下性质:A ∩B =B ∩A ,A ∩B A ,A ∩B B 。
A B A B ∩思考:A ∩B =A ,A ∩B =Φ可能成立吗?如果可能,什么时候成立?举例说明。
高一数学交集与并集教学教案高一数学交集与并集教学教案教材分析:集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。
另一方面,集合论及其所反映的数学思想,在越越广泛的领域种得到应用。
目标:(1)通过实例,了解集合的含义,体会元素与集合的理解集合“属于”关系;(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;重点:集合的基本概念与表示方法;教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合;教学过程:一、引入题军训前学校通知:8月15日8点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布题),即是一些研究对象的总体。
阅读本P2-P3内容二、新教学(一)集合的有关概念1.集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。
2.一般地,研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。
3.思考1:本P3的思考题,并再列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,进而讲解下面的'问题。
4.关于集合的元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。
(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。
(3)集合相等:构成两个集合的元素完全一样5.元素与集合的关系;(1)如果a是集合A的元素,就说a属于(belong to)A,记作a∈A(2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作a A(或a A)(举例)6.常用数集及其记法非负整数集(或自然数集),记作N正整数集,记作N*或N+;整数集,记作Z有理数集,记作Q实数集,记作R(二)集合的表示方法我们可以用自然语言描述一个集合,但这将给我们带很多不便,除此之外还常用列举法和描述法表示集合。
并集与交集的运算教案教案标题:并集与交集的运算教案目标:1. 理解并集与交集的概念及其运算规则。
2. 能够正确运用并集与交集的运算规则解决相关问题。
3. 培养学生的逻辑思维和推理能力。
教学准备:1. 教师准备:黑板/白板、彩色粉笔/白板笔、教学PPT、教案、练习题、学生讲义。
2. 学生准备:课前预习并带好相关教材、笔记本。
教学过程:Step 1:导入与概念解释(5分钟)1. 教师通过提问或展示图片等方式,引导学生回顾集合的概念。
2. 教师向学生介绍并集与交集的概念,并以简单的例子解释其含义。
Step 2:并集与交集的运算规则(10分钟)1. 教师通过教学PPT或黑板/白板,向学生展示并集与交集的运算规则,并逐一讲解。
2. 教师通过示例演示并集与交集的运算过程,引导学生理解运算规则。
Step 3:练习与巩固(15分钟)1. 教师提供一些简单的练习题,让学生在课堂上进行个人或小组练习。
2. 教师在学生完成练习后,进行讲解和答疑,确保学生掌握并集与交集的运算规则。
Step 4:拓展与应用(10分钟)1. 教师提供一些较难的应用题,引导学生应用并集与交集的运算规则解决问题。
2. 学生个人或小组讨论解决问题,并向全班展示解题思路和答案。
Step 5:归纳与总结(5分钟)1. 教师与学生共同归纳并集与交集的运算规则,确保学生对所学知识有清晰的认识。
2. 教师提醒学生将所学知识进行笔记整理,以便复习巩固。
Step 6:课堂小结与作业布置(5分钟)1. 教师对本节课的重点内容进行小结,并强调学生需要复习并掌握并集与交集的运算规则。
2. 教师布置相关的课后作业,要求学生在家完成,并在下节课前交给教师。
教学反思:本节课通过导入、概念解释、运算规则讲解、练习与巩固、拓展与应用、归纳与总结等环节,使学生逐步理解并掌握并集与交集的运算规则。
通过练习和应用,学生能够灵活运用所学知识解决问题。
在教学过程中,教师要注重引导学生思考和讨论,培养学生的逻辑思维和推理能力。
诚西郊市崇武区沿街学校交集、并集教学目的:理解交集、并集、全集、补集的概念,掌握集合的运算性质,能利用数轴或者者文氏图进展集合的运算,进一步掌握集合问题的常规处理方法.教学重点:交集、并集、补集的求法,集合语言、集合思想的运用.教学过程:〔一〕主要知识:1.交集、并集、全集、补集的概念;2.A B A A B=⇔⊆,A B A A B=⇔⊇;3.()U U UC A C B C A B=,()U U UC A C B C A B=.〔二〕主要方法:1.求交集、并集、补集,要充分发挥数轴或者者文氏图的作用;2.含参数的问题,要有讨论的意识,分类讨论时要防止在空集上出问题;3.集合的化简是施行运算的前提,等价转化常是顺利解题的关键.〔三〕例题分析:1.A={x|-1<x<3},A∩B=∅,A∪B=R,求B.分析:问题解决主要靠有关概念的正确运用,有关式子的正确利用.解:由A∩B=∅及A∪B=R知全集为R,RA=B故B=RA={x|x≤-1或者者x≥3},B集合可由数形结合找准其元素.2.全集I={-4,-3,-2,-1,0,1,2,3,4},A={-3,a2,a+1},B={a-3,2a-1,a2+1},其中a∈R,假设A∩B={-3},求I(A∪B).分析:问题解决关键在于求A∪B中元素,元素的特征运用很重要.解:由题I={-4,-3,-2,-1,0,1,2,3,4},A={-3,a2,a+1},B={a-3,2a-1,a2+1},其中a∈R,由于A∩B={-3},因a2+1≥1,那么a-3=-3或者者2a-1=-3,即a=0或者者a=-1那么A={-3,0,1},B={-4,-3,2},A∪B={-4,-3,0,1,2}I(A∪B)={-2,-1,3,4}3.设A={x|x2+ax+b=0},B={x|x2+cx+15=0},又AB={3,5},A∩B={3},务实数a,b,c的值.解:∵A∩B={3},∴3∈B,∴32+3c+15=0,∴c=-8.由方程x2-8x+15=0解得x=3或者者x=5,∴B={3,5}.由A ⊆〔AB={3,5}知,3∈A,5∉A〔否那么5∈A∩B,与A∩B={3}矛盾〕故必有A={3},∴方程x2+ax+b=0有两一样的根3,由韦达定理得3+3=-a,3⨯3=b,即a=-6,b=9,c=-8.4.设A={x|x2+4x=0},B={x|x2+2〔a+1〕x+a2-1=0}.〔1〕假设A∩B=B,求a的值;〔2〕假设A∪B=B,求a的值.方法引导:什么情况下有A∩B=B什么情况下有A∪B=B弄清它们的含义,问题就可以解决了.解:A={-4,0},〔1〕∵A∩B=B,∴B⊆A.①假设0∈B,那么a2-1=0,a=±1.当a=1时,B=A;当a=-1时,B={0}.②假设-4∈B,那么a2-8a+7=0,a=7或者者a=1.当a=7时,B={-12,-4},B A.③假设B=∅,那么Δ=4〔a+1〕2-4〔a2-1〕<0,a<-1.由①②③得a=1或者者a≤-1.〔2〕∵A∪B=B,∴A⊆B.∵A={-4,0},又∵B至多有两个元素,∴A=B.由〔1〕知a=1.方法技巧:1.有些数学问题很难从整体入手,需要分割处理,把整体科学合理地划分为假设干个局部独立问题解决,以到达整体问题的解决,这种重要的数学思想方法就是分类讨论的方法,要学会这种思维的方法.2.B=∅也是B⊆A的一种情况,不能遗漏,要注意结果的检验.5.非空集合A={x|2a+1≤x≤3a-5},B={x|3≤x≤22},那么能使A ⊆(A∩B)成立的所有a值的集合是什么?解:由题有:A ⊆A∩B,即A⊆B,A非空,用数轴表示为,那么⎪⎩⎪⎨⎧≤-≥+-≤+22533125312aaaa由方程表示为:6≤a≤9评述:要使A A∩B,需A ⊆A且A⊆B,又A⊆A恒成立,故A⊆B,由数轴得不等式.注意A是非空.假设去掉这一条件效果如何.求解过程及结果是否会变化.请考虑.6.集合A={x|x2-〔p+2〕x+1=0,x∈R|,设B={正实数},且A B=φ,务实数p的取值范围.解析:AB=φ,即方程x2-〔p+2〕x+1=0没有正实根.由AB=φ,∴A=φ或者者A≠φ〔此时A中无正根〕.当A=φ时,即方程x2-〔p+2〕x+1=0无实根,△=〔p+2〕2-4<0,解得-4<p<0.当A≠φ时,即方程x2-〔p+2〕x+1=0无正根,那么⎩⎨⎧≤≥,+,-+24)2(2pp解得p≤-4.综上,知p<0.点评:注意此题不要丢掉无实根这一情况,最后p的取值范围是对两种情况求并集.进步题:1.在100种食物中,含维生素A的有53种,含维生素C的有72种,那么同时含有维生素A与维生素C的食物可能取数的最小值是多少?解析:画韦氏图.设同时含有维生素A与维生素C的食物的种数为x,不含有维生素A与维生素C的食物的种数为y,那么0≤y≤28,y∈N,所以〔53-x〕+〔72-x〕+x+y=100,解得x=25+y,当y=0时,x取最小值25.答案:25.α、β,方程x2-bx+c=0的两根为γ、δ,其中α、β、γ、δ互不2.方程x2-ax+b=0的两根为α、β、γ、δ},且集合S={x|x=u+υ,u∈M,υ∈M,u≠υ},P={x|x=uυ,相等,设集合M={u∈M,υ∈M,u≠υ},假设S={5,7,8,9,10,12},P={6,10,14,15,21,35},求a,b,c.αβ∈P,b=γ+δ∈S,解析:∵b=∈p S={10},故b=10.∴bα+β,α+γ,α+δ,β+γ,β+δ,γ+δ,它们的和是因为S的元素是α+β+γ+δ〕=5+7+8+9+10+12=51由韦达定理,得3〔α+β=a,γ+δ=b,∴a+b=17.∵b=10,∴a=7.αβ,αγ,αδ,βγ,βδ,γδ,它们的和是αβ+〔γ+δ〕〔α+β〕+因为P的元素是γδ=6+10+14+15+21+35由韦达定理,得b+ac+c=101.∵b=10,a=7,∴c=21.答案:a=7,b=10,c=21.3.开运动会时,高一某班28名同学参加比赛,有15人参加游泳比赛,有8人参加田径比赛,有14人参加球类比赛,同时参加游泳径比赛的3人,同时参加游泳和球类比赛的有3人,没有同时参加三项比赛的人,问同时参加田径和球类比赛的有多少人,只有参加游泳一项比赛的有多少人?思路:此题涉及到元素个数问题,可用公式:card〔ABC〕=cardA+cardB+cardC-card〔AB〕-card〔BC〕-card〔AC〕+card〔AC〕+card〔ABC〕,或者者利用文氏图.设同时参加田径和球类比赛的一一共有x人,参加游泳为A,那么cardA=15,参加田径为B,cardB=8,参加球类为C,cardC=14,由条件card〔AB〕=3,card〔AC〕=3,ABC=φ,故有15+8+14-3-3-x=28,解得x=3,因此,同时参加田径和球类比赛的一一共有3人,同时只参加游泳的有15-3-3=9人.4.设集合M={a,b},N={c,d},定义M与N的一个运算“〞为:M N={x|x=mn,其中m∈M,n∈N}.〔1〕试举出两组集合M、N,分别计算M N;〔2〕对上述集合M、N,计算N M,由此你可以得到什么一般性的结论〔3〕举例说明〔A B〕C与A〔B C〕之间的关系.思路分析:此题是一道开放型的信息迁移题,解题时必须紧扣新定义,用好新信息.解:〔1〕不妨设M={1,2},N={3,4},那么M N={3,4,6,8};或者者设M={-1,1},N={3,-3},那么M N={-3,3}等.〔2〕对M={1,2},N={3,4},那么N M={3,6,4,8};对M={-1,1},N={3,-3},那么N M={-3,3}.由〔1〕知,N M=M N,由此猜测,对任意集合M={a,b},N={c,d},总有M N=N M.证明如下:对任意x∈M N,有x=mn,其中m∈M,n∈N;又x=mn=nm,那么x∈N M.于是M N⊆N M.对任意x∈N M,有x=nm,其中n∈N,m∈M;又x=nm=mn,那么x∈N M.于是N M⊆M N.因此M N=N M.〔3〕设A={-1,1},B={3,-3},C={2,4},那么A B={-3,3},于是〔A B〕C={-6,6,-12,12};又B C={6,12,-6,-12},于是A〔B C〕={-6,-12,6,12}.因此〔A B〕C=A〔B C〕.。
2024高一数学交集并集说课稿范文今天我说课的内容是《高一数学交集并集》,下面我将就这个内容从以下几个方面进行阐述。
一、说教材1、《高一数学交集并集》是高中数学教材中的一个重要知识点,属于集合与函数的章节。
在学生已经掌握了集合的基本概念和性质的基础上进行教学,是高中数学中的基础知识之一。
2、教学目标根据新课程标准的要求以及教材的特点,结合学生现有的数学基础,我制定了以下三点教学目标:①认知目标:理解交集和并集的概念,掌握集合的运算规则。
②能力目标:在解决实际问题中,培养学生提取问题中的关键信息,运用集合的运算法则进行推理和计算的能力。
③情感目标:培养学生对数学的兴趣和积极的学习态度,认识到数学在实际生活中的应用。
二、说教法学法本节课的教法主要采用启发式教学法和问题导入法。
学法主要是探究学习法和合作学习法。
通过启发式教学法引导学生主动思考,通过问题导入法激发学生的学习兴趣,通过探究学习法和合作学习法让学生参与到课堂中来,积极主动地学习。
三、说教学准备在教学过程中,我将准备一些实物和图片,以便直观地呈现给学生,增加课堂的趣味性和可视性。
同时,我还会准备一些合适的练习题和案例,让学生在课后进行巩固和拓展。
四、说教学过程本节课的教学过程主要分为以下几个环节:环节一、引入新知我会通过一个有趣的问题引入新知,例如:有一家演唱会要在某个城市举行,已知参加演唱会的人分为两个集合:A集合包括男性参与者,B集合包括女性参与者。
现在我们想要知道两个集合中参加演唱会的人数总和,这个问题该如何解决呢?通过这个问题的引导,我将概念“交集”和“并集”引入到学生的认知范围。
环节二、探究新知在学生对交集和并集的概念有了初步认识后,我将通过具体的实物和图片来展示交集和并集的概念,引导学生进一步理解。
同时,我会设计一些问题,让学生自主探索和发现交集和并集的运算法则。
环节三、示范演练在学生对交集和并集的运算法则有了一定的了解后,我将通过一些示例演练来巩固学生的理解和掌握程度。
高中数学交集并集教案
教学目标:
1. 理解并掌握交集和并集的概念;
2. 能够用集合的交集和并集解决实际问题;
3. 形成初步的数学思维和逻辑推理能力。
教学重点:
1. 交集的概念和性质;
2. 并集的概念和性质;
3. 交集和并集的运算法则。
教学难点:
1. 抽象概念的理解和运用;
2. 复杂情形下的交集和并集计算。
教学准备:
1. 教材《高中数学》相关章节内容;
2. 黑板、彩笔、教学PPT等教学工具。
教学过程:
一、导入:通过问答或举例子引入交集和并集的概念,让学生了解这两个概念的基本含义。
二、讲解:介绍交集和并集的定义和性质,通过图示或实例帮助学生理解这两个概念。
三、练习:让学生进行交集和并集的简单计算练习,加深对概念的理解。
四、拓展:引入实际问题,让学生运用交集和并集的概念解决实际问题,培养他们的思维
能力。
五、总结:归纳交集和并集的运算法则及性质,强化学生对知识的掌握和应用能力。
六、作业布置:布置相关练习题,巩固学生对交集和并集的学习。
教学延伸:
1. 拓展交集和并集的应用领域,如概率统计等领域;
2. 引导学生探究更复杂的交集和并集问题,培养他们的数学思维和解决问题的能力。
教学反思:
在教学过程中,应注意引导学生理解抽象概念,注重实际问题的应用,帮助学生建立起数学思维和逻辑推理能力。
同时,要及时总结归纳知识,并培养学生的自主学习能力。
交集 并集(1)教材: 交集与并集(1)目的: 通过实例及图形让学生理解交集与并集的概念及有关性质。
过程:一、 复习:子集、补集与全集的概念及其表示方法提问(板演):U={x|0≤x<6,x ∈Z} A={1,3,5} B={1,4} 求:CuA= {0,2,4}. CuB= {0,2,3,5}.二、 新授:1、实例: 图2、定义: 交集: A ∩B ={x|x ∈A 且x ∈B} 符号、读法 并集: A ∪B ={x|x ∈A 或x ∈B}见课本P10--11 定义 (略)3、性质:结合定义,观察图形,不难发现:交集: 并集: 例1 设 分析:此题涉及不等式问题,利用数轴即属性结合是最佳方案 解:(在数轴上做出A 、B 对应部分,如图 为阴影部分) 例2 设 分析:用韦恩图解答此题 解: 注意:集合中元素具有互异性 例3 设 分析:利用数轴表示解集,数形结合求解 解: 例4 设}{}{(,)46,(,)53,.A x y y x B x y y x A B ==-+==-求 解:}{}{(,)46(,)53A B x y y x x y y x ==-+=-46(,)53y x x y y x ⎧⎫=-+⎧⎪⎪=⎨⎨⎬=-⎩⎪⎪⎭⎩}{(1,2)= 反思:本题中,(x,y)既看成二元一次方程的解,也可以看成直线上的点的坐标。
集合A 表示平面坐标上,直线y=-4x+6 上的点组成的集合。
本题中将集合语言转化为非集合语言有什么好处呢? 形象直观,实为属性结合的运用。
练习 课本12页1,2,3,4,5 }{}{2(1)1,,1,,.A y y x x R B y y x x R A B ==-∈==-∈求 }{}{2(2)1,,1,,.A y y x x R B x y x y R A B ==-∈==-∈求 }{C 2436=与的约数}{24A =的约数}{36B =的约数}{D 2436=的约数或的约数A B B AA B A B(1)A A A =(2)AAφ=(3)A B B A=(1)A A A =(2)A φφ=(3)A B B A =}{}{2,3,A B A x x B x x =≥-=≤求。
明目标、知重点 1.理解两个集合的并集与交集的含义,会求两个简单集合的并集和交集.2.能使用Venn图表示集合的并集和交集运算结果,体会直观图对理解抽象概念的作用.3.掌握有关的术语和符号,并会用它们正确进行集合的并集与交集运算.1.交集(1)定义:一般地,由所有属于集合A且属于集合B的元素构成的集合,称为A与B的交集,记作A∩B.(2)交集的符号语言表示为A∩B={x|x∈A,且x∈B}.(3)性质:A∩B=B∩A,A∩A=A,A∩∅=∅,A∩B=A⇔A⊆B,A∩B⊆A∪B,A∩B⊆A,A∩B ⊆B.2.并集(1)定义:一般地,由所有属于集合A或者属于集合B的元素构成的集合,称为A与B的并集,记作A∪B.(2)并集的符号语言表示为A∪B={x|x∈A,或x∈B}.(3)性质:A∪B=B∪A,A∪A=A,A∪∅=A,A∪B=A⇔B⊆A,A⊆A∪B.[情境导学]两个实数除了可以比较大小外,还可以进行加减法运算,如果把集合与实数相类比,我们会想两个集合是否也可以进行“加减”运算呢?本节就来研究这个问题.探究点一交集思考1任意两个实数通过某一种运算能得出一个新的实数,类比实数的运算,如何定义集合间的运算?你能举例说明吗?答由两个集合(或几个集合)得到一个新集合的过程称为集合的运算.例如:A在S中的补集∁S A是由给定的两个集合A,S得到的一个新集合.所以补集就是集合的一种运算.思考2用Venn图分别表示下列各组中的三个集合,你能说出集合C与集合A、B之间的关系吗?(1)A={-1,1,2,3},B={-1,-2,1},C={-1,1};(2)A={x|x≤3},B={x|x>0},C={x|0<x≤3};(3)A={x|x为高一(4)班语文测验优秀者},B={x|x为高一(4)班英语测验优秀者},C={x|x为高一(4)班语文、英语测验优秀者}.答V enn图如图所示,通过观察Venn图,得出集合A和集合B的共同元素就构成了集合C.(1)(2)(3)思考3在思考2中,我们称集合C为集合A、B的交集,那么如何定义两个集合的交集?答一般地,由所有属于集合A且属于集合B的元素构成的集合,称为A与B的交集,记作A∩B,即A∩B={x|x∈A,且x∈B}.思考4对于任意两个集合A,B,它们的交集有怎样的性质?答A∩B=B∩A, A∩∅=∅,A∩B⊆A,A∩B⊆B.思考5集合A∩B如何用Venn图来表示?答A∩B可用如图中的阴影部分来表示:例1(1)新华中学开运动会,设A={x|x是新华中学高一年级参加百米赛跑的同学},B={x|x 是新华中学高一年级参加跳高比赛的同学},求A∩B.(2)设平面内直线l1上点的集合为L1,直线l2上点的集合为L2,试用集合的运算表示l1,l2的位置关系.解(1)A∩B就是新华中学高一年级中那些既参加百米赛跑又参加跳高比赛的同学组成的集合.所以A∩B={x|x是新华中学高一年级既参加百米赛跑又参加跳高比赛的同学}.(2)平面内直线l1,l2可能有三种位置关系,即相交于一点,平行或重合.①直线l1,l2相交于一点P可表示为:L1∩L2={点P};②直线l1,l2平行可表示为L1∩L2=∅;③直线l1,l2重合可表示为L1∩L2=L1=L2.反思与感悟两个集合求交集,结果还是一个集合,是由集合A与B的公共元素组成的集合,当两个集合没有公共元素时,两个集合的交集是空集,而不能说两个集合没有交集.跟踪训练1设集合A={y|y=x2,x∈R},B={(x,y)|y=x+2,x∈R},则A∩B=________. 答案∅解析由于集合A表示的是数集,集合B表示的是点集,因此没有公共元素,故答案为∅. 探究点二并集思考1考察下列两组中的三个集合,你能说出集合C与集合A,B之间的关系吗?(1)A={1,3,5},B={2,4,6},C={1,2,3,4,5,6};(2)A={x|x是有理数},B={x|x是无理数},C={x|x是实数}.答集合A和集合B的元素并在一起即为集合C的元素.思考2在思考1中,我们称集合C为集合A、B的并集,那么如何定义两个集合的并集?答一般地,由所有属于集合A或者属于集合B的元素构成的集合,称为A与B的并集,记作A∪B,即A∪B={x|x∈A,或x∈B}.思考3A∪B如何用Venn图表示?答A∪B用Venn图表示如下图所示的阴影部分:思考4集合的并集有什么性质?答A∪B=B∪A,A∪∅=A,A⊆A∪B,B⊆A∪B.思考5A∪B=A可能成立吗?A∪B=∅呢?A∪∁U A是什么集合?答当B⊆A时,A∪B=A成立;只有当A=B=∅时,A∪B=∅;A∪∁U A是全集.例2设A={x|x>0},B={x|x≤1},求A∩B和A∪B.解A∩B={x|x>0}∩{x|x≤1}={x|0<x≤1},A∪B={x|x>0}∪{x|x≤1}=R.反思与感悟两个集合求并集,结果还是一个集合,是由集合A与B的所有元素组成的集合,它们的公共元素在并集中只能出现一次.对于表示不等式解集的集合的运算,可借助数轴解题.跟踪训练2 (1)设A ={4,5,6,8},B ={3,5,6,7,8},求A ∪B ; (2)设集合A ={x |-1<x <2},集合B ={x |1<x <3},求A ∪B . 解 (1)A ∪B ={4,5,6,8}∪{3,5,6,7,8}={3,4,5,6,7,8}; (2)A ∪B ={x |-1<x <2}∪{x |1<x <3}={x |-1<x <3}.例3 学校举办了排球赛,某班45名同学中有12名同学参赛,后来又举办了田径赛,这个班有20名同学参赛,已知两项都参赛的有6名同学,两项比赛中,这个班共有多少名同学没有参加过比赛?解 设A ={x |x 为参加排球赛的同学},B ={x |x 为参加田径赛的同学},则A ∩B ={x |x 为参加两项比赛的同学}.画出Venn 图(如下图),可知没有参加过比赛的同学有 45-(12+20-6)=19(名).答 这个班共有19名同学没有参加过比赛.反思与感悟 在求有关集合运算的问题过程中要充分利用数轴、V enn 图,无论求解交集问题,还是求解并集问题,关键还是寻求元素.跟踪训练3 学校开运动会,某班有30名学生,其中20人报名参加赛跑项目,11人报名参加跳跃项目,两项都没有报名的有4人,问两项都参加的有几人?解 如图所示,设只参加赛跑、只参加跳跃、两项都参加的人数分别为a ,b ,x.根据题意有⎩⎪⎨⎪⎧a +x =20,b +x =11,a +b +x =30-4.解得x =5,即两项都参加的有5人. 探究点三 几个区间的概念思考 用集合表示数的范围不是太简洁,有没有比集合更为简洁的办法表示数的范围? 答 设a 、b ∈R ,且a <b ,规定: [a ,b ]={x |a ≤x ≤b },(a ,b )={x |a <x <b },[a ,b )={x |a ≤x <b },(a ,b ]={x |a <x ≤b }. (a ,+∞)={x |x >a },(-∞,b )={x |x <b }, (-∞,+∞)=R .其中[a ,b ]叫做闭区间;(a ,b )叫做开区间;[a ,b ),(a ,b ]叫做半开半闭区间;a ,b 叫做相应区间的端点.1.设A ={x |x ≥0},B ={x |x ≤0},则A ∩B =________. 答案 {0}解 A ∩B ={x |x ≥0}∩{x |x ≤0}={0}.2.设全集U =M ∪N ={1,2,3,4,5},M ∩(∁U N )={2,4},则N =________. 答案 {1,3,5}解析 由M ∩(∁U N )={2,4}可得集合N 中不含有元素2,4,集合M 中含有元素2,4,故N ={1,3,5}.3.已知集合P ={x |x 2≤1},M ={a }.若P ∪M =P ,则a 的取值范围为________. 答案 [-1,1]解析 由P ={x |x 2≤1}得P ={x |-1≤x ≤1}. 由P ∪M =P 得M ⊆P .又M ={a },∴-1≤a ≤1.4.已知集合A ={x |-2≤x ≤2},B ={x |x ≤1},则A ∩B =____________. 答案 {x |-2≤x ≤1}解析 易知A ={x |-2≤x ≤2},∴A ∩B ={x |-2≤x ≤1}.5.已知集合A ={x |1≤x <5},C ={x |-a <x ≤a +3}.若C ∩A =C ,则a 的取值范围是________. 答案 (-∞,-1]解析 因为C ∩A =C ,所以C ⊆A .①当C =∅时,满足C ⊆A ,此时-a ≥a +3,得a ≤-32;②当C ≠∅时,要使C ⊆A ,则⎩⎪⎨⎪⎧-a <a +3,-a ≥1,a +3<5,解得-32<a ≤-1.[呈重点、现规律]1.对并集、交集概念的理解(1)对于并集,要注意其中“或”的意义,“或”与通常所说的“非此即彼”有原则性的区别,它们是“相容”的.“x∈A,或x∈B”这一条件,包括下列三种情况:x∈A但x∉B;x∈B 但x∉A;x∈A且x∈B.因此,A∪B是由所有至少属于A、B两者之一的元素组成的集合.(2)A∩B中的元素是“所有”属于集合A且属于集合B的元素,而不是部分,特别地,当集合A和集合B没有公共元素时,不能说A与B没有交集,而是A∩B=∅.2.集合的交、并运算中的注意事项(1)对于元素个数有限的集合,可直接根据集合的“交”、“并”定义求解,但要注意集合元素的互异性.(2)对于元素个数无限的集合,进行交、并运算时,可借助数轴,利用数轴分析法求解,但要注意端点值取到与否.、一、基础过关1.设集合M={-1,0,1},N={x|x2≤x},则M∩N=________.答案{0,1}解析∵x2≤x,∴0≤x≤1,∴N={x|0≤x≤1}.∴M∩N={-1,0,1}∩{x|0≤x≤1}={0,1}.2.设A={(x,y)|y=-4x+6},B={(x,y)|y=5x-3},则A∩B=________.答案{(1,2)}解析A∩B={(x,y)|y=-4x+6,且y=5x-3}={(x,y)|x=1,y=2}={(1,2)}.3.已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则(∁U A)∪B=________.答案{0,2,4}解析∵∁U A={0,4},B={2,4},∴(∁U A)∪B={0,2,4}.4.设集合A={x|1<x<4},集合B={x|-1≤x≤3},则A∩(∁R B)=________.答案(3,4)解析由于B=[-1,3],则∁R B=(-∞,-1)∪(3,+∞),∴A∩(∁R B)=(3,4).5.设集合A={-3,0,1},B={t2-t+1}.若A∪B=A,则t=________.答案0或1解析 由A ∪B =A 知B ⊆A , ∴t 2-t +1=-3① 或t 2-t +1=0② 或t 2-t +1=1③①无解;②无解;③t =0或t =1.6.已知全集U ={0,1,2,3,4,5,6,7,8,9},集合A ={0,1,3,5,8},集合B ={2,4,5,6,8},则(∁U A )∩(∁U B )=______.答案 {7,9}解析 因为∁U A ={2,4,6,7,9},∁U B ={0,1,3,7,9},所以(∁U A )∩(∁U B )={7,9}. 7.设集合A ={-2},B ={x |ax +1=0,a ∈R },若A ∩B =B ,求a 的值. 解 ∵A ∩B =B ,∴B ⊆A . ∵A ={-2}≠∅,∴B =∅或B ≠∅.当B =∅时,方程ax +1=0无解,此时a =0.当B ≠∅时,此时a ≠0,则B ={-1a},∴-1a ∈A ,即有-1a =-2,得a =12.综上,a =0或a =12.二、能力提升8.如图,U 是全集,M 、P 、S 是U 的3个子集,则阴影部分所表示的集合是____________.答案 (M ∩P )∩(∁U S )解析 依题意,由图知,阴影部分对应的元素a 具有性质a ∈M ,a ∈P ,a ∈∁U S ,所以阴影部分所表示的集合是(M ∩P )∩(∁U S ).9.设集合A ={x |-1≤x ≤2},B ={x |-1<x ≤4},C ={x |-3<x <2}且集合A ∩(B ∪C )={x |a ≤x ≤b },则a =________,b =________. 答案 -1 2解析 ∵B ∪C ={x |-3<x ≤4}, ∴A (B ∪C ),∴A ∩(B ∪C )=A . 由题意得{x |a ≤x ≤b }={x |-1≤x ≤2}, ∴a =-1,b =2.10.已知集合A={x|x2-px-2=0},B={x|x2+qx+r=0},且A∪B={-2,1,5},A∩B={-2},则p+q+r=________.答案-14解析∵A∩B={-2},∴-2∈A且-2∈B,将x=-2代入x2-px-2=0,得p=-1,∴A={1,-2},∵A∪B={-2,1,5},A∩B={-2},∴B={-2,5},∴q=-[(-2)+5]=-3,r=(-2)×5=-10,∴p+q+r=-14.11.已知全集U=R,集合A={x|1≤x≤2},若B∪(∁U A)=R,B∩(∁U A)={x|0<x<1或2<x<3},求集合B.解∵A={x|1≤x≤2},∴∁U A={x|x<1或x>2}.又B∪(∁U A)=R,A∪(∁U A)=R,可得A⊆B.而B∩(∁U A)={x|0<x<1或2<x<3},∴{x|0<x<1或2<x<3}⊆B.借助于数轴可得B=A∪{x|0<x<1或2<x<3}={x|0<x<3}.12.设U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+m=0}.若(∁U A)∩B=∅,求m 的值.解A={-2,-1},由(∁U A)∩B=∅,得B⊆A,∵方程x2+(m+1)x+m=0的判别式Δ=(m+1)2-4m=(m-1)2≥0,∴B≠∅.∴B={-1}或B={-2}或B={-1,-2}.①若B={-1},则m=1;②若B={-2},则应有-(m+1)=(-2)+(-2)=-4,且m=(-2)·(-2)=4,这两式不能同时成立,∴B≠{-2};③若B={-1,-2},则应有-(m+1)=(-1)+(-2)=-3,且m=(-1)·(-2)=2,由这两式得m =2.经检验知m =1和m =2符合条件. ∴m =1或2. 三、探究与拓展13.已知集合A ={x |2a +1≤x ≤3a -5},B ={x |x <-1,或x >16},分别根据下列条件求实数a 的取值范围.(1)A ∩B =∅;(2)A ⊆(A ∩B ). 解 (1)若A =∅,则A ∩B =∅成立. 此时2a +1>3a -5, 即a <6.若A ≠∅,如图所示,则⎩⎪⎨⎪⎧2a +1≤3a -5,2a +1≥-1,3a -5≤16,解得6≤a ≤7.综上,满足条件A ∩B =∅的实数a 的取值范围是 {a |a ≤7}.(2)因为A ⊆(A ∩B ),且(A ∩B )⊆A , 所以A ∩B =A ,即A ⊆B . 显然A =∅满足条件,此时a <6.若A ≠∅,如图所示,则⎩⎪⎨⎪⎧ 2a +1≤3a -5,3a -5<-1或⎩⎪⎨⎪⎧2a +1≤3a -5,2a +1>16.由⎩⎪⎨⎪⎧ 2a +1≤3a -5,3a -5<-1解得a ∈∅; 由⎩⎪⎨⎪⎧2a +1≤3a -5,2a +1>16解得a >152.综上,满足条件A ⊆(A ∩B )的实数a 的取值范围是{a |a <6或a >152}.。
课题:1.1.3 并集与交集
教学目标:1.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;
2.能使用Venn 图表示集合的并集与交集;
3.灵活运用并集与交集的含义与性质解题.
教学重点:理解运用并集与交集的含义与性质解题.
教学难点:理解“或”的含义.
教学类型:新课.
教学方法:引导发现法,小组合作学习.
学情分析:本课是高一上期学生学习了集合的含义与表示,集合的基本关系后,学习的集合的基本运算的第一课时--------并集与交集,第二课时为补集. 学生刚进入高中,学习兴趣比较浓厚,虽然本班学生中考成绩属于中等类型,但他们还是在努力学习. 学校正进行“小组合作学习”的课程改革,本课也是以“小组合作方式”进行引导发现式教学,这种教学方式调动了同学们的学习热情,课堂也变得生动有趣,像在游戏中学到了知识一样. 教学过程:
一、抽问引出新课:
教师请学生拿出课本和导学案,通过提问等方式检查学生的课前预习情况. 抽问:什么是并集?并集的符号?并集如何表示?关键词是什么?
二、并集概念的建构:
1.并集:A x x B A ∈=|{ 或}B x ∈
教师画出Venn 图用阴影表示两个集合并集,说明并集是表示集合B A ,中的全体元素组成的集合.
抽问:并集的性质填空:
___,___,______,=∅== A A A B A .___________,B A A A B A ⇔= 教师重点分析._______⇔=A B A 画出Venn 图分析得出结论A B ⊆.
三、并集的应用:
教师请学生在导学案上动笔解答例1(1).
例1(1)设集合},8,6,5,4{=M 集合}8,7,5,3{=N ,那么集合=N M ( )
}8,7,6,5,4,3.{A }8,5.{B }8,7,5,3.{C }8,6,5,4.{D 抽问回答答案,并说明理由.教师加以点拨.
教师请学生动笔计算例1(2).
例1(2)若集合},22|{},1|{<<-=->=x x B x x A 则=B A ( )
}2|.{->x x A }1|.{->x x B }12|.{-<<-x x C }21|.{<<-x x D 提醒同学们借助于数轴分析. 请1-2位学生到黑板上板演. 让同学们点评板演的结果,教师再点拨.
四、并集的练习:
教师请学生动笔计算变式训练1.
变式训练1. 若集合},,4,1{},,1{},,4,1{2
x B A x B x A === 则满足条件的实数x 的个数为( ) .A 1个 .B 2个 .C 3个 4.D 个
先独立完成,2分钟后进行小组讨论,3-5分钟后请5位同学到黑板上板演. 板演后教师点评板演结果并总结本题的关键步骤是检验集合的互异性.
五、交集概念的建构:
教师抽问请学生回答交集的定义,符号,表示方法,关键词. 检查学生的预习情况.
2. 交集:A x x B A ∈=|{ 且}B x ∈
教师引导学生用Venn 图表示两个集合的交集,说明交集是集合B A ,的公共部分.
抽问回答交集的性质:
___,___,______,=∅== A A A B A _______,⇔=A B A
.__,__,__B B A A B A B A B A
教师引导学生重点分析_______,⇔=A B A 学生类比于并集的性质得出结论B A ⊆.
六、交集的应用:
教师请学生解答例2(1)(2).
例2(1)若},3|{},3,2,1,0{A a a x x B A ∈===,则=B A ( )
}2,1.{A }1,0.{B }3,0.{C }3.{D
(2)设集合},40|{},21|{≤≤=≤≤-=x x B x x A 则=B A ( )
}20|.{≤≤x x A }21|.{≤≤x x B }40|.{≤≤x x C }41|.{≤≤x x D 例2(1)抽问回答,教师点拨. 例2(2)板演后,教师点拨.
七、交集的练习:
教师请学生解答变式训练2,请2名同学板演.
变式训练2. 已知},3,,1{},13,2,1{2
a N a a M -=--=},3{=N M 求实数a 的值. 教师对板演答案进行点评.
八、由学生小结本课内容, 同学补充,教师最后点拨.
本课学习了并集与交集的含义性质和应用. A x x B A ∈=|{ 或}B x ∈,A x x B A ∈=|{ 且}B x ∈.
A B A B A ⊆⇔= ,B A A B A ⊆⇔= .
它们的关键词分别为“或”,“且”.“或”指的是全体集合
B
A,中的元素组成的集合;
“且”指的是公共部分.
例题和练习题中的问题是可以借助于Venn图和数轴直观看出两个集合的并集和交集,已知交并关系求参数时,还要注意检验集合的元素的互异性.
九、作业分必做题和选做题布置.。