圆的定义与对称性
- 格式:doc
- 大小:155.50 KB
- 文档页数:4
第07讲圆与对称性(5种题型)1.在探索过程中认识圆,理解圆的本质属性;2.了解圆及其有关概念,理解弦、弧、半圆、优弧、劣弧、同心圆、等圆、等弧等与圆有关的概念,理解概念之间的区别和联系;一.圆的认识(1)圆的定义定义①:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆.固定的端点O叫做圆心,线段OA叫做半径.以O点为圆心的圆,记作“⊙O”,读作“圆O”.定义②:圆可以看做是所有到定点O的距离等于定长r的点的集合.(2)与圆有关的概念弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等.连接圆上任意两点的线段叫弦,经过圆心的弦叫直径,圆上任意两点间的部分叫圆弧,简称弧,圆的任意一条直径的两个端点把圆分成两条弧,每条弧都叫做半圆,大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.(3)圆的基本性质:①轴对称性.②中心对称性.二.点与圆的位置关系(1)点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有:①点P在圆外⇔d>r②点P在圆上⇔d=r①点P在圆内⇔d<r(2)点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.(3)符号“⇔”读作“等价于”,它表示从符号“⇔”的左端可以得到右端,从右端也可以得到左端.三.垂径定理(1)垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.(2)垂径定理的推论推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.推论2:弦的垂直平分线经过圆心,并且平分弦所对的两条弧.推论3:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.四.垂径定理的应用垂径定理的应用很广泛,常见的有:(1)得到推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.(2)垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题.这类题中一般使用列方程的方法,这种用代数方法解决几何问题即几何代数解的数学思想方法一定要掌握.五.圆心角、弧、弦的关系(1)定理:在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等.(2)推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.说明:同一条弦对应两条弧,其中一条是优弧,一条是劣弧,而在本定理和推论中的“弧”是指同为优弧或劣弧.(3)正确理解和使用圆心角、弧、弦三者的关系三者关系可理解为:在同圆或等圆中,①圆心角相等,②所对的弧相等,③所对的弦相等,三项“知一推二”,一项相等,其余二项皆相等.这源于圆的旋转不变性,即:圆绕其圆心旋转任意角度,所得图形与原图形完全重合.(4)在具体应用上述定理解决问题时,可根据需要,选择其有关部分.一.圆的认识(共3小题)1.(2022秋•邗江区校级月考)已知⊙O的半径是3cm,则⊙O中最长的弦长是()A.3cm B.6cm C.1.5cm D.cm【分析】利用圆的直径为圆中最长的弦求解.【解答】解:∵圆的直径为圆中最长的弦,∴⊙O中最长的弦长为2×3=6(cm).故选:B.【点评】本题考查了圆的认识:熟练掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).2.(2022秋•江阴市校级月考)下列说法错误的是()A.直径是圆中最长的弦B.半径相等的两个半圆是等弧C.面积相等的两个圆是等圆D.半圆是圆中最长的弧【分析】利用圆的有关定义和性质分别判断后即可确定正确的选项.【解答】解:A、直径是圆中最长的弦,说法正确,不符合题意;B、半径相等的两个半圆是等弧,说法正确,不符合题意;C、面积相等的两个圆是等圆,说法正确,不符合题意;D、由于半圆小于优弧,所以半圆是圆中最长的弧说法错误,符合题意.故选:D.【点评】考查了圆的有关概念,解题的关键是了解圆的有关定义及性质,难度不大.3.(2022秋•启东市校级月考)画圆时圆规两脚间可叉开的距离是圆的()A.直径B.半径C.周长D.面积【分析】画圆时,圆规两脚分开的距离,即圆的半径,据此解答即可.【解答】解:画圆时圆规两脚间可叉开的距离是圆的半径.故选:B.【点评】本题主要考查了圆的认识,认识平面图形,解答本题关键是抓住圆规画圆的方法.二.点与圆的位置关系(共6小题)4.(2022秋•连云港期中)已知⊙O的半径为3,点P在⊙O外,则OP的长可以是()A.1B.2C.3D.4【分析】由⊙O的半径及点P在⊙O外,可得出OP的长大于3,再对照四个选项即可得出结论.【解答】解:∵⊙O的半径为3,点P在⊙O外,∴OP的长大于3.故选:D.【点评】本题考查了点与圆的位置关系,牢记“①点P在圆外⇔d>r;②点P在圆上⇔d=r;③点P在圆内⇔d<r”是解题的关键.5.(2021秋•无锡期末)已知⊙O的半径为4,OA=5,则点A在()A.⊙O内B.⊙O上C.⊙O外D.无法确定【分析】根据点与圆的位置关系的判定方法进行判断.【解答】解:∵⊙O的半径为4,OA=5,∴OA>半径,∴点A在⊙O外.故选:C.【点评】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.6.(2022秋•江阴市校级月考)已知⊙O的半径是4,OA=3,则点A与⊙O的位置关系是()A.点A在圆内B.点A在圆上C.点A在圆外D.无法确定【分析】根据⊙O的半径r=4,且点A到圆心O的距离d=3知d<r,据此可得答案.【解答】解:∵⊙O的半径r=4,且点A到圆心O的距离d=3,∴d<r,∴点A在⊙O内,故选:A.【点评】本题主要考查点与圆的位置关系,点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有:①点P在圆外⇔d>r;②点P在圆上⇔d=r;③点P在圆内⇔d<r.7.(2022秋•如皋市期中)在数轴上,点A所表示的实数为4,点B所表示的实数为b,⊙A的半径为2,要使点B在⊙A内时,实数b的取值范围是()A.b>2B.b>6C.b<2或b>6D.2<b<6【分析】首先确定AB的取值范围,然后根据点A所表示的实数写出a的取值范围,即可得到正确选项.【解答】解:∵⊙A的半径为2,若点B在⊙A内,∴AB<2,∵点A所表示的实数为4,∴2<b<6,故选:D.【点评】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.8.(2022秋•梁溪区校级期中)已知⊙O的半径是4,点P到圆心O的距离d为方程x2﹣4x﹣5=0的一个根,则点P与⊙O的位置关系为()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.不能确定【分析】求出方程的根,再根据点到圆心的距离与半径的大小关系判断位置关系即可.【解答】解:x2﹣4x﹣5=0的根为x1=5,x2=﹣1<0(舍去),于是点P到圆心O的距离d=5,而半径r=4,∴d>r,所以点P在⊙O的外部,故选:C.【点评】本题考查点与圆的位置关系,解一元二次方程,求出方程的根是解决问题的前提,掌握点到圆心的距离与半径的大小是判断点与圆位置关系的关键.9.(2022秋•东台市期中)如图,点A,B的坐标分别为A(3,0)、B(0,3),点C为坐标平面内的一点,且BC=2,点M为线段AC的中点,连接OM,则OM的最大值为()A.B.C.D.2【分析】作点A关于点O的对称点A'根据中位线的性质得到OM=A′C,求出A'C的最大值即可.【解答】解:如图,作点A关于点O的对称点A'(﹣3,0),则点O是AA'的中点,又∵点M是AC的中点,∴OM是△AA'C的中位线,∴OM=A′C,∴当A'C最大时,OM最大,∵点C为坐标平面内的一点,且BC=2,∴点C在以B为圆心,2为半径的⊙B上运动,∴当A'C经过圆心B时,A′C最大,即点C在图中C'位置.A'C'=AB+BC'=3+2.∴OM的最大值=+1.故选:A.【点评】本题考查了坐标和图形的性质,三角形的中位线定理等知识,确定OM为最大值时点C的位置是解题的关键.三.垂径定理(共4小题)10.(2022秋•锡山区校级月考)如图,在⊙O中,OC⊥AB于点C,若⊙O的半径为10,AB=16,则OC 的长为6.【分析】连接OA,利用垂径定理,勾股定理求解即可.【解答】解:如图,连接OA.∵OC⊥AB,∴AC=CB=AB=8,∵OA=10,∠ACO=90°,∴OC===6,故答案为:6.【点评】本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.11.(2022秋•惠山区期中)如图,已知AB是⊙O的直径,弦CD⊥AB于H,若AB=10,CD=8,则图中阴影部分的面积为20.【分析】利用垂径定理,得出CH=DH=4,由OC=OD得出Rt△COH≌Rt△DOH,进而得出图中阴影部,即可得出答案.分的面积为S△ABD【解答】解:∵AB是⊙O的直径,弦CD⊥AB于H,CD=8,∴CH=DH=4,∵OC=OD,∴Rt△COH≌Rt△DOH(HL),=S△DOH,∴S△COH=AB•DH=×10×4=20.故图中阴影部分的面积为:S△ABD故答案为:20.是解题关键.【点评】此题主要考查了垂径定理,得出图中阴影部分的面积为:S△ABD12.(2022秋•高邮市期中)如图,已知⊙O的直径为26,弦AB=24,动点P、Q在⊙O上,弦PQ=10,若点M、N分别是弦AB、PQ的中点,则线段MN的取值范围是()A.7≤MN≤17B.14≤MN≤34C.7<MN<17D.6≤MN≤16【分析】连接OM、ON、OA、OP,由垂径定理得OM⊥AB,ON⊥PQ,AM=AB=12,PN=PQ=5,由勾股定理得OM=5,ON=12,当AB∥PQ时,M、O、N三点共线,当AB、PQ位于O的同侧时,线段MN的长度最短=ON﹣OM=7,当AB、PQ位于O的两侧时,线段EF的长度最长=OM+ON=17,便可得出结论.【解答】解:连接OM、ON、OA、OP,如图所示:∵⊙O的直径为26,∴OA=OP=13,∵点M、N分别是弦AB、PQ的中点,AB=24,PQ=10,∴OM⊥AB,ON⊥PQ,AM=AB=12,PN=PQ=5,∴OM==5,ON==12,当AB∥PQ时,M、O、N三点共线,当AB、PQ位于O的同侧时,线段MN的长度最短=ON﹣OM=12﹣5=7,当AB、PQ位于O的两侧时,线段MN的长度最长=ON+OM=12+5=17,∴线段MN的长度的取值范围是7≤MN≤17,故选:A.【点评】本题考查了垂径定理、勾股定理以及线段的最值问题,熟练掌握垂径定理和勾股定理是解题的关键.13.(2022秋•大丰区月考)如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,若BE=CD=8,则⊙O的半径的长是()A.5B.4C.3D.2【分析】连接OC,设⊙O的半径为R,则OE=8﹣R,根据垂径定理得出CE=DE=4,根据勾股定理得出OC2=CE2+OE2,代入后求出R即可.【解答】解:连接OC,设⊙O的半径为R,则OE=8﹣R,∵CD⊥AB,AB过圆心O,CD=8,∴∠OEC=90°,CE=DE=4,由勾股定理得:OC2=CE2+OE2,R2=42+(8﹣R)2,解得:R=5,即⊙O的半径长是5,故选:A.【点评】本题考查了垂径定理和勾股定理,能熟记垂直于弦的直径平分这条弦是解此题的关键.四.垂径定理的应用(共4小题)14.(2022秋•如皋市校级月考)兴隆蔬菜基地建圆弧形蔬菜大棚的剖面如图所示,已知AB=16m,半径OA=10m,高度CD为4m.【分析】根据图可知OC⊥AB,由垂径定理可知∠ADO=90°,AD=AB=8,在Rt△AOD中,利用勾股定理可求OD,进而可求CD.【解答】解:∵OC⊥AB,∴∠ADO=90°,AD=AB=8,在Rt△AOD中,OD2=OA2﹣AD2,∴OD==6,∴CD=10﹣6=4(m).故答案是4.【点评】本题考查了垂径定理、勾股定理,解题的关键是先求出OD.15.(2022秋•江宁区校级月考)如图是一个隧道的横截图,它的形状是以点O为圆心的一部分,如果M是⊙O中弦CD的中点,EM经过圆心O交⊙O于点E,若CD=4m,EM=6m,则⊙O的半径为m.【分析】因为M是⊙O弦CD的中点,根据垂径定理,EM⊥CD,则CM=DM=2,在Rt△COM中,有OC2=CM2+OM2,进而可求得半径OC.【解答】解:∵M是⊙O弦CD的中点,根据垂径定理:EM⊥CD,又CD=4则有:CM=CD=2m,设圆的半径是x米,在Rt△COM中,有OC2=CM2+OM2,即:x2=22+(6﹣x)2,解得:x=,所以圆的半径长是m.故答案为:.【点评】此题主要考查了垂径定理的应用,解决与弦有关的问题时,往往需构造以半径、弦心距和弦长的一半为三边的直角三角形,若设圆的半径为r,弦长为a,这条弦的弦心距为d,则有等式r2=d2+()2成立,知道这三个量中的任意两个,就可以求出另外一个.16.(2022•钟楼区校级模拟)筒车是我国古代发明的一种水利灌溉工具,如图1,筒车盛水桶的运行轨道是以轴心O为圆心的圆,如图2,已知圆心O在水面上方,且⊙O被水面截得弦AB长为4米,⊙O半径长为3米.若点C为运行轨道的最低点,则点C到弦AB所在直线的距离是()A.1米B.2米C.米D.米【分析】连接OC,OC交AB于D,由垂径定理得AD=BD=AB=2(米),再由勾股定理得OD=(米),然后求出CD的长即可.【解答】解:连接OC,OC交AB于D,由题意得:OA=OC=3米,OC⊥AB,∴AD=BD=AB=2(米),∠ADO=90°,∴OD===(米),∴CD=OC﹣OD=(3﹣)米,即点C到弦AB所在直线的距离是(3﹣)米,故选:C.【点评】本题考查了垂径定理的应用和勾股定理的应用,熟练掌握垂径定理和勾股定理是解题的关键.17.(2022秋•泰州月考)如图,有一座拱桥是圆弧形,它的跨度AB=60米,拱高PD=18米.(1)求圆弧所在的圆的半径r的长;(2)当洪水泛滥到跨度只有30米时,要采取紧急措施,若拱顶离水面只有4米,即PE=4米时,是否要采取紧急措施?【分析】(1)连接OA,利用r表示出OD的长,在Rt△AOD中根据勾股定理求出r的值即可;(2)连接OA′,在Rt△A′EO中,由勾股定理得出A′E的长,进而可得出A′B′的长,据此可得出结论.【解答】解:(1)连接OA,由题意得:AD=AB=30(米),OD=(r﹣18)米,在Rt△ADO中,由勾股定理得:r2=302+(r﹣18)2,解得,r=34(米);(2)连接OA′,∵OE=OP﹣PE=30米,∴在Rt△A′EO中,由勾股定理得:A′E2=A′O2﹣OE2,即:A′E2=342﹣302,解得:A′E=16(米).∴A′B′=32(米).∵A′B′=32>30,∴不需要采取紧急措施.【点评】本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.五.圆心角、弧、弦的关系(共5小题)18.(2022秋•溧水区期中)如图,C是的中点,弦AB=8,CD⊥AB,且CD=2,则所在圆的半径为()A.4B.5C.6D.10【分析】由垂径定理,勾股定理,可以求解.【解答】解:设所在圆的圆心为点O,⊙O的半径为r,连接OD,OA,∵CD⊥AB,点C是中点,∴O,D,C三点共线,AD=BD=4,∵OA2=OD2+AD2,∴r2=(r﹣2)2+42,∴r=5,故选:B.【点评】本题考查勾股定理,垂径定理,关键是定出圆心,构造直角三角形,应用勾股定理列出关于半径的方程.19.(2022秋•淮阴区月考)如图,A、B、C、D是⊙O上四点,且AD=CB,求证:AB=CD.【分析】根据圆心角、弧、弦之间的关系得出即可.【解答】证明:∵AD=CB,∴=,∴+=+,即=,∴AB=CD.【点评】本题考查了圆心角、弧、弦之间的关系,能根据定理求出=是解此题的关键.20.(2022秋•吴江区校级月考)如图,⊙O在△ABC三边上截得的弦长相等,即DE=FG=MN,∠A=50°,则∠BOC=()A.100°B.110°C.115°D.120°【分析】过点O作OP⊥AB于点P,OQ⊥AC于点Q,OK⊥BC于点K,由于DE=FG=MN,所以弦的弦心距也相等,所以OB、OC是角平分线,可求出∠POQ,进而可求出∠BOC.【解答】解:如图,过点O作OP⊥AB于点P,OQ⊥AC于点Q,OK⊥BC于点K,∴∠APO=∠AQO=90°,∵∠A=50°,∴∠POQ=360°﹣90°﹣90°﹣50°=130°,∵DE=FG=MN,∴OP=OK=OQ,∴OB、OC平分∠ABC和∠ACB,∴∠BOC==115°.故选:C.【点评】本题主要考查垂径定理,解题关键是构造出辅助线——弦心距.21.(2022秋•玄武区期末)如图,在⊙O中,AB=AC.(1)若∠BOC=100°,则的度数为130°;(2)若AB=13,BC=10,求⊙O的半径.【分析】(1)根据圆周角、弧、弦间的关系可以得到AB=AC,结合等腰三角形的性质解答;(2)连接AO,延长AO交BC于D,则AD⊥BC,构造直角三角形,通过勾股定理求得该圆的半径即可.【解答】解:(1)∵在⊙O中,∠BOC=100°,∴∠BAC=50°,∵=,∴AB=AC,∴∠ABC=∠ACB=65°,∴=130°,故答案为:130;(2)连接AO,延长AO交BC于D,则AD⊥BC,BD=CD=BC=5,∴在直角△ABD中,由勾股定理,得AD===12;在直角△OBD中,由勾股定理,得OB2=(12﹣OB)2+52,解得OB=,即⊙O的半径是.【点评】考查了圆周角、弧、弦的关系,在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.22.(2022秋•吴江区校级月考)已知⊙O的半径为2,弦,弦,则∠BOC的度数为150°或30°.【分析】分类讨论:①当点B和点C在AO两侧时,过点O作OP⊥AB于点P,作OQ⊥AC于点Q,根据垂径定理可求出,,再根据勾股定理可求出,OQ=1,从而得出AP=OP,,即得出∠PAO=45°,∠QAO=30°,进而可求出∠BAC=75°,最后由圆周角定理即可求出∠BOC的大小;②当点B和点C在AO同侧时,过点O作OM⊥AB于点M,作ON⊥AC于点N,同理可求出∠BAC=15°,再由圆周角定理即可求出∠BOC的大小.【解答】解:分类讨论:①当点B和点C在AO两侧时,过点O作OP⊥AB于点P,作OQ⊥AC于点Q,如图,∴.∵OA=2,∴,∴AP=OP,∴∠PAO=45°.∵,OA=2,∴,∴,∴∠QAO=30°,∴∠BAC=∠PAO+∠QAO=75°∴∠BOC=2∠BAC=150°;②当点B和点C在AO同侧时,过点O作OM⊥AB于点M,作ON⊥AC于点N,如图,由①同理可得:∠MAO=45°,∠NAO=30°,∴∠BAC=∠MAO﹣∠NAO=15°,∴∠BOC=2∠BAC=30°.综上可知∠BOC的度数为150°或30°.故答案为:150°或30°.【点评】本题考查垂径定理,圆周角定理,勾股定理,等腰直角三角形的判定和性质,含30°角的直角三角形的性质.正确的作出图形和辅助线并利用分类讨论的思想是解题关键.一.选择题(共10小题)1.(2022秋•邗江区期中)已知⊙O的半径为2,则⊙O中最长的弦长()A.2B.C.4D.【分析】利用圆的直径为圆中最长的弦求解.【解答】解:∵圆的直径为圆中最长的弦,∴⊙O中最长的弦长为2×2=4.故选:C.【点评】本题考查了圆的认识:熟练掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).2.(2022秋•无锡期末)已知⊙O的半径为5cm,当线段OA=5cm时,则点A在()A.⊙O内B.⊙O上C.⊙O外D.无法确定【分析】点在圆上,则d=r;点在圆外,d>r;点在圆内,d<r(d即点到圆心的距离,r即圆的半径).【解答】解:∵⊙O的半径为5cm,OA=5cm,∴点A在⊙O上.故选:B.【点评】本题考查了点与圆的位置关系,判断点与圆的位置关系,也就是比较点与圆心的距离和半径的大小关系.3.(2023•沛县模拟)如图.AB是⊙O的直径,∠D=40°,则∠BOC=()A.80°B.100°C.120°D.140°【分析】根据圆周角定理即可求出∠BOC.【解答】解:∵∠D=40°,∴∠BOC=2∠D=80°.故选:A.【点评】本题考查圆周角定理,邻补角定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.4.(2022秋•姑苏区校级期中)已知⊙O的半径为2,点P是⊙O内一点,且OP=,过P作互相垂直的两条弦AC、BD,则四边形ABCD面积的最大值为()A.4B.5C.6D.7【分析】设出OE=x,利用勾股定理表示出AC,BD,用对角线互相垂直的四边形的面积的计算方法建立面积和OE的函数关系式,即可得出结论.【解答】解:如图:连接OA、OD,作OE⊥AC于E,OF⊥BD于F,∵AC⊥BD,∴四边形OEPF为矩形,∵OA=OD=2,OP=,设OE为x(x>0),根据勾股定理得,OF=EP==,在Rt△AOE中,AE==∴AC=2AE=2,同理得,BD=2DF=2=2,又∵任意对角线互相垂直的四边形的面积等于对角线乘积的,∴S四边形ABCD=AC×BD=×2×2=2=2当x2=即:x=时,四边形ABCD的面积最大,等于2=5.故选:B.【点评】此题是一道综合性较强的题,融合了方程思想、数形结合思想.勾股定理,对角线互相垂直的四边形的面积的计算方法,表示出AC,BD是解本题的关键.5.(2023•盐都区一模)如图,⊙O的半径为5,弦AB=8,OC⊥AB于点C,则OC的长为()A.1B.2C.3D.4【分析】由于OC⊥AB于点C,所以由垂径定理可得,在Rt△ABC中,由勾股定理即可得到答案.【解答】解:∵OC⊥AB,AB=8,∴,在Rt△ABC中,OA=5,AC=4,由勾股定理可得:.故选:C.【点评】本题考查了垂径定理,熟练运用垂径定理并结合勾股定理是解答本题的关键.6.(2022秋•亭湖区校级期末)如图是一个圆柱形的玻璃水杯,将其横放,截面是个半径为5cm的圆,杯内水面AB=8cm,则水深CD是()A.cm B.cm C.2cm D.3cm【分析】连接OA、OC,先由垂径定理可得AC长,再由勾股定理得OC长,从而求出CD长.【解答】解:如图,连接OA、OC,则OC⊥AB,∴AC=AB=4(cm),在Rt△OAC中,OC===3(cm),∴CD=5﹣3=2(cm).故选:C.【点评】本题考查了垂径定理的应用和勾股定理,熟练掌握垂径定理和勾股定理是解题的关键.7.(2022秋•海陵区校级期末)如图,AB为⊙O的直径,点D是的中点,过点D作DE⊥AB于点E,延长DE交⊙O于点F.若,AE=2,则⊙O的直径长为()A.B.8C.10D.【分析】连接OF,首先证明,设OA=OF=x,在Rt△OEF中,利用勾股定理构建方程即可解决问题.【解答】解:如图,连接OF.∵DE⊥AB,∴DE=EF,,∵点D是弧AC的中点,∴,∴,∴,∴,设OA=OF=x,在Rt△OEF中,则有,解得x=4,∴AB=2x=8.故选:B.【点评】本题考查勾股定理,垂径定理,弧,弦之间的关系等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.8.(2022秋•启东市校级月考)下列说法中,不正确的是()A.过圆心的弦是圆的直径B.等弧的长度一定相等C.周长相等的两个圆是等圆D.直径是弦,半圆不是弧【分析】对于A,直径是通过圆心且两个端点都在圆上的线段,即可进行判断;对于B,能重合的弧叫等弧,即可进行判断;对于C和D,分别根据等圆,直径,半圆的知识,也可进行判断.【解答】解:A.直径是通过圆心且两个端点都在圆上的线段,故正确;B.能重合的弧叫等弧,长度相等,故正确;C.周长相等的圆其半径也相等,为等圆,故正确.D.直径是弦,半圆是弧,故错误.故选:D.【点评】本题考查圆的认识,解题的关键是掌握弦,弧等知识,灵活运用所学知识解决问题.9.(2022秋•邳州市期末)如图,在△ABC中,∠ACB=90°,AB=5,BC=4.以点A为圆心,r为半径作圆,当点C在⊙A内且点B在⊙A外时,r的值可能是()A.3B.4C.5D.6【分析】由勾股定理求出AC的长度,再由点C在⊙A内且点B在⊙A外求解.【解答】解:在Rt△ABC中,由勾股定理得AC==3,∵点C在⊙A内且点B在⊙A外,∴3<r<5,故选:B.【点评】本题考查点与圆的位置关系,解题关键是掌握勾股定理.10.(2022秋•邗江区校级期末)已知圆O的半径为5,同一平面内有一点P,且OP=4,则点P与圆O 的关系是()A.点P在圆内B.点P在圆外C.点P在圆上D.无法确定【分析】根据题意:OP=4<r,进行判断即可.【解答】解:设圆的半径为r,由题意得:OP=4<r=5,∴点P与圆O的关系是:点P在圆内.故选:A.【点评】本题考查点与圆的位置关系.熟练掌握利用点到圆心的距离与半径的大小关系,来判断点与圆的位置关系是解题的关键.二.填空题(共8小题)11.(2022秋•兴化市期末)若⊙O的半径为5,OA=4,则点A与⊙O的位置关系是:点A在⊙O内.(填“内、上、外”)【分析】要确定点与圆的位置关系,主要确定点与圆心的距离与半径的大小关系;利用d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内判断出即可.【解答】解:∵⊙O的半径为5,OA=4,∴d<r,∴点A与⊙O的位置关系是:点A在⊙O内,故答案为:内.【点评】此题主要考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.12.(2022秋•兴化市校级期末)一个圆的半径是15cm,点P在圆上,那么P点到该圆圆心的距离为15 cm.【分析】圆上点到圆心的距离等于圆的半径,由此即可求解.【解答】解:根据题意,点P在圆上,圆的半径是15cm,∴P点到该圆圆心的距离为15cm,故答案为:15.【点评】本题主要考查的点与圆的位置关系,当点在圆外,点到圆心的距离大于半径;当点在圆上,点到圆心的距离等于半径;当点在圆内,点到圆心的距离小于半径,解题的关键是看点到圆心的距离与圆半径的关系.13.(2023•邳州市一模)如图,某同学准备用一根内半径为5cm的塑料管裁一个引水槽,使槽口宽度AB 为8cm,则槽的深度CD为2cm.【分析】根据垂径定理得到,再利用勾股定理即可求出答案.【解答】解:如图,由题意可知,OA=5cm,OC⊥AB,则cm,在Rt△ADO中,由勾股定理得,OD==3(cm),∴CD=OC﹣OD=5﹣3=2(cm).故答案为2.【点评】本题考查垂径定理,勾股定理,掌握垂径定理、勾股定理是正确解答的前提.14.(2023•鼓楼区模拟)如图所示,小区内有个圆形花坛O,点C在弦AB上,AC=11,BC=21,OC=13,则这个花坛的半径为20.【分析】通过作弦心距,构造直角三角形,利用垂径定理和勾股定理进行计算即可.【解答】解:如图,连接OA,过点O作OD⊥AB,垂足为D,∵AB是弦,OD⊥AB,AC=11,BC=21,∴AD=BD=AB=16,∴CD=AD﹣AC=5,∴OD===12,∴OA===20.故答案为:20.【点评】本题考查垂径定理的应用,掌握垂径定理和勾股定理是解决问题的前提,构造直角三角形是正确解答的关键.15.(2022秋•连云港期末)如图,AB是⊙O的直径,C是BA延长线上一点,点D在⊙O上,且CD=OE,CD的延长线交⊙O于点E.若∠C=25°,则∠CEO度数为50°.【分析】根据CD=OD求出∠DOC=∠C=25°,根据三角形的外角性质求出∠EDO=∠C+∠DOC=50°,根据等腰三角形的性质求出∠E=∠EDO=50°.【解答】解:连接OD.∵CD=OE,OE=OD,∴CD=OD,∵∠C=25°,∴∠DOC=∠C=25°,∴∠EDO=∠C+∠DOC=50°,∵OD=OE,∴∠E=∠EDO=50°.故答案为:50.【点评】本题考查了等腰三角形的性质,三角形内角和定理,三角形的外角性质,圆心角、弧、弦之间的关系等知识点,能求出∠ODE的度数是解此题的关键.16.(2022秋•连云港期末)如图,在⊙O中,弦AB=4,点C在AB上移动,连接OC,过点C作CD⊥OC,交⊙O于点D,则CD长的最大值为2.【分析】根据勾股定理求出CD,利用垂线段最短得到当OC⊥AB时,OC最小,根据垂径定理计算即可.【解答】解:∵CD⊥OC,∴∠DCO=90°,∴CD==,当OC的值最小时,CD的值最大,OC⊥AB时,OC最小,此时D、B两点重合,∴CD=CB=AB=2,即CD的最大值为2,故答案为:2.【点评】本题考查的是垂径定理、勾股定理,掌握垂直于弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键.17.(2022秋•秦淮区期末)如图,在以O为圆心半径不同的两个圆中,大圆和小圆的半径分别为6和4,大圆的弦AB交小圆于点C,D.若AC=3,则CD的长为.【分析】由垂径定理得到CH=DH,由勾股定理列出关于CH的方程,求出CH长,即可求出CD的长.【解答】解:作OH⊥AB于H,连接OC,OA,设CH=x,∴CH=DH,AH=x+3,∵OH2=OC2﹣CH2=OA2﹣AH2,∴42﹣x2=62﹣(x+3)2,∴x=,∴CD=2CH=.故答案为:.【点评】本题考查垂径定理,勾股定理,关键是掌握垂径定理,勾股定理.18.(2023•南京二模)如图,CD是⊙O的直径,弦AB⊥CD,垂足为E.若AB=4,CE=6,则⊙O的半径r为.【分析】如图,作辅助线;设⊙O的半径为r,运用勾股定理列出r2=22+(6﹣r)2,求出r即可解决问题.【解答】解:如图,连接OA.设⊙O的半径为r,则OE=6﹣r.∵弦AB⊥CD,∴AE=BE=2;由勾股定理得:r2=22+(6﹣r)2,解得:r=,故答案为:.【点评】主要考查了垂径定理、勾股定理及其应用问题;解题的关键是作辅助线,灵活运用勾股定理等几何知识点来分析、判断、推理或解答.三.解答题(共8小题)。
圆的认识(二)知识点总结一、圆的对称性。
1. 轴对称性。
- 圆是轴对称图形,其对称轴是任意一条经过圆心的直线。
圆有无数条对称轴。
- 例如,我们可以将一个圆形纸片沿着任意一条通过圆心的直线对折,对折后的两部分都能完全重合,这就体现了圆的轴对称性。
2. 中心对称性。
- 圆也是中心对称图形,对称中心为圆心。
- 把一个圆绕着圆心旋转任意一个角度后,都能与原来的图形重合。
在圆形的转盘游戏中,转盘绕着圆心旋转后,其位置虽然改变了,但形状和大小不变,这就是圆的中心对称性的体现。
二、弧、弦、圆心角的关系。
1. 定义。
- 圆心角:顶点在圆心的角叫做圆心角。
例如在圆O中,∠ AOB的顶点O 是圆心,所以∠ AOB是圆心角。
- 弧:圆上任意两点间的部分叫做圆弧,简称弧。
弧用符号“⌒”表示,以A、B为端点的弧记作overset{frown}{AB}。
- 弦:连接圆上任意两点的线段叫做弦。
经过圆心的弦叫做直径,直径是圆内最长的弦。
例如在圆O中,线段AB是弦,若AB经过圆心O,则AB是直径。
2. 关系定理。
- 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
- 例如,在圆O中,如果∠ AOB=∠ COD,那么overset{frown}{AB}=overset{frown}{CD},AB = CD。
3. 推论。
- 在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等。
- 在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧相等。
三、圆周角。
1. 定义。
- 顶点在圆上,并且两边都与圆相交的角叫做圆周角。
例如在圆O中,∠ACB的顶点C在圆上,且AC、BC都与圆相交,所以∠ ACB是圆周角。
2. 圆周角定理。
- 一条弧所对的圆周角等于它所对的圆心角的一半。
- 例如,在圆O中,弧overset{frown}{AB}所对的圆周角∠ ACB和圆心角∠ AOB,则∠ ACB=(1)/(2)∠ AOB。
圆的概念及性质知识点梳理一、圆的基本概念 1. 圆的定义:圆是由平面上到一定点的距离相等的所有点组成的集合。
2. 圆的符号表示:以大写字母O表示圆心,小写字母r表示半径,圆可以表示为O(r)。
3. 圆的元素:圆心、半径、直径。
二、圆的性质 1. 对称性: a. 圆心对称:圆内任意一点都可以通过圆心的对称变换到另外一个点。
b. 直径对称:圆内任意一点都可以通过圆的直径对称变换到另外一个点。
2. 圆与直线的关系: a. 圆与直线的交点:一条直线与圆相交的点数可能为0、1、2个。
b. 切线:一条直线切圆的条件是直线与圆有且仅有一个交点。
c. 弦:一条直线与圆有两个交点,这两个交点与圆心连接形成的线段称为弦。
3.圆与角的关系: a. 圆心角:圆内的两条半径所对应的角称为圆心角,圆心角的度数等于弧度的两倍。
b. 弧度:弧长等于半径的弧对应的角的度数称为弧度。
c. 弧度制与度数制转换:弧度 = 度数× π / 180。
4. 圆与面积的关系: a. 圆的面积公式:圆的面积等于半径的平方乘以π,即A = πr^2。
b. 圆周长与面积的关系:半径一样的两个圆,周长较大的圆面积也较大。
5. 圆与体积的关系:a. 圆柱的体积公式:圆柱的体积等于底面积乘以高,即V = πr^2h。
b. 圆锥的体积公式:圆锥的体积等于底面积乘以高再除以3,即V = (1/3)πr^2h。
c. 球体的体积公式:球体的体积等于(4/3)πr^3。
三、圆的应用 1. 圆的几何应用: a. 轮胎:轮胎通常采用圆形设计,便于车辆转向和行驶。
b. 钟表:钟表上的指针转动的轨迹是一个圆弧。
2. 圆的物理应用: a.运动:物体在做圆周运动时,其运动轨迹是一个圆。
b. 电子:电子的轨道运动也是一个圆形的。
c. 光学:光学中的透镜和曲率半径有关,曲率半径越小,透镜越强。
3. 圆的数学应用: a. 数学公式:圆的周长和面积的计算公式是数学中的基本公式之一。
圆的定义与圆的对称性【知识要点】(1)在同一平面内,一条线段OP 绕它固定的一个端点O 旋转一周,另一个端点P 所经过的封闭曲线叫做圆.定点O 就是圆心,线段OP 就是圆的半径.以点O 为圆心的圆,记作“⊙O ”,读作“圆O ”. 说明:①这是圆的描述性定定义,由定义可以看出:确定圆的两个条件是圆心和半径,圆心确定圆的位置,圆的半径确定圆的大小;②要注意圆是指“圆周”,而非“圆面”.(2)在同一个平面内,圆是到定点的距离等于定长的点的集合,定点叫做圆心,定长叫做半径. 说明:这是圆的点集定义,它包括两个方面的含义:①圆上各点到定点(即圆心)的距离等于定长(即半径);②.到定点的距离等于定长的点都在圆上点和圆的位置关系有点在圆内、点在圆上、点在圆外三种,点和圆的位置关系是由这个点到圆心的距离与圆的半径的大小关系决定的.如果圆的半径是r ,这个点到圆心的距离为d ,那么点在圆外d r ⇔>;点在圆上d r ⇔=;点在圆内d r ⇔<圆是轴对称图形,其对称轴是任意一条过圆心的直线(通过折叠可发现此性质) 圆是中心对称图形,对称中心是圆心(利用旋转的方法可以得到此性质)圆具有旋转不变性:一个圆绕着它的圆心旋转任意角度,都能与原来的图形重合.(1)中心对称图形:在平面内,一个图形绕某个点旋转180°,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。
轴对称图形是指沿对称轴对折后完全重合的图形.。
(2)圆的对称轴是直线,不能说直径是它的对称轴,而应说直径所在的直线是它的对称轴;圆的对称轴有无数条(1)经过圆心的弦叫做直径,直径等于半径的2倍(2A 、B 为端点的弧记作AB ,读作“圆弧AB ”或“弧AB ”大于半圆的弧叫做优弧(用三个字母表示);小于半圆的弧叫做劣弧(3提示:①同圆是指同一个圆;等圆、同心圆是指两个圆的关系,等圆是指能够重合,圆心不同的两个圆 ②等弧必须是同圆或等圆中的弧,因为只有在同圆或等圆中,两条弧才可能互相重合,长度相等的弧不一定是等弧(4垂直与弦的直径平分这条弦,并且平分弦所对的两条弧如图所示,∵ CD 是直径, C D ⊥AB∴ AE=BE,AC = BC, AD =BD 若一条直线①过圆心,②垂直于一条弦,则此直线①平 分此弦②平分此弦所对的优弧和劣弧(1)平分弦(不是直径)的直径垂直于弦,并 且平分弦所对的两条弧;(2)弦的垂直平分线经过圆 心,并且平分弦所对的两条弧;(3)平分弦所对的一 条弧的直径垂直平分弦,并且平分弦所对的另一条弧提示:(1)对于一个圆和一条直线来说,如果以①过圆心②垂直于弦③平分弦④平分弦所对的优弧⑤平分弦所对的劣弧这五个条件中任何两个作为题设,那么其它三个就是结论 (2)在应用垂径定理与推论进行计算时,往往要构 造如图所示的直角三角形 ,根据垂径定理与勾股定 理有222()2ard =+根据此公式,在,,a r d 三个量中,知道任何两个量就可以求出第三个量在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组相等,那么它们所对应的其余各组量都分别相等.说明:(1)注意在“同圆或等圆中”这个条件(2)注意理解“所对应”的含义【典型例题】ABOC 2a rAdD例1、下列语句中不正确的是( )①直径是弦;②弧是半圆;③经过圆内一顶点可以作无数条弦;④长度相等的弧是等弧 A.①③④ B. ②③ C. ②④ D. ①④例2、由一已知点P 到圆上各点的最大距离为5,最小距离为1,则圆的半径为( ) A 、2或3 B 、3 C 、4 D 、2 或4例3、在平面内,⊙O 的半径为5cm ,点P 到圆心O 的距离为3cm ,则点P 与⊙O 的位置关系是例4、在△ABC 中,∠ACB=90°,AC=2cm,BC=4cm,CM 是AB 边上的中线,以点C为半径作圆,则A 、B 、C 、M 四点在圆外的有 ,在圆上的有 ,在圆内的有 .例5、在⊙O 中,AB 、AC 为互相垂直且相等的两条弦,O D ⊥AB,O E ⊥AC 垂足分别为D 、E ,若AC=2cm ,则⊙O 的半径为 cm例6、如下图,菱形ABCD 的对角线AC 和BD 相交于点O ,E 、F 、G 、H 分别为边AB 、BC 、CD 、DA 的中点,那么E 、F 、G 、H 是否在同一个圆上?例7、如图,点P 的坐标为(4,0),⊙P 的半径为5,且⊙P 与x 轴交于点A 、B,与y 轴交于点C 、D,试求出点A 、B 、C 、D 的坐标.例8、海军部队在灯塔A 的周围进行爆破作业,A 的周围3km 的水域为危险水域,有一渔船误入离灯塔2km 的某处B ,为了尽快驶离危险区域,该船应按什么方向航行?请给予证明.EGBACDF H O例9、矩形的四个顶点是否能在同一个圆上,若在同一个圆上,请你指出来并加以证明例10、已知⊙O 的直径为10cm ,弦AB=6cm ,求圆心O 到弦AB 的距离.例11、在直径为650mm 的圆柱形油槽中装入一些油后,截面如图所示,如油面宽AB=600mm ,求油的最大深度【经典练习】1.下列命题中错误的命题有( )(1)弦的垂直平分线经过圆心;(2)平分弦的直径垂直于弦;(3)•梯形的对角线互相平分;(4)圆的对称轴是直径.A .1个B .2个C .3个D .4个2.点A 的坐标为(3,0),点B 的坐标为(0,4),则点B 在以A 为圆心, 6 为半径的圆的_______.3.已知⊙O 的半径为6cm,P 为线段OA 的中点,若点P 在⊙O 上,则OA 的长()A.等于6cmB.等于12cm ;C.小于6cmD.大于12cm 4.半径为5的⊙O 内有一点P ,且OP=4,则过点P 的最短弦长是_______,最长的弦长_______.5.如图1,已知⊙O 的半径为5,弦AB=8,P 是弦AB 上任意一点,则OP •的取值范围是_______.(1) (2)6.如图2,⊙O 的直径AB 垂直于弦CD ,垂足为E ,若∠COD=120°,OE=3厘米,则OD=•___cm .7.如图3,AB 是半圆的直径,O 是圆心,C 是半圆上一点,E 是弧AC 的中点,OE 交弦AC 于D ,若AC=8cm ,DE=2cm ,则OD 的长为________cm .8.如图3,同心圆中,大圆的弦AB 交小圆于C 、D ,已知AB=4,CD=2,AB •的弦心距等于1,那么两个同心圆的半径之比为( )A .3:2B 2CD .5:4BB(3) (4)9.如图4,AB 是⊙O 的直径,CD 为弦,CD ⊥AB 于E ,则下列结论中错误的是( )A .∠COE=∠DOEB .CE=DEC .AE=BED . BDBC 10.如图,在以O 为圆心的两个同心圆的圆中,大圆弦AB 交小圆于C 、D 两点,•试判断AC与BD的大小关系,并说明理由.11.如图所示,在⊙O中,CD是直径,AB是弦,AB⊥CD于M,CD=15cm,OM:OC=3:5,求弦AB的长.。
圆的基本概念与性质圆是几何学中最基本的图形之一,它具有独特的形状和性质。
本文将对圆的基本概念和一些重要性质进行详细介绍。
一、圆的定义圆是由平面上距离一个固定点一定距离的所有点组成的集合。
这个固定点被称为圆心,而这个距离被称为半径。
二、圆的常用符号在几何学中,圆常用符号“O”表示圆心,用字母“r”表示半径。
因此,一个圆可以用符号“O(r)”表示。
三、圆的性质1. 圆的对称性由于圆的定义是以一个固定点为中心,所有距离这个点相等的点的集合,因此圆具有天然的对称性。
任意一条直径将圆分成两个等边的半圆,半圆上的所有点与圆心的距离相等。
2. 圆的直径、半径和弦在圆中,直径是通过圆心并且两端点都在圆上的线段;半径是从圆心到圆上的任意一点的线段,它等于圆的半径;弦是圆上连接两个点的线段,不经过圆心。
3. 圆的周长和面积圆的周长定义为圆上的一条完整弧所对应的长度,可以用公式C =2πr来计算,其中C表示周长,r表示半径。
圆的面积定义为圆内所有点所组成的区域的大小,可以用公式A = πr²来计算,其中A表示面积,r表示半径。
4. 圆的切线和法线圆上的切线是与圆相切的直线,它只与圆在切点相交。
切线与半径构成的夹角为90度。
法线是与切线垂直的直线,它通过切点并与切线垂直相交。
5. 圆的弧度制和度数制圆的弧度制是一种用弧长比半径的面度来度量角度的方式。
一个圆的弧长等于半径的弧度数。
度数制是人们常见的度量角度的方式,一个圆被等分为360度,1度等于圆的1/360。
四、圆的相关定理和应用1. 圆上的三角形圆上的三角形是指三个顶点都在圆上的三角形。
它有很多特殊性质,如圆上的两条弧所对应的角相等,半径与割线所包围的弧所对应的角相等等。
2. 切线定理和切割定理切线定理指的是切线与半径的关系,即切线的平方等于切点处外切圆的半径与切点到圆心的距离之积。
切割定理指的是弦分割定理和切线分割定理,它们描述了切线和弦所分割的弧长和线段之间的关系。
圆及圆的对称性 圆及圆的对称性圆圆的对称性圆的定义圆的有关概念点与圆的位置关系圆的对称性圆心角圆心角、弧、弦之间的关系知识点1 圆及与的相关的概念1.(1)圆的定义:在一个平面内,线段OA 绕它的一个固定端点O 旋转一周,另一个端点A 所形成的图形叫做圆。
固定端点O 叫做圆心,线段OA 叫做半径。
以点O 为圆心的圆,记作“⊙O ”,读作“圆O ”.注意:①在平面内,②圆是指圆周,而不是圆面,③圆的两要素...:圆心和半径,圆心确定圆的位置,半径确定圆的大小,④线段OP 的长也可以叫半径.(2)圆的集合性定义:圆心为O ,半径为r 的圆,可以看成所有到定点O ,距离等于定长r 的点的集合。
注:①圆上各点到定点(圆心O )的距离都等于定长(半径r ); ②到定点的距离都等于定长的点都在同一个圆上。
2.弦与直径、弧与半圆①连接圆上任意两点的线段叫做弦,如下图线段AC ,AB ;②经过圆心的弦叫做直径,如下图线段AB ;③圆上任意两点间的部分叫做圆弧,简称弧,“以A 、C 为端点的弧记作AC ”,读作“圆弧AC ”或“弧AC ”.大于半圆的弧(如图所示ABC 叫做优弧,•小于半圆的弧(如图所示)AC 或BC 叫做劣弧.BA C O④圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.3.同心圆和等圆同心圆:圆心相同,半径不等的圆叫做同心圆。
如图2所示:图2 图3等圆:半径相等的圆(能够互相重合的圆)叫做等圆。
注:同圆或等圆的半径相等。
如图3.等圆与位置无关等弧:在同圆和等圆中,等够完全重合......的弧叫做等弧。
注:长度相等的弧,度数相等的弧都不一定是等弧。
例 1.如图,一枚直径为4cm的圆形古钱币沿着直线滚动一周,圆心移动的距离是( )A.2πcm B.4πcm C.8πcm D.16πcm例2.如图,AB是⊙O的直径,CD是⊙O的弦,AB、CD的延长线相交于点E.已知AB=2DE,∠E=18°.试求∠AOC的度数.例3.在Rt△ABC中,∠C=90°,BC=3 cm,AC=4 cm,以点B为圆心,BC长为半径作⊙B,点A,C及AB,AC的中点D,E与⊙B有怎样的位置关系?例4.由于过度砍伐森林和破坏植被,我国某些地区多次受到沙尘暴的侵袭.近来A 市气象局测得沙尘暴中心在A 市正东方向400 km 的B 处,正在向西北方向移动,若距沙尘暴中心300 km 的范围内将受到影响,则A 市是否会受到这次沙尘暴的影响?例5.如图所示,在⊙O 中,A ,C ,D ,B 是⊙O 上四点,OC ,OD 交AB 于点E ,F ,且AE=FB ,下列结论:①OE =OF ;②AC =CD =DB ;③CD ∥AB ;④AC ︵=BD ︵.其中正确的有( )A .4个B .3个C .2个D .1个例6.若点P 到⊙O 的最小距离为6 cm ,最大距离为8 cm ,则⊙O 的半径是 。
【圆的定义有两个】其一:平面上到定点的距离等于定长的点的集合叫圆。
其二:平面上一条线段,绕它的一端旋转360°,留下的轨迹叫圆。
【有关圆的基本性质与定理】⑴圆的确定:画一条线段,以线段长为半径以一端点为圆心画弧绕360度后得到圆。
圆的对称性质:圆是轴对称图形,其对称轴是任意一条通过圆心的直线。
圆也是中心对称图形,其对称中心是圆心。
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的2条弧。
逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的2条弧。
⑵有关圆周角和圆心角的性质和定理在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。
一条弧所对的圆周角等于它所对的圆心角的一半。
直径所对的圆周角是直角。
90度的圆周角所对的弦是直径。
如果一条弧的长是另一条弧的2倍,那么其所对的圆周角和圆心角是另一条弧的2倍。
⑶有关外接圆和内切圆的性质和定理①一个三角形有唯一确定的外接圆和内切圆。
外接圆圆心是三角形各边垂直平分线的交点,到三角形三个顶点距离相等;②内切圆的圆心是三角形各内角平分线的交点,到三角形三边距离相等。
③R=2S△÷L(R:内切圆半径,S:三角形面积,L:三角形周长)④两相切圆的连心线过切点(连心线:两个圆心相连的直线)⑤圆O中的弦PQ的中点M,过点M任作两弦AB,CD,弦AD与BC分别交PQ于X,Y,则M为XY之中点。
(4)如果两圆相交,那么连接两圆圆心的线段(直线也可)垂直平分公共弦。
(5)圆心角的度数等于它所对的弧的度数。
(6)圆周角的度数等于它所对的弧的度数的一半。
(7)弦切角的度数等于它所夹的弧的度数的一半。
(8)圆内角的度数等于这个角所对的弧的度数之和的一半。
圆的有关概念及性质之马矢奏春创作【根本常识回忆】一、圆的定义及性质:1、圆的定义:⑴形成性定义:在一个平面内,线段OA绕它固定的一个端点O扭转一周,另一个端点A随之扭转形成的图形叫做圆,固定的端点叫线段OA叫做⑵描述性定义:圆是到定点的距离等于的点的集合2、弦与弧:弦:连接圆上随便率性两点的叫做弦弧:圆上随便率性两点间的叫做弧,弧可分为、、三类3、圆的对称性:⑴轴对称性:圆是轴对称图形,有条对称轴,的直线都是它的对称轴⑵中央对称性:圆是中央对称图形,对称中央是【提醒:1、在一个圆中,圆心决定圆的半径决定圆的2、直径是圆中的弦,弦不必定是直径;3、圆不但是中央对称图形,并且具有扭转性,即绕圆心扭转随便率性角度都被与本来的图形重合】二、垂径定理及推论:1、垂径定理:垂直于弦的直径,并且等分弦所对的.2、推论:等分弦()的直径,并且等分弦所对的.【提醒:1、垂径定理及其推论本质是指一条直线知足:⑴过圆心⑵垂直于弦⑶等分弦⑷等分弦所对的优弧⑸等分弦所对的劣弧五个前提中的两个,那么可推出其余三个,留心解题过程中的灵活运用 2、圆中常作的关心线是过圆心作弦的线(即弦心距).3、垂径定理经常运用作计算,在半径r、弦a、弦心d和弓高h中已知个中两个量可求别的两个量.】三、圆心角、弧、弦之间的关系:1、圆心角定义:顶点在的角叫做圆心角2、定理:在中,两个圆心角、两条弧、两条弦中有一组量它们所对应的其余各组量也辨别【提醒:留心:该定理的前提前提是“在同圆或等圆中”】四、圆周角定理及其推论:1、圆周角定义:顶点在并且两边都和圆的角叫圆周角2、圆周角定理:在同圆或等圆中,圆弧或等弧所对的圆周角都等于这条弧所对的圆心角的推论1、在同圆或等圆中,假如两个圆周角那么它们所对的弧推论2、半圆(或直弦)所对的圆周角是,900的圆周角所对的弦是【提醒:1、在圆中,一条弦所对的圆心角只有一个,而它所对的圆周角有个,是类,它们的关系是,2、作直径所对的圆周角是圆中常作的关心线】五、圆内接四边形:定义:假如一个多边形的所有顶点都在圆上,这个多边形叫做,这个圆叫做.性质:圆内接四边形的对角.【重点考点例析】考点一:垂径定理例1(2015•舟山)如图,⊙O的半径OD⊥弦AB于点C,贯串连接AO 并延长交⊙O于点E,贯串连接EC.若AB=8,CD=2,则EC的长为()A.215B.8 C.210D.213对应演习1.(2015•南宁)如图,AB是⊙O的直径,弦CD交AB于点E,且AE=CD=8,∠BAC=1∠BOD,则⊙O的半径为()2A.42B.5 C.4 D.3考点二:圆周角定理例2 (2015•自贡)如图,在平面直角坐标系中,⊙A经由原点O,并且辨别与x轴、y轴交于B、C两点,已知B(8,0),C(0,6),则⊙A 的半径为()A.3 B.4 C.5 D.8对应演习2.(2015•珠海)如图,▱ABCD的顶点A、B、D在⊙O上,顶点C在⊙O 的直径BE上,∠ADC=54°,连接AE,则∠AEB的度数为()A.36°B.46°C.27°D.63°(2015•威海)如图,CD为⊙O的直径,CD⊥AB,垂足为点F,AO⊥BC, 7.垂足为点E,AO=1.(1)求∠C的大小;(2)求暗影部分的面积.演习:1.(2015•张家界)如图,⊙O的直径AB与弦CD垂直,且∠BAC=40°,则∠BOD= 80°.2.(2015•盐城)如图,将⊙O沿弦AB折叠,使AB经由圆心O,则∠OAB= 30°.3.(2015•绥化)如图,在⊙O中,弦AB垂直等分半径OC,垂足为D,若⊙O的半径为2,则弦AB的长为.4.(2015•株洲)如图AB是⊙O的直径,∠BAC=42°,点D是弦AC的中点,则∠DOC的度数是48度.5.(2015•广州)如图,在平面直角坐标系中,点O为坐标原点,点P在第一象限,⊙P与x轴交于O,A两点,点A的坐标为(6,0),⊙P的半径为13,则点P的坐标为(3,2).三、解答题1(2016·山东潍坊)正方形ABCD内接于⊙O,如图所示,在劣弧上取一点E,连接DE、BE,过点D作DF∥BE交⊙O于点F,连接BF、AF,且AF与DE订交于点G,求证:(1)四边形EBFD是矩形;(2)DG=BE.2、(2015•浙江省台州市,第22题)如图,四边形ABCD 内接于⊙O,点E 在对角线AC 上,EC=BC=DC(1)若∠CBD=39°,求∠BAD 的度数(2)求证:∠1=∠23、AB 是⊙O 的一条弦,OD AB ⊥,垂足为C ,交⊙O 于点D ,点E 在⊙O 上.(1)若52AOD ∠=,求DEB ∠的度数; (2)若3OC =,5OA =,求AB 的长.4.(2015•贵阳)已知:如图,AB 是⊙O 的弦,⊙O 的半径为10,OE 、OF 辨别交AB 于点E 、F,OF 的延长线交⊙O 于点D,且AE=BF,∠EOF=60°.(1)求证:△OEF 是等边三角形;(2)当AE=OE时,求暗影部分的面积.(成果保存根号和π)22.(2015•黔西南州)如图,AB 是⊙O 的直径,弦CD⊥AB 与点E,点P 在⊙O 上,∠1=∠C,(1)求证:CB∥PD;(2)若BC=3,sin∠P=35,求⊙O 的直径.常识点2:点和圆的地位关系如设⊙O的半径为r,点P 到圆的距离为d,则有:点P 在圆外⇔d ___ r点P 在圆上⇔d ___ r点P 在圆内⇔d ___ r①经由一点P 可以作_______个圆;经由两点P 、Q 可以作________•个圆,圆心在_________上;经由不在同一贯线上的三个点可以作E B DC A O r d d C B A O________个圆,圆心是________的交点.②直角三角形的外心是________的中点,锐角三角形外心在三角形的____________,钝角三角形外心在三角的___________.③经由三角形的三个顶点可以做一个圆,这个圆叫做三角形的______圆.外接圆的圆心是三角形三条边________________线的交点,这个点叫做这个三角形的___________.1、例1 (1)已知⊙O的直径为10cm,有一点P到圆心O的距离为3cm,求点P与圆有何地位关系?(2)若有一点M到某圆的最大距离为8cm,最小距离为2cm,求这个圆的半径.3、不在同一条直线上的三个点确定一个圆经由三角形三个顶点可以画个圆,并且只能画个.叫做三角形的外接圆.叫做这个三角形的外心,这个三角形叫做这个圆的.三角形的外心就是的交点,它到的距离相等4、例2.某地出土一明代完全圆形瓷盘,如图所示.为复制该瓷盘要确定其圆心和半径,请在图顶用直尺和圆规画出瓷盘的圆心.作法提醒:可联想垂径定理的逆定理:弦的垂直等分线必经由____________,并等分弦所对的两条_____________.5、例3、已知Rt△ABC中,∠C=90°,AC=5cm,BC=12cm,求△ABC的外接圆半径.6、例4、如图,等腰△ABC中,AB=AC=13cm,BC=10cm,求△ABC外接圆的半径.。
圆的概念与对称性
【知识要点】
1.圆的基本概念
(1)圆的定义:在平面内到定点的距离等于定长的点的集合叫做圆。
定点叫做圆心,定长叫半径。
(2)确定圆的条件;①已知圆心和半径,圆心确定圆的位置,半径确定圆的大小;
②不在同一条直线上的三点确定一个圆;
③已知圆的直径的位置和长度可确定一个圆;
(3)点和圆的位置关系设圆的半每径为r,点到圆心的距离为d,则点与圆的位置关系有三种。
①点在圆外⇔d>r;②点在圆上⇔d=r;③点在圆内⇔d<r;
(4)弦:连结圆上任意两点的线段叫做弦。
经过圆心的弦叫做直线。
直径是圆中最大的弦。
圆心到弦的距离叫做弦心距。
(5)弧:圆上任意两点间的部分叫做弧。
弧分为半圆,优弧、劣弧三种。
(6)等圆、等弧:能够重合的两个圆叫做等圆。
同圆或等圆的半径相等。
在同圆或等圆中,能够互相重合的两条弧叫做等弧。
2.圆的基本性质
(1)圆的对称性:圆既是轴对称图形又是中心对称图形。
经过圆心的每一条直线都是它的对称轴。
圆心是它的对称中心。
圆绕圆心旋转任何角度,都能够与原来的图形重合,因此圆还具有旋转不变性。
(2)垂径定理:垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧。
推论1 ①平分弦(非直径)的直径垂直于弦,并且平分弦所对的两条弧;
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧;
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。
推论2 圆的两条平行弦所夹的弧相等。
【典型例题】
例1如图,在以O为圆心的两个同心圆中,大圆的弦AB交
小圆于C、D两点,
AB=10cm,CD=6cm,则AC的长为()
A.0.5cm B.1cm C.1.5cm D.2cm
例2如图⊙O的直径AB与弦CD相交于点E,且BC=BD,
AE=8,EB=2,则CD=__________。
例3 ⊙O平面内一点P和⊙O上一点的距离最小为3cm,最大为8cm,
例4已知:⊙O的半径为2cm,弦AB的长为距离为()
A .1cm
B .2cm
C
D 例5如图⊙O 的直径AB 和弦CD 相交于点
E ,已知AE=6cm ,EB=2cm ,
∠CEA=30°,求CD 的长。
例6 如图,已知AB 为⊙O 的弦,⊙O 的半径OE 、OF 分别交AB 于C 、D ,且AC=BD 。
求证:CE=DF 。
例7 如图,直径为1000mm 的圆柱形水管有积水(阴影部分),水面的宽度AB 为800mm ,求水的最大深度CD .
【经典练习】
1.⊙O 的直径为10cm,⊙O 所在的平面内有一点P,当PO_______时,点P 在⊙O 上; 当PO 时,点P 在⊙O 内;当PO______时,点P 在⊙O 外.
2.已知⊙O 的周长为8 cm,若PO=2cm,则点P 在_______;若PO=4cm,则点P 在_____; 若PO=6cm,则点P 在_______.
3.圆既是轴对称图形,又是______对称图形,它的对称轴是__ _____, 对称中心是____.
4.如图,⊙O 的直径为10,弦AB=8,P 是弦AB 上的一个动点,那么OP 长的取值范围是 .
5.如图,已知有一圆弧形拱桥,拱的跨度AB=16cm,拱高CD=4cm,那么拱形的半径是_ ___m.
6.在△ABC 中,∠C=90°,AC=BC=4cm,D 是AB 的中点,以C 为圆心,4cm 长为半径作圆,则A 、B 、C 、D 四点中,在圆内的有( ) A.4个
B.3个
C.2个
D.1个
B
P
A
O C
A
7.与圆心的距离不大于半径的点所组成的图形是( )
A.圆的外部(包括边界);
B.圆的内部(不包括边界);
C.圆;
D.圆的内部(包括边界) 8.已知⊙O 的半径为6cm,P 为线段OA 的中点,若点P 在⊙O 上,则OA 的长( ) A.等于6cm
B.等于12cm ;
C.小于6cm
D.大于12cm
9.如图,在半径为2cm 的⊙O 中有长为
的弦AB,则弦AB 所对的圆心角的度数为( ) A.60°
B.90°
C.120°
D.150°
10.如图,⊙O 的直径为10cm,弦AB 为8cm,P 是弦AB 上一点,若OP 的长为整数, 则满足条件的点P 有( ) A.2个
B.3个
C.4个
D.5个
11.如图,A 是半径为5的⊙O 内一点,且OA=3,过点A 且长小于8的弦有( ) A.0条 B.1条 C.2条 D.4条
12.如图,⊙O 表示一圆形工件,AB=15cm,OM=8cm,并且MB:MA=1:4, 求工件半径的长.
13.已知:如图,在⊙O 中,弦AB 的长是半径OA
,C 为弧AB 的中点,AB 、OC 相交于点M.试判断四边形OACB 的形状,并说明理由.
【小试锋芒】
1.对于一个圆和一条直线来说,如果具有下列五个条件中的任何两个,那么也具有其它三个:①经过圆心;②垂直于弦;③平分弦(不是直径);④平分弦所对的优弧;⑤平分弦所对的劣弧.结合图形具体叙述如下: 如图1所示,在⊙O 中,
(1)若MN ⊥AB 且MN 为直径,则
B
A O
B
P
A
O
M
B
A
O
M
C
B
A
O
(2)若MN ⊥AB 且AC=BC,则 (3)若MN ⊥AB 且⋂
⋂=BM AM ,则 (4)若MN ⊥AB 且⋂
⋂=BN AN ,则 (5)若AC=BC 且MN 为直径,则 (6)若AC=BC 且⋂
⋂=BM AM ,则 (7)若AC=BC 且⋂
⋂
=BN AN ,则 (8)若⋂
⋂=BM AM 且MN 为直径, 则 (9)若⋂
⋂
=BM AM 且⋂
⋂
=BN AN ,则
2.如图,点P 的坐标为(4,0),⊙P 的半径为5,且⊙P 与x 轴交于点A 、B,与y 轴交于点C 、D,试求出点A 、B 、C 、D 的坐标.
3 如图所示,在⊙O 中,点C 为ACB 的中点,CD 为直径,弦AB 交CD 于P 点,PE ⊥CB 于E ,若BC=10cm ,且CE:EB=3:2.求AB 的长.
4 如图,已知AB 为⊙O 的弦,直径MN 与AB 相交于⊙O 内,AB MC ⊥于C ,AB ND ⊥于D ,若MN=20,68=AB ,则MC —ND= .
·
O C
P
A
D B
E
M
N。