2020高考数学 专题练习 二十 三角函数、平面向量、 文 精品
- 格式:doc
- 大小:98.34 KB
- 文档页数:4
第20讲 同角三角函数的基本关系与诱导公式夯实基础 【p 49】【学习目标】1.掌握同角三角函数的基本公式.2.掌握正弦、余弦的诱导公式.【基础检测】1.已知α是第二象限角,sin α=513,则cos α等于( ) A .-513 B .-1213 C.513 D.1213【解析】∵sin α=513,α是第二象限角, ∴cos α=-1-sin 2α=-1213. 【答案】B2.已知cos (π+α)=-13,且α为第四象限角,则sin (2π-α)=( ) A .-223 B.223 C.13 D .-13【解析】由题cos (π+α)=-13,且α为第四象限角,则cos (π+α)=-cos α=-13,∴cos α=13,sin α=-223,sin (2π-α)=-sin α=223. 选B.【答案】B3.若tan θ=2,则sin 2θ+sin θcos θ-2cos 2θ=( )A.35B.45C.74D.34【解析】原式=sin 2θ+sin θcos θ-2cos 2θsin 2θ+cos 2θ=tan 2θ+tan θ-2tan 2θ+1=4+2-24+1=45,故选B.【答案】B4.已知sin x +cos x =15,且0<x<π, 则cos x -sin x 的值为( ) A.75 B .-75 C.725 D .-725【解析】将sin x +cos x =15两边平方, 得1+2sin x·cos x =125,即sin xcos x =-1225<0. ∵0<x<π,∴sin x>0,cos x<0,∴cos x -sin x<0,cos x -sin x =-1-2sin xcos x =-1-2×⎝ ⎛⎭⎪⎫-1225=-75.【答案】B【知识要点】1.同角三角函数的基本关系(1)平方关系:__sin 2α+cos 2α=1__. (2)商数关系:__tan __α=sin αcos α__. 2.诱导公式(1)2k π+α(k∈Z ),-α,π±α,2π-α的三角函数值等于α的__同名__函数值,前面加上一个把α看成__锐__角时原函数所在象限的符号.(2)π2±α,3π2±α的三角函数值等于α的__互余__函数值,前面加上一个把α看成__锐__角时原函数所在象限的符号.记忆方法为:__奇变偶不变,符号看象限__.⎝ ⎛⎭⎪⎫注:奇、偶指π2的奇数倍或偶数倍. (3)化任意角的三角函数为锐角三角函数,其一般步骤是“去负—脱周—化锐”. 也可简记为:负化正,大化小,化到锐角再查表.组数 一 二 三 四 五 六 角 2k π+α (k∈Z )π+α -α π-α π2-α π2+α 正弦 sin α -sin α -sin α sin α cos α cos α 余弦 cos α -cos α cos α -cos α sin α -sin α 正切 tan α tan α -tan α -tan α口诀 函数名不变 符号看象限 函数名改变 符号看象限(sin α+cos α)2=1+2sin αcos α,(sin α-cos α)2=__1-2sin __αcos ____α__,(sin α+cos α)2+(sin α-cos α)2=2,(sin α+cos α)2-(sin α-cos α)2=__2sin ____2α__.典 例 剖 析 【p 49】考点1 利用诱导公式化简求值例1已知f ()α=sin ()π-αcos ()π-αcos ⎝ ⎛⎭⎪⎫3π2+αcos ⎝ ⎛⎭⎪⎫π2+αsin ()π+α,若α为第二象限角,且cos ⎝⎛⎭⎪⎫α-π2=25,求f ()α的值. 【解析】f (α)=sin (π-α)cos (π-α)cos ⎝ ⎛⎭⎪⎫3π2+αcos ⎝ ⎛⎭⎪⎫π2+αsin (π+α) =sin α(-cos α)sin α(-sin α)(-sin α)=-cos α.∵cos ⎝⎛⎭⎪⎫α-π2=25,∴sin α=25. 又∵α为第二象限角,∴cos α=-1-sin 2α=-1-425=-215, f (α)=215. 【小结】应用诱导公式时,注意符号的确定原则是视α为锐角,符号是定形前的三角函数的象限符号.考点2 利用同角三角函数公式化简、求值例2(1)已知sin ()-π+θ+2cos ()3π-θ=0,则sin θ+cos θsin θ-cos θ=( ) A .3 B .-3 C.13 D .-13【解析】因为sin ()-π+θ+2cos ()3π-θ=0,所以-sin θ-2cos θ=0,可得tan θ=-2,sin θ+cos θsin θ-cos θ=tan θ+1tan θ-1=-2+1-2-1=13,故选C. 【答案】C(2)若α是第二象限角,则tan α1sin 2α-1化简的结果是( ) A .-1 B .1 C .-tan 2α D.tan 2α【解析】因为α是第二象限角,所以tan α1sin 2α-1=tan α1-sin 2αsin 2α=tan αcos 2αsin 2α=tan α×-cos αsin α=-1. 【答案】A【小结】(1)利用sin 2α+cos 2α=1可以实现角α的正弦、余弦的互化,利用sin αcos α=tan α可以实现角α的弦切互化.(2)应用公式时注意方程思想的应用:对于sin α+cos α,sin αcos α,sin α-cosα这三个式子,利用(sin α±cos α)2=1±2sin αcos α,可以知一求二.(3)注意公式逆用及变形应用:1=sin 2α+cos 2α,sin 2α=1-cos 2α,cos 2α=1-sin 2α.考点3 运用“sin α±cos α”与“sin αcos α”的关系求值例3已知关于x 的方程2x 2-(3+1)x +m =0的两根为sin α与cos α,α∈⎝ ⎛⎭⎪⎫0,π4,求α及m.【解析】由根与系数的关系可得⎩⎪⎨⎪⎧sin α+cos α=3+12, ①sin α·cos α=m 2, ② 将①式两边同时平方,得1+2sin αcos α=2+32,sin αcos α=34. 由②得m 2=34,m =32, 方程可化为2x 2-(3+1)x +32=0,x =12或x =32. ∵α∈⎝⎛⎭⎪⎫0,π4,∴sin α=12,cos α=32. 故α=π6. 【小结】本题充分利用根与系数关系及三角函数基本关系式.【能力提升】例4(1)在△ABC 中,3sin ⎝ ⎛⎭⎪⎫π2-A =3sin (π-A ),且cos A =-3cos (π-B ),则C 等于________.【解析】∵3sin ⎝ ⎛⎭⎪⎫π2-A =3sin (π-A ), ∴3cos A =3sin A ,即tan A =33. 又∵A∈(0,π),∴A =π6. 由cos A =-3cos (π-B ),得cos A =3cos B.∴cos B =12,又B∈(0,π),∴B =π3.故C =π-π6-π3=π2. 【答案】π2(2)已知定义在R 上的偶函数f (x )满足f (x +2)=f (x ),且在[-3,-2]上是减函数,若α,β是锐角三角形的两个内角,则( )A .f ()sin α>f ()cos βB .f ()sin α<f ()cos βC .f ()sin α>f ()sin βD .f ()cos α<f ()cos β【解析】∵f (x )满足f (x +2)=f (x ),且在[-3,-2]上是减函数,∴f (x )在[-1,0]上为减函数;又∵f (x )是定义在R 上的偶函数,∴f (x )在区间[0,1]上为增函数;若α,β是锐角三角形的两个内角,则α+β>π2,即π2>α>π2-β>0, ∴0<sin ⎝ ⎛⎭⎪⎫π2-β=cos β<sin α<1,故f ()sin α>f ()cos β. 【答案】A【小结】(1)三角形中的三角函数问题,要注意隐含条件的挖掘及三角形内角和定理的应用;(2)灵活运用函数性质、诱导公式解题.方 法 总 结 【p 50】同角三角函数基本关系是三角恒等变形的基础,主要是变名、变式.1.同角关系及诱导公式要注意象限角对三角函数符号的影响,尤其是利用平方关系在求三角函数值时,进行开方时要根据角的象限或范围,判断符号后,正确取舍.2.三角函数求值、化简是三角函数的基础,在求值与化简时,常用方法有:(1)弦切互化法:主要利用公式tan x =sin x cos x化成正弦、余弦函数;(2)和积转换法:如利用(sin θ±cos θ)2=1±2sin θcos θ的关系进行变形、转化;(3)巧用“1”的变换:1=sin 2θ+cos 2θ=cos 2θ(1+tan 2θ)=sin 2θ⎝ ⎛⎭⎪⎫1+1tan 2θ=tan π4=…;(4)运用相关角的互补、互余等特殊关系可简化解题步骤. 走 进 高 考 【p 50】1.(2017·全国卷Ⅲ)已知sin α-cos α=43,则sin 2α=( ) A .-79 B .-29 C.29 D.79【解析】(sin α-cos α)2=1-sin 2α=169,sin 2α=1-169=-79,故选A. 【答案】A。
高考热点追踪(二)三角函数与平面向量交汇集中展示当今高考数学命题注重知识的整体性和综合性,重视知识的交汇性.向量具有代数与几何形式的双重身份,它是新旧知识的一个重要的交汇点,成为联系这些知识的桥梁,因此,向量与三角的交汇是当今高考命题的必然趋势,以下几例重在为备考中的考生揭示题型规律,与同学们共同归纳与探究解题策略.一、三角与平面向量模交汇已知向量a =(sin θ,1),b =(1,cos θ),-π2<θ<π2.求|a +b |的最大值.【解】 |a +b |=(sin θ+1)2+(1+cos θ)2=sin 2θ+2sin θ+1+cos 2θ+2cos θ+1 =2(sin θ+cos θ)+3=22sin ⎝⎛⎭⎫θ+π4+3, 当sin ⎝⎛⎭⎫θ+π4=1时|a +b |有最大值,此时θ=π4,最大值为22+3=2+1.[名师点评] 本题求|a +b |的最大值利用了向量模的定义,也可以用平方法,同学们可以尝试.二、三角与平面向量线性运算交汇(2019·南京模拟)设两个向量a =(λ+2,λ2-cos 2α)和b =⎝⎛⎭⎫m ,m2+sin α,其中λ,m ,α为实数.若a =2b ,求λm的取值范围.【解】 由a =(λ+2,λ2-cos 2α)和b =⎝⎛⎭⎫m ,m2+sin α, a =2b ,可得⎩⎪⎨⎪⎧λ+2=2m ,λ2-cos 2α=m +2sin α,设λm =k ,代入方程组可得⎩⎪⎨⎪⎧km +2=2m ,k 2m 2-cos 2α=m +2sin α, 消去m ,化简得⎝ ⎛⎭⎪⎫2k 2-k 2-cos 2α=22-k+2sin α,再化简得⎝ ⎛⎭⎪⎫2+4k -22-cos 2α+2k -2-2sin α=0, 再令1k -2=t 代入上式得(sin α-1)2+(16t 2+18t +2)=0可得-(16t 2+18t +2)≥0,解不等式得t ∈⎣⎡⎦⎤-1,-18, 因而-1≤1k -2≤-18解得-6≤k ≤1,即-6≤λm≤1.[名师点评] 本题字母比较多,运算复杂,要认真体会换元法和整体思想的运用. 三、三角与平面向量平行交汇已知a =(cos x ,2),b =(2sin x ,3),若a ∥b , 则sin 2x -2cos 2x =__________ .【解析】 因为a =(cos x ,2),b =(2sin x ,3),a ∥b , 所以3cos x -4sin x =0,即tan x =34.所以sin 2x -2cos 2x =2sin x cos x -2cos 2xsin 2x +cos 2x=2tan x -2tan 2x +1=-825.【答案】 -825[名师点评] 本题主要考查了向量共线的条件、二倍角的正弦公式、同角三角函数的基本知识.四、三角与平面向量垂直交汇(2019·苏州模拟)已知向量a =(sin θ,3),b =(1,cos θ),θ∈⎝⎛⎭⎫-π2,π2.若a ⊥b ,则θ=________.【解析】 由a ⊥b 得a ·b =0,所以a ·b =sin θ+3cos θ=0,即2sin ⎝⎛⎭⎫θ+π3=0. 因为θ∈⎝⎛⎭⎫-π2,π2,所以θ=-π3. 【答案】 -π3[名师点评] 本题利用向量垂直的性质,得到三角函数式,最终求解得到答案. 五、三角与平面向量夹角交汇设a =(1+cos α,sin α),b =(1-cos β, sin β),c =(1,0),α∈(0,π),β∈(π,2π),a 与c 的夹角为θ1,b 与c 的夹角为θ2,且θ1-θ2=π6,求sin α-β4的值.【解】 因为|a |=(1+cos α)2+sin 2α=2cos α2,|b |=(1-cos β)2+sin 2β=2sin β2,|c |=1,又a ·c =1+cos α=2cos 2α2,b ·c =1-cos β=2sin 2β2.所以cos θ1=a ·c |a | |c |=cos α2,cos θ2=b ·c |b | |c |=sin β2,因为α2∈⎝⎛⎭⎫0,π2,所以θ1=α2. 又β∈(π,2π),所以β2∈⎝⎛⎭⎫π2,π,即0<β2-π2<π2. 由cos θ2=sin β2=cos ⎝⎛⎭⎫β2-π2,得θ2=β2-π2. 由θ1-θ2=π6,得α2-⎝⎛⎭⎫ β2-π2=π6, 所以α-β2=-π3,α-β4=-π6,所以sin α-β4=sin ⎝⎛⎭⎫-π6=-12. [名师点评] 本题以向量的夹角概念为背景,考查了三角函数求值变换的有关知识. 六、三角与平面向量数量积交汇(2019·南通市高三第一次调研测试)在△ABC 中,若BC →·BA →+2AC →·AB →=CA →·CB →,则sin Asin C的值为________. 【解析】 由BC →·BA →+2AC →·AB →=CA →·CB →,得 2bc ×b 2+c 2-a 22bc +ac ×a 2+c 2-b 22ac =ab ×a 2+b 2-c 22ab,化简可得a =2c .由正弦定理得sin A sin C =ac =2.【答案】2[名师点评] 本题是平面向量的数量积及正、余弦定理的综合运用,解题时注意体会等价转化思想的运用.七、三角与平面向量综合交汇(2019·南通调研)已知向量a =⎝⎛⎭⎫cos 3x 2,sin 3x 2,b =⎝⎛⎭⎫cos x 2,-sin x 2,且x ∈⎣⎡⎦⎤0,π2, (1)求a ·b 及|a +b |;(2)若f (x )=a ·b -2λ|a +b |的最小值是-32,求λ的值.【解】 (1)a ·b =cos 3x 2·cos x 2-sin 3x 2·sin x2=cos 2x ; |a +b |=⎝⎛⎭⎫cos 3x 2+cos x 22+⎝⎛⎭⎫sin 3x 2-sin x 22=2+2cos 2x =2cos 2x ,因为x ∈⎣⎡⎦⎤0,π2,所以cos x ≥0,所以|a +b |=2cos x . (2)由(1)知,f (x )=cos 2x -4λcos x , 即f (x )=2(cos x -λ)2-1-2λ2, 因为x ∈⎣⎡⎦⎤0,π2,所以0≤cos x ≤1, ①当λ<0时,当且仅当cos x =0时,f (x )取得最小值-1,这与已知矛盾.②当0≤λ≤1时,当且仅当cos x =λ时,f (x )取得最小值-1-2λ2,由已知-1-2λ2=-32,解得λ=12.③当λ>1时,当且仅当cos x =1时,f (x )取得最小值1-4λ, 由已知得1-4λ=-32,解得λ=58,这与λ>1相矛盾;综上所述,λ=12即为所求.[名师点评] 本题以平面向量的知识为平台,考查了三角函数的有关运算,运用了分类讨论的思想方法.解三角形常用策略大观正、余弦定理及其应用是高考的重要内容之一,常与三角函数联系在一起,以正、余弦定理为工具,通过三角恒等变换来解三角形或实际问题,以低中档题为主,下面通过一题来分析正、余弦定理在解三角形中的常用策略.在△ABC 中,已知AB =463,cos ∠ABC =66,AC 边上的中线BD =5,求sin A的值.策略1:设法使条件集中到一个三角形中法一:考虑到D 为AC 的中点.取BC 的中点E ,把分散的条件集中转移到三角形BDE 中,从而问题获得解决.如图1,设E 是BC 的中点,连结DE ,则DE ∥AB ,且DE =12AB =263,设BE =x ,在△BDE中,由余弦定理BD 2=BE 2+ED 2-2BE ·ED ·cos ∠BED ,即5=x 2+83+2×263×66x ,解得x =1或x =-73(舍去),故BC =2.在△ABC 中,由余弦定理AC 2=AB 2+BC 2-2AB ·BC ·cos ∠ABC , 得AC 2=323+4-2×463×2×66=283,所以AC =2213.又sin ∠ABC =306.在△ABC 中,由正弦定理BC sin A =AC sin ∠ABC ,得2sin A =2213306,所以sin A =7014. 策略2:利用向量运算或恰当建立坐标系,利用坐标法结合向量数量积求解法二:以B 点为坐标原点,BC 所在的直线为x 轴,建立如图2所示的直角坐标系.且不妨设点A 在第一象限内,因为cos ∠ABC =66, 所以sin ∠ABC =306,所以A ⎝⎛⎭⎫43,453, 设C (x ,0),所以D ⎝ ⎛⎭⎪⎫4+3x 6,253.又因为BD =5,所以⎝ ⎛⎭⎪⎫4+3x 62+⎝⎛⎭⎫2532=5, 解得x =2⎝⎛⎭⎫x =-143舍去. 以下同法一.法三:如图2.因为BD →=12(BA →+BC →),所以2BD →=BA →+BC →,平方得4BD →2=BA →2+BC →2+2BA →·BC →,代入数据得20=⎝⎛⎭⎫4632+|BC →|2+2×463×|BC →|×66,解得BC =2. 以下同法一.策略3: 把相关的边或角算两次,构造方程组求解 法四:如图3.设BC =y ,AC =2x . 在△ABC 中,由余弦定理得 cos A =AB 2+AC 2-BC 22AB ·AC ,①又在△ABD 中,由余弦定理得 cos A =AB 2+AD 2-BD 22AB ·AD .②联立①②得,2x 2-y 2=23.③在△ABC 中,由余弦定理AC 2=AB 2+BC 2-2AB ·BC ·cos ∠ABC ,整理得4x 2=323+y 2-83y .④联立③④消去x 解得y =2或y =-143(舍去).所以x =213,AC =2x =2213. 以下同法一.策略4:利用不同三角形中角的互补或互余关系,构造方程组求解法五: 在△ABD 和△BDC 中利用∠ADB 和∠BDC 互补关系,利用余弦定理构造等量关系解题.如图3,设BC =y ,AC =2x .在△ABD 中,由余弦定理得cos ∠ADB =BD 2+AD 2-AB 22AD ·BD ,①又在△BDC 中,由余弦定理得cos ∠BDC =BD 2+DC 2-BC 22BD ·DC .②因为∠ADB +∠BDC =π, 所以cos ∠ADB +cos ∠BDC =0, 联立①②得,2x 2-y 2=23.③在△ABC 中,由余弦定理AC 2=AB 2+BC 2-2AB ·BC ·cos ∠ABC , 整理得4x 2=323+y 2-83y .④联立③④消去x 解得y =2或y =-143(舍去).所以x =213,AC =2x =2213. 以下同法一.策略5:利用中点等几何关系,把三角形补成平行四边形,进而使条件相对集中,从而使问题解决法六:如图4,延长BD 至E ,使BD =DE ,连结AE ,CE ,则四边形ABCE 是平行四边形,故有AE =BC .在△ABE 中,由余弦定理BE 2=AB 2+AE 2-2AB ·AE ·cos ∠BAE ,即20=⎝⎛⎭⎫4632+BC 2+2×463×BC ×66,解得BC =2. 以下同法一.策略6:利用等面积法,构造方程求解 法七:如图5.设∠CBD =θ,因为cos ∠CBA =66,所以sin ∠CBA =306. 又因为S △ABC =2S △BDC ,所以有12AB ·BC ·sin ∠ABC =2×12BD ·BC ·sin θ,解得sin θ=23,cos θ=53.所以cos ∠ABD =cos(∠ABC -θ)=cos ∠ABC cos θ+sin ∠ABC sin θ=306,所以sin ∠ABD =66. 在△ABD 中,由余弦定理AD 2=AB 2+BD 2-2AB ·BD ·cos ∠ABD =73,所以AD =213.在△ABD 中,由正弦定理BD sin A =AD sin ∠ABD ,得sin A =7014. [名师点评] 同一道题目,从不同的角度出发,就有许多不同的解题方法,所以同学们复习时不要满足于一种思考方式,要善于发现自己解题中存在的问题和不合理处,进而提出质疑“我为什么要这样解题呢?”“是不是还有更好的方法呢?”“除了从这个角度出发外,还能从哪里找到突破口呢?”.只有不断地质疑,才会不断地创新,不断地迸发思维的火花,这样复习效率就会大大提高.1.(2019·南京、盐城高三模拟)在△ABC中,设a,b,c分别为角A,B,C的对边,若a =5,A=π4,cos B=35,则c=________.[解析] 根据题意得,sin B=45,所以sin C=sin(A+B)=sin⎝⎛⎭⎫π4+B=7210,由asin A=csin C,得5sinπ4=c7210,解得c=7.[答案] 72.若1+cos 2αsin 2α=12,则tan 2α=________.[解析]1+cos 2αsin 2α=2cos2α2sin αcos α=cos αsin α=12,所以tan α=2,所以tan 2α=2tan α1-tan2α=41-4=-43.[答案] -433.(2019·江苏省高考命题研究专家原创卷(七))已知向量a=(2,1),b=(3,-1),若a+2k b与3a-b平行,则k=________.[解析] 因为a=(2,1),b=(3,-1),所以a+2k b=(2,1)+2k(3,-1)=(2+6k,1-2k),3a-b=3(2,1)-(3,-1)=(3,4),又a+2k b与3a-b平行,所以4(2+6k)-3(1-2k)=0,解得k=-16.[答案] -164.(2019·扬州模拟)已知cos α=13,cos(α+β)=-13,且α,β∈⎝⎛⎭⎫0,π2,则cos(α-β)的值为________.[解析] 因为α∈⎝⎛⎭⎫0,π2,所以2α∈(0,π).因为cos α=13,所以cos 2α=2cos2α-1=-79,所以sin 2α=1-cos 22α=429, 而α,β∈⎝⎛⎭⎫0,π2,所以α+β∈(0,π), 所以sin(α+β)=1-cos 2(α+β)=223,所以cos(α-β)=cos[2α-(α+β)] =cos 2αcos(α+β)+sin 2αsin(α+β) =⎝⎛⎭⎫-79×⎝⎛⎭⎫-13+429×223=2327. [答案]23275.(2019·盐城高三模拟)已知向量a ,b 满足a =(4,-3),|b |=1,|a -b |=21,则向量a ,b 的夹角为________.[解析] 法一:设向量b =(x ,y ),则由|b |=1,|a -b |=21得,⎩⎪⎨⎪⎧x 2+y 2=1(x -4)2+(y +3)2=21⇒4x -3y =52,所以a ·b =(4,-3)·(x ,y )=4x -3y =52,cos 〈a ,b 〉=a ·b |a |·|b |=12,又〈a ,b 〉∈[0,π],所以向量a ,b 的夹角为π3.法二:由|a -b |=21得,(a -b )2=21⇒a 2-2a ·b +b 2=21,所以a ·b =52,cos 〈a ,b 〉=a ·b|a |·|b |=12,又〈a ,b 〉∈[0,π],所以向量a ,b 的夹角为π3. [答案] π36.(2019·南京高三模拟)如图,在梯形ABCD 中,AB ∥CD ,AB =4,AD =3,CD =2,AM →=2MD →.若AC →·BM →=-3,则AB →·AD →=________.[解析] 由题意可得AC →=AD →+DC →=AD →+12AB →,BM →=AM →-AB →=23AD →-AB →,则AC →·BM →=⎝⎛⎭⎫AD →+12AB →·⎝⎛⎭⎫23AD →-AB →=-3,则23|AD →|2-12|AB →|2-23AB →·AD →=-3,即6-8-23AB →·AD →=-3,解得AB →·AD →=32.[答案] 327.函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2的部分图象如图所示,则将y =f (x )的图象向右平移π6个单位后,得到的图象对应的函数解析式为________.[解析] 由所给图象知A =1,34T =11π12-π6=3π4,T =π,所以ω=2πT =2,由sin ⎝⎛⎭⎫2×π6+φ=1,|φ|<π2得π3+φ=π2,解得φ=π6,所以f (x )=sin ⎝⎛⎭⎫2x +π6,则f (x )=sin ⎝⎛⎭⎫2x +π6的图象向右平移π6个单位后得到的图象对应的函数解析式为y =sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π6+π6=sin ⎝⎛⎭⎫2x -π6. [答案] y =sin ⎝⎛⎭⎫2x -π6 8.(2019·苏锡常镇四市高三调研)在△ABC 中,已知AB =1,AC =2,∠A =60°,若点P 满足AP →=AB →+λAC →,且BP →·CP →=1,则实数λ的值为________.[解析] 由题意可得AB →·AC →=1×2×12=1,AB →·AP →=AB →2+λAB →·AC →=1+λ,AP →·AC →=1+4λ,AP 2→=AB 2→+2λAB →·AC →+λ2AC 2→=4λ2+2λ+1,又BP →·CP →=1,则(AP →-AB →)·(AP →-AC →)=AP 2→-AP →·AC →-AP →·AB →+AB →·AC →=1,代入化简得4λ2-3λ-1=0,解得λ=-14或λ=1.[答案] -14或19.已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a =2,且(2+b )(sin A -sin B )=(c -b )sin C ,则△ABC 的面积的最大值为________.[解析] 因为a =2,(2+b )(sin A -sin B )=(c -b )sin C ,根据正弦定理,得(a +b )(a -b )=(c -b )c ,所以a 2-b 2=c 2-bc ,所以b 2+c 2-a 2=bc ,根据余弦定理,得cos A =b 2+c 2-a 22bc =12,因为A ∈(0,π),故A =π3.因为b 2+c 2-bc =4,所以4=b 2+c 2-bc ≥2bc -bc =bc (当且仅当b=c =2时取等号),所以△ABC 的面积S △ABC =12bc sin A =34bc ≤34×4=3,所以△ABC 的面积的最大值为3.[答案] 310.(2019·唐山模拟)在△ABC 中,(AB →-3AC →)⊥CB →,则角A 的最大值为________. [解析] 因为(AB →-3AC →)⊥CB →,所以(AB →-3AC →)·CB →=0,(AB →-3AC →)·(AB →-AC →)=0,AB →2-4AC →·AB →+3AC →2=0,即cos A =|AB →|2+3|AC →|24|AC →|·|AB →|=|AB →|4|AC →|+3|AC →|4|AB →|≥2316=32,当且仅当|AB →|=3|AC →|时等号成立.因为0<A <π,所以0<A ≤π6,即角A 的最大值为π6.[答案] π611.(2019·苏北四市模拟)已知向量a =(cos θ,sin θ),b =(2,-1). (1)若a ⊥b ,求sin θ-cos θsin θ+cos θ的值;(2)若|a -b |=2,θ∈⎝⎛⎭⎫0,π2,求sin ⎝⎛⎭⎫θ+π4的值. [解] (1)由a ⊥b 可知,a ·b =2cos θ-sin θ=0, 所以sin θ=2cos θ,所以sin θ-cos θsin θ+cos θ=2cos θ-cos θ2cos θ+cos θ=13.(2)由a -b =(cos θ-2,sin θ+1)可得, |a -b |=(cos θ-2)2+(sin θ+1)2=6-4cos θ+2sin θ=2,即1-2cos θ+sin θ=0,①又cos 2θ+sin 2θ=1,且θ∈⎝⎛⎭⎫0,π2,② 由①②可解得⎩⎨⎧sin θ=35,cos θ=45,所以sin ⎝⎛⎭⎫θ+π4=22(sin θ+cos θ) =22×⎝⎛⎭⎫35+45=7210. 12.(2019·盐城高三模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知B =60°,a +c =4.(1)当a ,b ,c 成等差数列时,求△ABC 的面积; (2)设D 为AC 边的中点,求线段BD 长的最小值. [解] (1)因为a ,b ,c 成等差数列,所以b =a +c2=2.由b 2=a 2+c 2-2ac cos B ,B =60°,得 b 2=(a +c )2-3ac =16-3ac =4,解得ac =4, 从而S △ABC =12ac sin B =12×4×32=3.(2)法一:因为D 为AC 边的中点, 所以BD →=12(BA →+BC →),则BD →2=14(BA →+BC →)2=14(BA →2+2BA →·BC →+BC →2)=14(c 2+2ac cos B +a 2)=14[(a +c )2-ac ]=4-14ac ≥4-14×⎝ ⎛⎭⎪⎫a +c 22=3, 当且仅当a =c =2时取等号, 所以线段BD 长的最小值为3.法二:因为D 为AC 边的中点,所以可设AD =CD =d , 由cos ∠ADB +cos ∠CDB =0,得BD 2+d 2-c 22d ·BD +BD 2+d 2-a 22d ·BD =0,即BD 2=a 2+c 22-d 2=8-ac -d 2,又b 2=a 2+c 2-2ac cos B ,B =60°,所以b 2=(a +c )2-3ac =16-3ac , 即4d 2=16-3ac ,所以d 2=4-34ac ,故BD 2=4-14ac ≥4-14×⎝ ⎛⎭⎪⎫a +c 22=3,当且仅当a =c =2时取等号, 所以线段BD 长的最小值为3.13.(2019·南京、盐城模拟)在平面直角坐标系xOy 中,设锐角α的始边与x 轴的非负半轴重合,终边与单位圆交于P (x 1,y 1),将射线OP 绕坐标原点O 按逆时针方向旋转π2后与单位圆交于点Q (x 2,y 2).记f (α)=y 1+y 2.(1)求函数f (α)的值域;(2)设△ABC 的角A ,B ,C 所对的边分别为a ,b ,c ,若f (C )=2,且a =2,c =1,求b .[解] (1)由题意,得y 1=sin α,y 2=sin ⎝⎛⎭⎫α+π2=cos α, 所以f (α)=sin α+cos α=2sin ⎝⎛⎭⎫α+π4, 因为α∈⎝⎛⎭⎫0,π2,所以α+π4∈⎝⎛⎭⎫π4,3π4, 故f (α)∈(1,2].(2)因为f (C )=2sin ⎝⎛⎭⎫π4+C =2,又C ∈(0,π), 所以C =π4,在△ABC 中,由余弦定理得c 2=a 2+b 2-2ab cos C , 即1=2+b 2-22×22b , 解得b =1.14.(2019·江苏省四星级学校4月联考)金镶玉奖牌是中国文化与体育精神完美结合的载体.现有一矩形玉片BCEF ,CE 为36毫米,BC 为32毫米,G 为EF 的中点.现要开糟镶嵌金丝,将其加工为镶金工艺品,如图,金丝部分为优弧PQ ︵和线段MP ,NQ ,MN ,其中优弧PQ ︵所在圆的圆心为O ,圆O 与矩形的边FB ,BC ,CE 分别相切于点A ,H ,D .M ,N 在线段EF 上(M 在N 的左侧),MP ,NQ 分别与圆O 相切点P ,Q ,且FM =NE .若优弧PQ ︵部分镶嵌的金丝每毫米造价为3a 元(a >0),线段MP ,NQ ,MN 部分镶嵌的金丝每毫米造价为2a 元.记锐角∠POG =α,镶嵌金丝总造价为W 元.(1)试表示出关于α的函数W (α),并写出cos α的范围; (2)当M ,N 位于什么位置时,镶嵌金丝的总造价最低?[解] (1)如图,过点P 作OG 的垂线,垂足为R ,过点M 作PR 的垂线,垂足为S ,由圆O 与矩形的边FB ,BC ,CE 相切,得圆O 半径为16.易得PR =16sin α,OR =16cos α,MS =GR =OG -OR =CE -CD -16cos α=36-16-16cos α=20-16cos α, 因为MP 与圆O 相切,切点为P ,所以OP ⊥MP ,易得∠MPS =∠POG =α, 所以MP =NQ =MS sin α=20-16cos αsin α,PS =MS tan α=20-16cos αtan α,所以MG =SR =PR -PS =16sin α-20-16cos αtan α=16-20cos αsin α,MN =2MG =2×16-20cos αsin α=32-40cos αsin α.因为优弧PQ ︵的圆心角为(2π-2α),所以优弧PQ ︵的长为32(π-α), 所以W (α)=32(π-α)×3a +⎝⎛⎭⎪⎫20-16cos αsin α×2+32-40cos αsin α ×2a =96a (π-α)+72-72cos αsin α×2a =48a (2π-2α+3-3cos αsin α),考虑临界状态,当M ,N ,G 三点重合时,△POG 为直角三角形,其中∠GPO =π2,OG =20,OP =16,cos α=OP OG =1620=45,所以cos α∈⎝⎛⎭⎫0,45. (2)由(1)知,W ′(α)=48a ⎝ ⎛⎭⎪⎫-2+3-3cos αsin 2α=48a ·⎝ ⎛⎭⎪⎫-2sin 2α+3-3cos αsin 2α=48a ·⎝ ⎛⎭⎪⎫-2+2cos 2α+3-3cos αsin 2α=48a ·⎝ ⎛⎭⎪⎫2cos 2α-3cos α+1sin 2α=48a ·(2cos α-1)(cos α-1)sin 2α,α∈(α0,π2),其中α0∈⎝⎛⎭⎫0,π2,cos α0=45, 令W ′(α)=0,得cos α=12或cos α=1(舍),又cos α∈⎝⎛⎭⎫0,45且α为锐角,所以α=π3, 所以当α∈⎝⎛⎭⎫α0,π3时,W ′(α)<0,W (α)单调递减; 当α∈⎝⎛⎭⎫π3,π2时,W ′(α)>0,W (α)单调递增.所以当α=π3时,总造价W (α)取得最小值,为W ⎝⎛⎭⎫π3=64πa +483a , 此时,MG =NG =43.答:(1)W (α)=48a (2π-2α+3-3cos αsin α),cos α∈⎝⎛⎭⎫0,45;(2)当MG =NG =43毫米时,能使总造价最低.。
2020年高考——三角函数1.(20全国Ⅰ文18)ABC △的内角A ,B ,C 的对边分别为a ,b ,c .已知B =150°.(1)若a ,b ABC △的面积;(2)若sin A C ,求C .2. (20全国Ⅱ文17)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知25cos ()cos 24A A π++=. (1)求A ;(2)若b c -=,证明:△ABC 是直角三角形.3.(20全国Ⅱ理 17)ABC △中,sin 2A -sin 2B -sin 2C = sin B sin C .(1)求A ;(2)若BC =3,求ABC △周长的最大值.4.(20新高考Ⅰ17)在①ac =sin 3c A =,③c =这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由.问题:是否存在ABC △,它的内角,,A B C 的对边分别为,,a b c ,且sin A B ,6C π=,________? 注:如果选择多个条件分别解答,按第一个解答计分.5.(20天津16)(本小题满分14分)在ABC △中,角,,A B C 所对的边分别为,,a b c .已知5,a b c === (Ⅰ)求角C 的大小; (Ⅱ)求sin A 的值; (Ⅲ)求πsin(2)4A +的值.6.(20浙江18)(本题满分14分)在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知2sin 0b A =. (Ⅰ)求角B 的大小;(Ⅱ)求cos A +cos B +cos C 的取值范围.7.(20江苏16)(本小题满分14分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知3,2,45a c B ===︒. (1)求sin C 的值;(2)在边BC 上取一点D ,使得4cos 5ADC ∠=-,求tan DAC ∠的值.8.(20全国Ⅱ理21)(12分)已知函数f (x )= sin 2x sin2x .(1)讨论f (x )在区间(0,π)的单调性; (2)证明: 33()f x ≤; (3)设n ∈N *,证明:sin 2x sin 22x sin 24x …sin 22n x ≤34nn .9.(20北京17)(本小题13分)在ABC 中,11a b +=,再从条件①、条件②这两个条件中选择一个作为己知,求: (Ⅰ)a 的值:(Ⅱ)sin C 和ABC 的面积.条件①:17,cos 7c A ==-; 条件②:19cos ,cos 816A B ==.注:如果选择条件①和条件②分别解答,按第一个解答计分.参考答案:1.解:(1)由题设及余弦定理得2222832cos150c c =+-⨯︒,解得2c =-(舍去),2c =,从而a =ABC △的面积为12sin1502⨯⨯︒=(2)在ABC △中,18030A B C C =︒--=︒-,所以sin sin(30)sin(30)A C C C C =︒-=︒+,故sin(30)C ︒+=而030C ︒<<︒,所以3045C ︒+=︒,故15C =︒.2.解:(1)由已知得25sin cos 4A A +=,即21cos cos 04A A -+=. 所以21(cos )02A -=,1cos 2A =.由于0A <<π,故3A π=.(2)由正弦定理及已知条件可得sin sin B C A -.由(1)知23B C π+=,所以2sin sin()33B B ππ--.即11sin 22B B =,1sin()32B π-=.由于03B 2π<<,故2B π=.从而ABC △是直角三角形.3.解:(1)由正弦定理和已知条件得222BC AC AB AC AB --=⋅,①由余弦定理得2222cos BC AC AB AC AB A =+-⋅,② 由①,②得1cos 2A =. 因为0πA <<,所以2π3A =.(2)由正弦定理及(1)得sin sin sin AC AB BCB C A===从而AC B =,π)3cos AB A B B B =--=-.故π33cos 3)3BC AC AB B B B ++=++=++.又π03B <<,所以当π6B =时,ABC △周长取得最大值3+4.解:方案一:选条件①.由6C π=和余弦定理得2222a b c ab +-=.由sin A B =及正弦定理得a =.222=b c =.由①ac =1a b c ==.因此,选条件①时问题中的三角形存在,此时1c =. 方案二:选条件②.由6C π=和余弦定理得2222a b c ab +-=.由sin A B =及正弦定理得a =.222=b c =,6B C π==,23A π=.由②sin 3c A =,所以6c b a ===.因此,选条件②时问题中的三角形存在,此时c =方案三:选条件③.由6C π=和余弦定理得2222a b c ab +-=.由sin A B =及正弦定理得a =.222=b c =.由③c =,与b c =矛盾.因此,选条件③时问题中的三角形不存在.5.(Ⅰ)解:在ABC △中,由余弦定理及5,a b c ===222cos 22a b c C ab +-==.又因为(0,π)C ∈,所以π4C =.(Ⅱ)解:在ABC △中,由正弦定理及π,4C a c ===,可得sin sin 13a C A c ==.(Ⅲ)解:由a c <及sin A =cos A == 进而2125sin 22sin cos ,cos 22cos 113A A A A A ===-=.所以,πππ125sin(2)sin 2cos cos 2sin 44413213226A A A +=+=⨯+⨯=.6.(Ⅰ)由正弦定理得2sin sin B A A ,故sin B =, 由题意得π3B =. (Ⅱ)由πA B C ++=得2π3C A =-, 由ABC △是锐角三角形得ππ(,)62A ∈.由2π1cos cos()cos 32C A A A =-=-得11π13cos cos cos cos sin()]22622A B C A A A ++++=++∈.故cos cos cos A B C ++的取值范围是3]2.7.解:(1)在ABC △中,因为3,45a c B ===︒,由余弦定理2222cos b a c ac B =+-,得292235b =+-⨯︒=,所以b =在ABC △中,由正弦定理sin sin b cB C=,,所以sin C =(2)在ADC △中,因为4cos 5ADC ∠=-,所以ADC ∠为钝角,而180ADC C CAD ∠+∠+∠=︒,所以C ∠为锐角.故cos C =则sin 1tan cos 2C C C ==. 因为4cos 5ADC ∠=-,所以3sin 5ADC ∠==,sin 3tan cos 4ADC ADC ADC ∠∠==-∠.从而31tan()242tan tan(180)tan()===311tan tan 111()42ADC C ADC ADC C ADC C ADC C -+∠+∠∠=︒-∠-∠=-∠+∠---∠⨯∠--⨯8.解:(1)()cos (sin sin 2)sin (sin sin 2)f x x x x x x x ''=+22sin cos sin 22sin cos2x x x x x =+ 2sin sin3x x =.当(0,)(,)33x π2π∈π时,()0f x '>;当(,)33x π2π∈时,()0f x '<. 所以()f x 在区间(0,),(,)33π2ππ单调递增,在区间(,)33π2π单调递减.(2)因为(0)()0f f =π=,由(1)知,()f x 在区间[0,]π的最大值为()3fπ=,最小值为()3f 2π=.而()f x 是周期为π的周期函数,故|()|f x ≤. (3)由于32222(sin sin 2sin 2)nx xx333|sin sin 2sin 2|n x xx =23312|sin ||sin sin 2sin 2sin 2||sin 2|n n n x x x x x x -= 12|sin ||()(2)(2)||sin 2|n n x f x f x f x x -=1|()(2)(2)|n f x f x f x -≤,所以22223333sin sin 2sin 2()4n nnn x xx ≤=.9.。
专题04三角函数的应用一、本专题要特别小心:1。
图象的平移(把系数提到括号的前边后左加右减)2。
图象平移要注意未知数的系数为负的情况3。
图象的横坐标伸缩变换要注意是加倍还是变为几分之几4.五点作图法的步骤5.利用图象求周期6。
已知图象求解析式二【学习目标】1.理解三角函数的定义域、值域和最值、奇偶性、单调性与周期性、对称性.2.会判断简单三角函数的奇偶性,会求简单三角函数的定义域、值域、最值、单调区间及周期.3.理解三角函数的对称性,并能应用它们解决一些问题.三.【方法总结】1。
三角函数奇偶性的判断与其他函数奇偶性的判断步骤一致:(1)首先看定义域是否关于原点对称;(2)在满足(1)后,再看f(-x)与f(x)的关系.另外三角函数中的奇函数一般可化为y=A sin ωx或y=A tan ωx,偶函数一般可化为y=A cos ωx+b的形式。
2.三角函数的单调性(1)函数y=A sin(ωx+φ)(A>0,ω>0)的单调区间的确定,其基本思想是把ωx+φ看作一个整体,比如:由2kπ-错误!≤ωx+φ≤2kπ+错误!(k∈Z)解出x的范围,所得区间即为增区间。
若函数y=A sin(ωx+φ)中A>0,ω<0,可用诱导公式将函数变为y=-A sin(-ωx-φ),则y=A sin(-ωx-φ)的增区间为原函数的减区间,减区间为原函数的增区间.对函数y=A cos(ωx+φ),y=A tan(ωx+φ)等单调性的讨论同上。
(2)三角函数单调性的应用主要有比较三角函数值的大小,而比较三角函数值大小的一般步骤:①先判断正负;②利用奇偶性或周期性转化为属于同一单调区间上的两个同名函数;③再利用单调性比较。
3。
求三角函数的最值常见类型:(1)y=A sin(ωx+φ)+B或y=A tan(ωx+φ)+B,(2)y=A(sin x-a)2+B,(3)y=a(sin x±cos x)+b sin x cos x(其中A,B,a,b∈R,A≠0,a≠0)。
3.三角函数与平面向量1.【2018年新课标I卷文】已知函数,则A. 的最小正周期为π,最大值为3B. 的最小正周期为π,最大值为4C. 的最小正周期为,最大值为3D. 的最小正周期为,最大值为4【答案】B点睛:该题考查的是有关化简三角函数解析式,并且通过余弦型函数的相关性质得到函数的性质,在解题的过程中,要注意应用余弦倍角公式将式子降次升角,得到最简结果.2.【2018年天津卷文】将函数的图象向右平移个单位长度,所得图象对应的函数A. 在区间上单调递增B. 在区间上单调递减C. 在区间上单调递增D. 在区间上单调递减【来源】2018年全国普通高等学校招生统一考试文科数学(天津卷)【答案】A【解析】分析:首先确定平移之后的对应函数的解析式,然后逐一考查所给的选项是否符合题意即可.详解:由函数图象平移变换的性质可知:将的图象向右平移个单位长度之后的解析式为:.则函数的单调递增区间满足:,即,令可得函数的一个单调递增区间为,选项A正确,B错误;函数的单调递减区间满足:,即,令可得函数的一个单调递减区间为,选项C,D错误;本题选择A选项.点睛:本题主要考查三角函数的平移变换,三角函数的单调区间等知识,意在考查学生的转化能力和计算求解能力.3.【2018年文北京卷】在平面坐标系中,是圆上的四段弧(如图),点P在其中一段上,角以O y始边,OP为终边,若,则P所在的圆弧是A. B. C. D.【答案】C【解析】分析:逐个分析A、B、C、D四个选项,利用三角函数的三角函数线可得正确结论.详解:由下图可得:有向线段为余弦线,有向线段为正弦线,有向线段为正切线.A选项:当点在上时,,,故A选项错误;B选项:当点在上时,,,,故B选项错误;C选项:当点在上时,,,,故C选项正确;D选项:点在上且在第三象限,,故D选项错误.综上,故选C.点睛:此题考查三角函数的定义,解题的关键是能够利用数形结合思想,作出图形,找到所对应的三角函数线进行比较.4.【2018年新课标I卷文】已知角的顶点为坐标原点,始边与轴的非负半轴重合,终边上有两点,,且,则A. B. C. D.【答案】B详解:根据题的条件,可知三点共线,从而得到,因为,解得,即,所以,故选B.点睛:该题考查的是有关角的终边上点的纵坐标的差值的问题,涉及到的知识点有共线的点的坐标的关系,余弦的倍角公式,余弦函数的定义式,根据题中的条件,得到相应的等量关系式,从而求得结果. 5.【2018年全国卷Ⅲ文】的内角的对边分别为,,,若的面积为,则A. B. C. D.【答案】C点睛:本题主要考查解三角形,考查了三角形的面积公式和余弦定理。
专题 平面向量平面向量的概念与运算一、选择题1.(2018全国卷Ⅰ)在∆ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB =u u u rA .3144AB AC -u u u r u u u r B .1344AB AC -u u u r u u u r C .3144AB AC +u u u r u u u r D .1344AB AC +u u ur u u u r2.(2018全国卷Ⅱ)已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a bA .4B .3C .2D .03.(2018天津)在如图的平面图形中,已知1OM =,2ON =,120MON ∠=o,2BM MA =u u u u r u u u r,2CN NA =u u u r u u u r ,则·BC OM u u u r u u u u r 的值为NMOCBAA .15-B .9-C .6-D .04.设非零向量a ,b 满足||||+=-a b a b 则A .⊥a bB .||||=a bC .∥a bD .||||>a b 5.设m , n 为非零向量,则“存在负数λ,使得λ=m n ”是“0⋅<m n ”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件6.已知△ABC 是边长为1的等边三角形,点E D ,分别是边BC AB ,的中点,连接DE 并延长到点F ,使得EF DE 2=,则AF BC ⋅u u u r u u u r的值为A .85-B .81 C .41 D .8117.已知向量1(,22BA =uu v,1),2BC =uu u v 则ABC ∠=A .30°B .45°C .60°D .120°8.(2018浙江)已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为3π,向量b 满足2430-⋅+=b e b ,则||-a b 的最小值是A1B1C .2D.29.如图,已知平面四边形ABCD ,AB BC ⊥,2AB BC AD ===,3CD =,AC 与BD 交于点O ,记1I OA OB =⋅u u u r u u u r ,2·I OB OC u u u r u u u r =,3·I OC OD u u u r u u u r=,则 OABCDA .1I <2I <3IB .1I <3I <2IC .3I < 1I <2ID .2I <1I <3I10.已知正三角形ABC 的边长为32,平面ABC 内的动点P ,M 满足||1AP =u u u r ,PM MC =u u u u r u u u u r ,则2||BM u u u u r 的最大值是A .443 B .449C .43637+D .433237+11.在平面直角坐标系x y O 中,已知四边形ΑΒCD 是平行四边形,()1,2ΑΒu u u r =-,()2,1ΑD u u u r=,则ΑD ΑC u u u r u u u r ⋅= A .5 B .4 C .3 D .212.已知点,,A B C 在圆221x y +=上运动,且AB ⊥BC ,若点P 的坐标为(2,0),则||PA PB PC ++u u u r u u u r u u u r 的最大值为A .6B .7C .8D .913.已知向量(1,2),(,1)a b m ==-r r ,且()a a b ⊥+rr r ,则m =( )A .-1B .-2C .-3D .-4 14.已知平面向量()()2,1,2,4a b ==r r,则向量a r 与b r的夹角的余弦值为( )A .35B .45C .35-D .45-15.若向量(4,2)a =r ,(6,)b k =r ,若//a b r r,则(k = )A .12-B .12C .3-D .3 16.已知()1,2a =r,()1,0b =r,则2a b +=r r ( )A .5B .7C .5D .25二、填空题17.(2018全国卷Ⅲ)已知向量(1,2)=a ,(2,2)=-b ,(1,)λ=c .若()2+c a b P ,则λ=_. 18.(2018北京)设向量(1,0)=a ,(1,)m =-b ,若()m ⊥-a a b ,则m =_______. 19.已知向量(1,2)=-a ,(,1)m =b .若向量+a b 与a 垂直,则m =__. 20.已知向量(2,3)=-a ,(3,)m =b ,且⊥a b ,则m = .21.在△ABC 中,60A ∠=︒,AB =3,AC =2.若2BD DC =u u u r u u u r ,AE AC AB λ=-u u u r u u u r u u u r(λ∈R ),且4AD AE ⋅=-u u u r u u u r ,则λ的值为 .22.已知向量(2,6)=a ,(1,)λ=-b ,若a ∥b ,则λ= .23.如图,在同一个平面内,向量OA u u u r ,OB uuu r ,OC u u u r 的模分别为1,1,2,OA u u u r 与OC u u u r的夹角为α,且tan 7α=,OB uuu r 与OC u u u r 的夹角为45o。
Earlybird提能练(二)平面向量、三角函数与解三角形A 组基础对点练1.在△ABC中,角A,B,C所对的边分别为a,b,c,若bc=1,b+2c cos A=0,则当角B取得最大值时,△ABC的周长为()A.2+3B.2+ 2C.3 D.3+ 2解析:由题意可得,sin B+2sin C cos A=0,即sin(A+C)+2sin C cos A=0,得sin A cos C=-3sin C cos A,即tan A=-3tan C.b又cos A=-<0,所以A为钝角,于是tan C>0.2ctan A+tan C2tan C 2 从而tan B=-tan(A+C)=-==,1-tan A tan C1+3tan2C 1+3tan Ctan C1 1由基本不等式,得+3tan C≥2 ×3tan C=2 3,当且仅当tan C=tan C tan C3 3时等号成立,此时角B取得最大值,且tan B=tan C=,tan A=-3,3 3即b=c,A=120°,又bc=1,所以b=c=1,a=3,故△ABC的周长为2+3.答案:A2.(2019·南宁二中模拟)已知在半径为2 的扇形AOB中,∠AOB=120°,C是OB→→→的中点,P为弧AB上任意一点,且OP=λOA+μOC,则λ+μ的最大值为()A.2 B. 21 32 21 4 21C. D.3 3解析:建立如图所示的平面直角坐标系,则O(0,0),1 3 → 1 3→A(2,0),C(-,),则OA=(2,0),OC=(-,),2 2 2 2Earlybird1 3设P(2cos θ,2sin θ),则λ(2,0)+μ(-,)=(2cos θ,2 22sin θ),即Error!5 2 21 3解得Error!则λ+μ=sin θ+cos θ=sin(θ+φ),其中tan φ=,据此可3 3 52 21知,当sin(θ+φ)=1 时,λ+μ取得最大值.故选C.3答案:C→→π3.(2019·山西芮城中学模拟)模均为2 的向量OA,OB的夹角为,点C在以O为3→→→圆心的圆弧AB(劣弧)上,OC=mOA+nOB,则m+n的最大值是()2 3A.2 3 B.3C. 3 D.3 3→→→解析:∵OC=mOA+nOB,→→→∴OC2=(mOA+nOB)2,→→π∴4=4m2+4n2+2mnOA·OB=4m2+4n2+2mn×2×2×cos ,3即m2+n2+mn=1,m+n2故(m+n)2-1=mn≤(当且仅当m=n时,等号成立),44 4 2 3故(m+n)2≤,m+n的最大值为=.3 3 3答案:B4.已知在△ABC中,AB<AC,A=90°,边AB,AC的长分别为方程x2-2(1+3)x+4 3=0 的两个实数根,若斜边BC上有异于端点的E,F两点,且EF=1,∠EAF=θ,则tan θ的取值范围为()3 4 3 3 3 A.( ,] B.( ,)3 11 9 3Earlybird3 4 3 3 2 3C.( ,] D.( ,]9 11 9 11解析:由题意可知AB=2,AC=2 3,BC=AB2+AC2=4,以A为原点,AB,AC所在直线分别为x轴,y轴建立平面直角坐标系(图略),则A(0,0),B(2,0),C(0,2 3).→→→ 3 → 1设BF=λBC,λ∈(0,),则BE=(λ+)BC,4 43 3得F(2-2λ,2 3λ),E( -2λ,2 3λ+).2 2→→ 3 3所以AE·AF=( -2λ,2 3λ+)·(2-2λ,2 3λ)=3-4λ-3λ+4λ2+12λ2+3λ=2 21 11 11 AB·AC16λ2-4λ+3=16(λ-)2+∈[ ,9).因为点A到BC边的距离d==8 4 4 BC3,1 3所以△AEF的面积S△AEF=EF·3=为定值.2 21→→|AE|·|AF|·sinθS△AEF 2 1 2S△AEF 3 3 4 3又==tan θ,所以tan θ==∈( ,],→→→→ 2 →→→→9 11AE·AF|AE|·|AF|·cosθAE·AF AE·AF故选C.答案:C5.已知△ABC的内角A,B,C的对边分别是a,b,c,且(a2+b2-c2)(a cos B+b cos A)=abc,若a+b=2,则c的取值范围为________.解析:由sin A cos B+sin B cos A=sin(A+B)=sin C及正弦定理,可知a cos B+b cos A=c,则由(a2+b2-c2)(a cos B+b cos A)=abc,得a2+b2-c2=ab,由余1 π2π弦定理可得cos C=,则C=,B=-A,2 3 3a b c由正弦定理==,sin A sin B sin Ca b c得==,sin A2ππsin-A sin3 3Earlybird2πc sin-Ac sin A 3又a+b=2,所以+=2,3 32 23 1即c==,2ππsin A+sin-A sin A+3 62π因为A∈(0,),3ππ5ππ 1所以A+∈( ,),sin(A+)∈( ,1],6 6 6 6 2则c∈[1,2).答案:[1,2)6.(2019·江苏泰州中学月考)在矩形ABCD中,AB=3,AD=1,若M,N分别→→|BM| |CN|→→在边BC,CD上运动,且满足=,则AM·AN的取值范围是→→|BC| |CD|________.解析:以A为坐标原点,AB,AD所在直线分别为x轴,y轴建立平面直角坐标系(图略),则A(0,0),B(3,0),C(3,1),D(0,1),设M(3,b),N(a,1),→→|BM| |CN|3-a因为=,所以b=,→→ 3|BC| |CD|→→3-a而AN=(a,1),AM=(3,),3→→8故AM·AN=a+1(0≤a≤3),38→→所以1≤a+1≤9,故AM·AN∈[1,9].3答案:[1,9]→ 1 7.(2019·安徽五校联考)在△ABC中,点D在线段BC的延长线上,且BC=2 →→→→CD,点O在线段CD上(不与点C,D重合),若AO=xAB+(1-x)AC,则xEarlybird的取值范围是________.→→→→→→→→→解析:设CO=yBC,则AO=AC+CO=AC+yBC=AC+y(AC→→→-AB)=-yAB+(1+y)AC,→ 1 →因为BC=CD,点O在线段CD上,且不与C,D重合,所以y∈(0,2),因2→→→为AO=xAB+(1-x)AC,所以x=-y∈(-2,0).答案:(-2,0)8.(2019·辽宁五校联考)已知△ABC的内角A,B,C所对的边分别为a,b,c,π且a cos C+c cos A=b sin B,A=,如图,若点D是△ABC外一点,DC=2,DA6=3,则当四边形ABCD面积最大时,sin D=________.a2+b2-c2 b2+c2-a2 解析:由a cos C+c cos A=b sin B及余弦定理得a×+c×2ab2bc=b sin B,π即b=b sin B sin B=B=,2ππ 1又∠CAB=,∴∠ACB=.BC=a,则AB=3a,AC=2a,则S△ABC=×a×6 3 233a=a2.2AD2+CD2-AC2 13-4a2在△ACD中,cos D==,2AD·CD1213-12cos D∴a2=.41又S △ACD=AD·CD sin D=3sin D,23 3 13-12cos D∴S四边形ABCD=S△ABC+S△ACD=a2+3sin D=×+3sin D=2 2 43 3 13 3 3 7 2 3 13 3 3 73sin D-cos D+=( sin D-cos D)+=sin(D-θ)+2 8 2 7 7 8 213 3 83(其中θ满足tan θ=),2πππ∴当D-θ=,即D=+θ时,S四边形ABCD最大,此时sin D=sin( +θ)=cos2 2 2Earlybird2 2 7θ==.7 72 7答案:79.(2019·南阳一中模拟)在△ABC中,角A,B,C所对的边分别为a,b,c,已tan A2c知a=3,1+=.tan B b(1)求角A的大小;(2)求b+c的最大值.tan A2c解析:(1)在△ABC中,∵1+=,tan B btan A2c-b∴=,tan B bsin A cos B2sin C-sin B∴=,cos A sin B sin B∴sin A cos B=2sin C cos A-sin B cos A,∴sin C=2sin C cos A.1 π又sin C≠0,∴cos A=,可得A=.2 3π(2)由(1),根据余弦定理可得,9=a2=b2+c2-2bc cos ,∴(b+c)2=9+3bc≤933b+c2+,4可得(b+c)2≤36,∴b+c≤6,故b+c的最大值为6.B 组能力提升练ππ5π10.(2019·合肥模拟)已知向量a=(cos(θ-),1),b=(3,0),其中θ∈( ,),4 2 4若a·b=1.(1)求sin θ的值;(2)求tan 2θ的值.π 1解析:(1)由已知得:cos(θ-)=,4 3π 2 2 ππππππsin(θ-)=,sin θ=sin[(θ-)+]=sin(θ-)cos +cos(θ-)·sin=4 3 4 4 4 4 4 44+ 2.6Earlybirdπ 1 2(2)由cos(θ-)=得sin θ+cos θ=,4 3 32两边平方得:1+2sin θcos θ=,97 4 2即sin 2θ=-,而cos 2θ=1-2sin2θ=-,9 97 2∴tan 2θ=.811.(2019·石家庄市高三二检)已知△ABC的内角A,B,C的对边分别为a,b,3cc,且=tan A+tan B.a cos B(1)求角A的大小;(2)设AD为BC边上的高,a=3,求AD的取值范围.3c解析:(1)在△ABC中,∵=tan A+tan B,a cos B3sin C sin A sin B∴=+,sin A cos B cos A cos B3sin C sin A cos B+sin B cos A即=,sin A cos B cos A cos B3 1 π∴=,则tan A=3,∴A=.sin A cos A 31 1 1(2)∵S△ABC=AD·BC=bc sin A,∴AD=bc.2 2 21 b2+c2-a2 2bc-3由余弦定理得cos A==≥,2 2bc2bc∴0<bc≤3(当且仅当b=c时等号成立),3∴0<AD≤.23 12.已知a=(sin x,-cos x),b=(cos x,3cos x),函数f(x)=a·b+.2(1)求f(x)的最小正周期,并求其图象对称中心的坐标;π(2)当0≤x≤时,求函数f(x)的值域.2解析:(1)∵f(x)=sin x cos x-3cos2x +3 2Earlybird1 3 3=sin 2x-(cos 2x+1)+2 2 21 3 π=sin 2x-cos 2x=sin(2x-),2 2 3π∴f(x)的最小正周期为π,令sin(2x-)=0,3πkπ得2x-=kπ,∴x=π+,k∈Z,3 2 6kπ故所求对称中心的坐标为( π+,0)(k∈Z).2 6πππ2π(2)∵0≤x≤,∴-≤2x-≤,2 3 3 33 π∴-≤sin(2x-)≤1,2 33故f(x)的值域为[-,1].2。
2020年高考数学三角函数与平面向量突破性讲练06 简单的三角恒等变换一、考点传真:1.会用向量的数量积推导出两角差的余弦公式;2.能利用两角差的余弦公式导出两角差的正弦、正切公式;3.能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系;4.能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).二、知识点梳理:1.两角和与差的正弦、余弦、正切公式S (α±β):sin(α±β)=sin αcos β±cos αsin β. C (α±β):cos(α±β)=cos αcos β∓sin αsin β.T (α±β):tan(α±β)=tan α±tan β1∓tan αtan β⎝ ⎛⎭⎪⎫α,β,α±β≠π2+k π,k ∈Z .两角和与差的正弦、余弦、正切公式的结构特征和符号特点及关系:C (α±β)同名相乘,符号反;S (α±β)异名相乘,符号同;T (α±β)分子同,分母反.2.二倍角公式S 2α:sin 2α=2sin αcos α.C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α.T 2α:tan 2α=2tan α1-tan 2α⎝ ⎛⎭⎪⎫α≠k π+π2且α≠k π2+π4,k ∈Z . 二倍角是相对的,例如,α2是α4的二倍角,3α是3α2的二倍角.二、常用结论汇总——规律多一点(1)降幂公式:cos 2α=1+cos 2α2,sin 2α=1-cos 2α2.(2)升幂公式:1+cos 2α=2cos 2α,1-cos 2α=2sin 2α. (3)公式变形:tan α±tan β=tan(α±β)(1∓tan αtan β).(4)辅助角公式:a sin x +b cos x =a 2+b 2sin(x +φ)⎝⎛⎭⎪⎫其中sin φ=b a 2+b 2,cos φ=a a 2+b 2三、例题:例1.(2019全国Ⅱ理10)已知α∈(0,),2sin 2α=cos 2α+1,则sin α=A .B .C D例2.(2018江苏)已知,αβ为锐角,4tan 3α=,5cos()5αβ+=-.(1)求cos2α的值; (2)求tan()αβ-的值.例3.(2016年全国Ⅰ卷)已知θ是第四象限角,且3sin()45πθ+=,则tan()4πθ-= . 例4.(2015广东)已知tan 2α=. (Ⅰ)求tan()4πα+的值;(Ⅱ)求2sin 2sin sin cos cos 21ααααα+--的值. 例5.(2012江苏)设α为锐角,若4cos 65απ⎛⎫+= ⎪⎝⎭,则sin 212απ⎛⎫+ ⎪⎝⎭的值为 .四、巩固练习:1. sin 180°+2α1+cos 2α·cos 2αcos 90°+α等于( ) A .-sin α B .-cos α C .sin αD .cos α2.求值:cos 20°cos 35°1-sin 20°=( )A .1B .2 C. 2D. 33.已知α为第二象限角,sin α+cos α=33,则cos 2α=( ) A .-53B .-592π155533255C.59D.534..已知ω>0,函数f (x )=sin ωx cos ωx +3cos 2ωx -32的最小正周期为π,则下列结论正确的是( ) A .函数f (x )的图象关于直线x =π3对称B .函数f (x )在区间⎣⎢⎡⎦⎥⎤π12,7π12上单调递增C .将函数f (x )的图象向右平移π6个单位长度可得函数g (x )=cos 2x 的图象D .当x ∈⎣⎢⎡⎦⎥⎤0,π2时,函数f (x )的最大值为1,最小值为-325.已知sin ⎝⎛⎭⎪⎫π6-α=cos ⎝ ⎛⎭⎪⎫π6+α,则tan α=( )A .1B .-1 C.12 D .06.已知cos ⎝ ⎛⎭⎪⎫2π3-2θ=-79,则sin ⎝ ⎛⎭⎪⎫π6+θ的值为( )A.13 B .±13C .-19D.197.若sin(α-β)sin β-cos(α-β)cos β=45,且α为第二象限角,则tan ⎝ ⎛⎭⎪⎫α+π4=( ) A .7 B.17C .-7D .-178.若sin 2α=55,sin(β-α)=1010,且α∈⎣⎢⎡⎦⎥⎤π4,π,β∈⎣⎢⎡⎦⎥⎤π,3π2,则α+β的值是( ) A.7π4 B.9π4C.5π4或7π4D.5π4或9π49.已知tan α,1tan α是关于x 的方程x 2-kx +k 2-3=0的两个实根,且3π<α<7π2,则cos α+sin α=( ) A. 3B. 2C .- 2D .- 310.定义()()x x y x y y x y ≥⎧⊗=⎨<⎩,则231()(cos sin )24αα-⊗+-的最大值为 ( )A.4B.3C.2D. 1 11.已知3sin()322πα-=-,则cos()3πα+=( )A.32 B.32- C.12 D. 12-12.已知函数()3sin cos f x x x ωω=-24cos x ω(0ω>)的最小正周期为π,且1()2f θ=,则()2f πθ+=( ) A .52-B .92-C .112-D .132- 13.化简:2sin π-α+sin 2αcos 2α2=________.14. cos 10°1+3tan 10°cos 50°的值是________.15.若锐角α,β满足tan α+tan β=3-3tan αtan β,则α+β=________. 16.已知是第二象限角,且,,则 . 17.已知角α的顶点在坐标原点,始边与x 轴的正半轴重合,终边经过点P (-3,3). (1)求sin 2α-tan α的值;(2)若函数f (x )=cos(x -α)cos α-sin(x -α)sin α,求函数g (x )=3f ⎝⎛⎭⎪⎫π2-2x -2f 2(x )在区间⎣⎢⎡⎦⎥⎤0,2π3上的值域.18.已知函数f(x)=sin x+acos x(x∈R ),π4是函数f(x)的一个零点. (1)求a 的值;(2)若α,β∈(0,π2),且f (α+π4)=√105,f (β+3π4)=3√55,求sin(α+β)的值.αsin 10α=()tan 2αβ+=-tan β=。
【2020高考数学】三角函数与平面向量结合问题解题指导第一篇 三角函数与解三角形专题04 三角函数与平面向量结合问题【典例1】如图,在平面直角坐标系中,已知点()2,0A 和单位圆上的两点()10B ,,34,55C ⎛⎫- ⎪⎝⎭,点P 是劣弧BC 上一点,BOC α∠=,BOP β∠=.(1)若OC OP ⊥,求()()sin sin παβ-+-的值;(2)设()f t OA tOP =+,当()f t 的最小值为1时,求OP OC ⋅的值. 【思路引导】(1)根据任意角三角函数定义可求得sin ,cos αα,利用2πβα=-可求得sin cos βα=-,结合诱导公式可化简求出结果;(2)利用向量坐标表示可得到()2cos ,sin OA tOP t t ββ+=+,可求得224cos 4OA tOP t t β+=++,根据二次函数性质可求得22min44cos OA tOPβ+=-,从而利用()f t 的最小值构造方程可求得2cos β,根据角的范围可求得sin β和cos β,进而根据数量积的坐标运算可求得结果.【典例2】【江苏省启东中学2020届高三上学期期初考试数学试题】在平面直角坐标系xOy 中,设向量()cos sin a αα=,,()sin cos b ββ=-,,()12c =-. (1)若a b c +=,求sin ()αβ-的值; (2)设5π6α=,0πβ<<,且()//a b c +,求β的值. 【思路引导】(1)利用向量的数量积转化求解两角差的三角函数即可; (2)通过向量平行,转化求解角的大小即可.【典例3】【2014年全国普通高等学校招生统一考试理科数学(山东卷】已知向量a m x (,cos 2)=,b x n (sin 2,)=,设函数()f x a b =⋅,且()y f x =的图象过点(12π和点2(,2)3π-. (Ⅰ)求,m n 的值; (Ⅱ)将()y f x =的图象向左平移ϕ(0ϕπ<<)个单位后得到函数()y g x =的图象.若()y g x =的图象上各最高点到点(0,3)的距离的最小值为1,求()y g x =的单调增区间. 【思路引导】(Ⅰ)利用向量的数量积坐标运算公式代入函数式整理化简,将函数过的点(12π和点2(,2)3π-代入就可得到关于,m n 的方程,解方程求其值;(Ⅱ)利用图像平移的方法得到()y g x =的解析式,利用最高点到点(0,3)的距离的最小值为1求得ϕ角,得()2cos2g x x =,求减区间需令[]22,2x k k πππ∈+解x 的范围【典例4】【河南省信阳市2019-2020学年高三第一次教学质量检测】已知函数()()f x a b c =+,其中向量()sin ,cos a x x =-,()sin ,3cos b x x =-,()cos ,sin c x x =-,x ∈R .(Ⅰ)若()52f α=,588ππα-<<-,求cos2α的值; (Ⅱ)不等式()2f x m -<在,82x ππ⎡⎤∈⎢⎥⎣⎦上恒成立,求实数m 的取值范围. 【思路引导】(Ⅰ)利用向量数量积公式得到()f x 后,再用二倍角公式以及两角和的正弦公式的逆用公式化成辅助角的形式,根据已知条件及同角公式解得3cos 244πα⎛⎫+= ⎪⎝⎭,再将所求变成33cos 2cos 244ππαα⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦后,利用两角差的余弦公式求得;(Ⅱ)将不等式恒成立转化为最大最小值可解得.【典例5】【陕西省宝鸡市宝鸡中学2019-2020学年高三上学期期中】已知向量()a cos x cos x ωω=-,,()b sin x x ωω=(ω>0),且函数()f x a b =⋅的两个相邻对称中心之间的距离是4π. (1)求6f π⎛⎫⎪⎝⎭;(2)若函数()()1g x m x =+在04π⎡⎤⎢⎥⎣⎦,上恰有两个零点,求实数m 的取值范围. 【思路引导】(1)首先利用平面向量的数量积的应用求出函数的关系式,进一步把函数的关系式变形成正弦型函数,进一步利用函数的性质的应用求出结果.(2)利用函数的零点和方程之间的转换的应用,利用函数的定义域和值域之间的关系求出m 的范围.【典例6】【辽宁省鞍山市第一中学2019-2020学年高三上学期11月月考】已知实数0θπ≤≤,()cos ,sin a θθ=,()0,1j =,若向量b 满足()0a b j +⋅=,且0a b ⋅=. (1)若2a b -=,求b ;(2)若()()f x b x a b =+-在1,2⎡⎫+∞⎪⎢⎣⎭上为增函数,求实数θ的取值范围.【思路引导】(1)设出b 的坐标,结合0a b ⋅=、2a b -=、()0a b j +⋅=,解方程,先求得θ的值,再求得b 的坐标. (2)利用向量模的运算、数量积的运算化简()f x 表达式,结合二次函数的性质列不等式,解不等式求得b 的取值范围.设出b 的坐标,结合()0a b j +⋅=、0a b ⋅=,解方程,用θ表示出2b ,根据b 的取值范围列不等式,解不等式求得cos θ的取值范围,进而求得θ的取值范围.【典例7】【江西省南昌市第二中学2018届高三上学期第五次月考】在平面直角坐标系xOy 中,已知向量()cos ,sin e αα=,设,(0)OA e λλ=>,向量ππcos ,sin 22OB ββ⎛⎫⎛⎫⎛⎫=+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(1)若π6βα=-,求向量OA 与OB 的夹角; (2)若2AB OB ≥ 对任意实数,αβ都成立,求实数λ的取值范围. 【思路引导】(1)由题意结合平面向量的坐标表示,结合平面向量的数量积运算法则可得1cos sin 62πθ==. 则向量OA 与OB 的夹角为3π. (2)原问题等价于2230OA OB λ-⋅-≥任意实数,αβ都成立.分离参数可得()23sin 2λαβλ-≥-任意实数,αβ都成立.结合三角函数的性质求解关于实数λ的不等式可得3λ≥.1. .【河北省唐山市第一中学2019-2020学年高三上学期10月月考】已知向量()2cos 1,2sin a x x ωω=+,()()6cos 0b x x ωωω=>.(1)当2x k πωπ≠+,k Z ∈时,若向量()1,0c =,()3,0d =,且()()//a c b d -+,求224sin cos x x ωω-的值;(2)若函数()f x a b =⋅的图象的相邻两对称轴之间的距离为4π,当,86x ππ⎡⎤∈-⎢⎥⎣⎦时,求函数()f x 的最大值和最小值.2. 已知向量(sin ,1),(3cos ,cos 2)(0)2Am x n A x x A ==>,函数()f x m n =⋅的最大值为6. (Ⅰ)求A ;(Ⅱ)将函数()y f x =的图象向左平移12π个单位,再将所得图象上各点的横坐标缩短为原来的12倍,纵坐标不变,得到函数()y g x =的图象.求()g x 在5[0,]24π上的值域. 3. 【河南省郑州市第一中学2019-2020学年高三上学期期中】已知点()2,0A ,()0,2B -,()2,0F -,设AOC α∠=,[)0,2απ∈,其中O 为坐标原点.(1)设点C 在x 轴上方,到线段AF 3AFC π∠=,求α和线段AC 的大小;(2)设点D 为线段OA 的中点,若2OC =,且点C 在第二象限内,求)3cos y DC OB BC OA α=⋅+⋅的取值范围.4. 【河北省衡水市深州市2019-2020学年高三上学期12月月考】已知向量()()2,22=+a x ωϕ,2,22⎛=- ⎝⎭b ,其中0>ω,02πϕ<<,函数()f x a b =⋅的图像过点()1,2B ,点B 与其相邻的最高点的距离为4. (1)求函数()f x 的单调递减区间;(2)计算()()()122019f f f ++⋅⋅⋅+的值. 5. 【河北省衡水中学2017届高三下学期二调考试】 已知向量()()23sin ,1,cos ,cos 1m x n x x ωωω==+,设函数()f x m n b =⋅+.(1)若函数()f x 的图象关于直线6x π=对称,[]0,3ω∈,求函数()f x 的单调递增区间;(2)在(1)的条件下,当70,12x π⎡⎤∈⎢⎥⎣⎦时,函数()f x 有且只有一个零点,求实数b 的取值范围. 6. 已知(sin ,cos ),(sin ,sin )a x x b x x ==,函数()f x a b =⋅. (1)求()f x 的对称轴方程; (2)若对任意实数[,]63x ππ∈,不等式()2f x m -<恒成立,求实数m 的取值范围.7. 【江苏省淮安市淮阴中学2019-2020学年高三期中数学试题】在如图所示的平面直角坐标系中,已知点(1,0)A 和点(1,0)B -,1OC =,且AOC=x ∠,其中O 为坐标原点.(1)若34x π=,设点D 为线段OA 上的动点,求||OC OD +的最小值; (2)若0,2x π⎡⎤∈⎢⎥⎣⎦,向量m BC =,(1cos ,sin 2cos )n x x x =--,求m n ⋅的最小值及对应的x 值. 8. 已知向量(1,3p =,()cos ,sin q x x =. (1)若//p q ,求2sin 2cos x x -的值;(2)设函数()f x p q =⋅,将函数()f x 的图象上所有的点的横坐标缩小到原来的12(纵坐标不变),再把所得的图象向左平移3π个单位,得到函数()g x 的图象,求()g x 的单调增区间.9. 已知向量(3sin ,cos )x x =m ,(cos )x x =-n ,()f x =⋅-m n .(1)求函数()f x 的最大值及取得最大值时x 的值; (2)若方程()f x a =在区间0,2π⎡⎤⎢⎥⎣⎦上有两个不同的实数根,求实数a 的取值范围. 10. 【黑龙江省大庆实验中学2019届高三上学期第一次月考】已知O 为坐标原点,()22cos ,1OA x =,()1,OB x a =+ ()R,R x a a ∈∈且为常数,若()•f x OA OB =. (Ⅰ)求函数()f x 的最小正周期和单调递减区间; (Ⅱ)若0,2x π⎡⎤∈⎢⎥⎣⎦时,函数()f x 的最小值为2,求实数a 的值.【参考答案部分】【典例1】如图,在平面直角坐标系中,已知点()2,0A 和单位圆上的两点()10B ,,34,55C ⎛⎫- ⎪⎝⎭,点P 是劣弧BC 上一点,BOC α∠=,BOP β∠=.(1)若OC OP ⊥,求()()sin sin παβ-+-的值;(2)设()f t OA tOP =+,当()f t 的最小值为1时,求OP OC ⋅的值. 【思路引导】(1)根据任意角三角函数定义可求得sin ,cos αα,利用2πβα=-可求得sin cos βα=-,结合诱导公式可化简求出结果;(2)利用向量坐标表示可得到()2cos ,sin OA tOP t t ββ+=+,可求得224cos 4OA tOP t t β+=++,根据二次函数性质可求得22min44cos OA tOP β+=-,从而利用()f t 的最小值构造方程可求得2cos β,根据角的范围可求得sin β和cos β,进而根据数量积的坐标运算可求得结果.解:(1)由34,55C ⎛⎫- ⎪⎝⎭可知:4sin 5α,3cos 5α=- OC OP ⊥ 2πβα∴=-3sin sin cos 25πβαα⎛⎫∴=-=-= ⎪⎝⎭ ()()431sin sin sin sin 555παβαβ∴-+-=-=-= (2)由题意得:()cos ,sin P ββ ()2,0OA ∴=,()cos ,sin OP ββ=()2cos ,sin OA tOP t t ββ∴+=+()()22222cos sin 4cos 4OA tOP t t t t βββ∴+=++=++当2cos t β=-时,22min44cos OA tOPβ+=-()min 1f t ∴==,解得:23cos 4β=1sin 2β∴==0βα<< 6πβ∴=cos β∴= 12P ⎫∴⎪⎪⎝⎭3414525210OP OC -⎛⎫∴⋅=-⨯+⨯=⎪⎝⎭【典例2】【江苏省启东中学2020届高三上学期期初考试数学试题】在平面直角坐标系xOy 中,设向量()cos sin a αα=,,()sin cos b ββ=-,,()12c =-.(1)若a b c +=,求sin ()αβ-的值; (2)设5π6α=,0πβ<<,且()//a b c +,求β的值. 【思路引导】(1)利用向量的数量积转化求解两角差的三角函数即可;(2)通过向量平行,转化求解角的大小即可.解:(1)因为()cos sin a αα=,,()sin cos b ββ=-,,()12c =-,所以1a b c ===,且()cos sin sin cos sin a b αβαβαβ⋅=-+=-.因为a b c +=,所以22a bc +=,即2221a a b b +⋅+=,所以12sin ()11αβ+-+=,即1sin ()2αβ-=-.(2)因为5π6α=,所以3122a ⎛⎫=- ⎪ ⎪⎝⎭,.依题意,1sin cos 2b c ββ⎛⎫+=-- ⎪ ⎪⎝⎭,.因为()//a b c +,所以)()11cos sin 022ββ-+--=.化简得,11sin 22ββ-=,所以()π1sin 32β-=.因为0πβ<<,所以ππ2π333β-<-<.所以ππ36β-=,即π2β=.【典例3】【2014年全国普通高等学校招生统一考试理科数学(山东卷】已知向量a m x (,cos 2)=,b x n (sin 2,)=,设函数()f x a b =⋅,且()y f x =的图象过点(12π和点2(,2)3π-. (Ⅰ)求,m n 的值; (Ⅱ)将()y f x =的图象向左平移ϕ(0ϕπ<<)个单位后得到函数()y g x =的图象.若()y g x =的图象上各最高点到点(0,3)的距离的最小值为1,求()y g x =的单调增区间.试题思路引导:(Ⅰ)利用向量的数量积坐标运算公式代入函数式整理化简,将函数过的点(12π和点2(,2)3π-代入就可得到关于,m n 的方程,解方程求其值;(Ⅱ)利用图像平移的方法得到()y g x =的解析式,利用最高点到点(0,3)的距离的最小值为1求得ϕ角,得()2cos2g x x =,求减区间需令[]22,2x k k πππ∈+解x 的范围试题解析:(1)由题意知.()y f x =的过图象过点(12π和2(,2)3π-,所以sincos,66{442sin cos ,33m n m n ππππ=+-=+即1,2{12,2m n n =-=-解得{1.m n == (2)由(1)知.由题意知()()2sin(22)6g x f x x πϕϕ=+=++.设()y g x =的图象上符合题意的最高点为0(,2)x ,由题意知2011x +=,所以,即到点(0,3)的距离为1的最高点为(0,2).将其代入()y g x =得sin(2)16πϕ+=,因为0ϕπ<<,所以6πϕ=,因此()2sin(2)2cos 22g x x x π=+=.由222,k x k k πππ-+≤≤∈Z 得,2k x k k πππ-+≤≤∈Z ,所以函数()y f x =的单调递增区间为[,],2k k k Z πππ-+∈【典例4】【河南省信阳市2019-2020学年高三第一次教学质量检测】已知函数()()f x a b c =+,其中向量()sin ,cos a x x =-,()sin ,3cos b x x =-,()cos ,sin c x x =-,x ∈R .(Ⅰ)若()52f α=,588ππα-<<-,求cos2α的值; (Ⅱ)不等式()2f x m -<在,82x ππ⎡⎤∈⎢⎥⎣⎦上恒成立,求实数m 的取值范围. 【思路引导】(Ⅰ)利用向量数量积公式得到()f x 后,再用二倍角公式以及两角和的正弦公式的逆用公式化成辅助角的形式,根据已知条件及同角公式解得3cos 244πα⎛⎫+= ⎪⎝⎭,再将所求变成33cos 2cos 244ππαα⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦后,利用两角差的余弦公式求得;(Ⅱ)将不等式恒成立转化为最大最小值可解得. 解:()()f x a b c =+()()sin ,cos sin cos ,sin 3cos x x x x x x =---222 sin2sin cos3cos1sin22cos x x x x x x =-+=-+32cos2sin2224x x xπ⎛⎫=+-=++⎪⎝⎭(Ⅰ)若()52fα=,则352242πα⎛⎫+=⎪⎝⎭,即3sin(2)44πα+=,由588ππα-<<-∴544ππα-<2<-,即3242πππα-<2+<,则3cos244πα⎛⎫+=⎪⎝⎭则333333cos2cos2cos2cos sin2sin444444ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫=+-=+++⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦142424⎛=-+=⎝⎭.(Ⅱ)∵不等式()2f x m-<在,82xππ⎡⎤∈⎢⎥⎣⎦上恒成立,∴()22f x m-<-<,即()()22f x m f x-<<+在,82xππ⎡⎤∈⎢⎥⎣⎦上恒成立,当,82xππ⎡⎤∈⎢⎥⎣⎦,则2,4xππ⎡⎤∈⎢⎥⎣⎦,372,44xπππ⎡⎤+∈⎢⎥⎣⎦,则当324xππ+=,即8xπ=时,()f x取得最大值,最大值为()max2f x=,当33242xππ+=,即38xπ=时,()f x取得最小值,最小值为()min322f xπ=+2=-则2222mm>-⎧⎪⎨<⎪⎩,得04m<<,即实数m的取值范围是(0,4-.【典例5】【陕西省宝鸡市宝鸡中学2019-2020学年高三上学期期中】已知向量()a cos x cos xωω=-,,()b sin x xωω=(ω>0),且函数()f x a b=⋅的两个相邻对称中心之间的距离是4π.(1)求6f π⎛⎫⎪⎝⎭; (2)若函数()()1g x m x =+在04π⎡⎤⎢⎥⎣⎦,上恰有两个零点,求实数m 的取值范围. 【思路引导】(1)首先利用平面向量的数量积的应用求出函数的关系式,进一步把函数的关系式变形成正弦型函数,进一步利用函数的性质的应用求出结果.(2)利用函数的零点和方程之间的转换的应用,利用函数的定义域和值域之间的关系求出m 的范围. 解:(1)向量()a cos x cos x ωω=-,,()b sin x x ωω=, 所以()f x a b =⋅=sinωx •cosωx 2ωx)1212223sin x cos x sin x πωωω⎛⎫=+=- ⎪⎝⎭. 函数的两个相邻对称中心之间的距离是4π. 所以函数的最小正周期为2π, 由于ω>0,所以242πωπ==,所以f (x )=sin (4x 3π-).则f (6π)4632sin ππ⎛⎫=⋅--= ⎪⎝⎭sin 3π=0. (2)由于f (x )=sin (4x 3π-).则()()1g x m x =+在04π⎡⎤⎢⎥⎣⎦,上恰有两个零点,即31432m x π⎛⎫+--= ⎪⎝⎭0,即m 1432x π⎛⎫=-+ ⎪⎝⎭,由于04x π⎡⎤∈⎢⎥⎣⎦,,所以24333x πππ⎡⎤-∈-⎢⎥⎣⎦,,在24333x πππ⎡⎤-∈-⎢⎥⎣⎦,时,函数的图象与y =m 有两个交点,最高点除外.当433x ππ-=时,m 31222=+=,当432x ππ-=时,m 12=,所以当m 122⎡⎫∈⎪⎢⎣⎭时,函数的图象在在04π⎡⎤⎢⎥⎣⎦,上恰有两个零点.【典例6】【辽宁省鞍山市第一中学2019-2020学年高三上学期11月月考】已知实数0θπ≤≤,()cos ,sin a θθ=,()0,1j =,若向量b 满足()0a b j +⋅=,且0a b ⋅=. (1)若2a b -=,求b ;(2)若()()f x b x a b =+-在1,2⎡⎫+∞⎪⎢⎣⎭上为增函数,求实数θ的取值范围.【思路引导】(1)设出b 的坐标,结合0a b ⋅=、2a b -=、()0a b j +⋅=,解方程,先求得θ的值,再求得b 的坐标. (2)利用向量模的运算、数量积的运算化简()f x 表达式,结合二次函数的性质列不等式,解不等式求得b 的取值范围.设出b 的坐标,结合()0a b j +⋅=、0a b ⋅=,解方程,用θ表示出2b ,根据b 的取值范围列不等式,解不等式求得cos θ的取值范围,进而求得θ的取值范围. 解:(1)设()00,b x y =,则()00cos ,sin b x a y θθ=+++,∵0a b ⋅=, 由2a b -=得()24a b -=,得2224a a b b -⋅+=,得2104b -+=,得3b =,∵()0a b j +⋅=,∴0sin 0y θ+=,∴0sin y θ=-,∵0a b ⋅=,∴00cos sin 0x y θθ+=,∴20sin cos x θθ=,∴()22222002sin 3sin cos x y b θθθ⎛⎫=+=⇒+- ⎪⎝⎭3tan θ=⇒= ∵[]0,θπ∈,∴3πθ=,或23πθ=,∴当3πθ=时,032x =,0y = 当23πθ=时,032x =-,02y =-,所以3,22b ⎛=-⎝⎭或3,22b ⎛=-- ⎝⎭.(2)()()()1f x b x a b xa x b =+-=+-()()2222121a x b x x a b =+-+-⋅()2222212b b x bx b ==+-+,∵()f x 在1,2⎡⎫+∞⎪⎢⎣⎭上为增函数,所以对称轴()2221221b b--≤+,即1b ≤, 设()00,b x y =,则()00cos ,sin b x a y θθ=+++,又∵()0a b j +⋅=,且0a b ⋅=,∴0sin y θ=-,20sin cos x θθ=. ∴22222020sin sin 1cos x b y θθθ⎛⎫=+=+≤ ⎪⎝⎭,即22sin cos θθ≤,21cos 2θ≥, ∴21,22cos θ⎤⎡∈--⎢⎥⎢⎣⎦⎣⎦,∴30,,44ππθπ⎡⎤⎡⎤∈⎢⎥⎢⎥⎣⎦⎣⎦. 【典例7】【江西省南昌市第二中学2018届高三上学期第五次月考】在平面直角坐标系xOy 中,已知向量()cos ,sin e αα=,设,(0)OA e λλ=>,向量ππcos ,sin 22OB ββ⎛⎫⎛⎫⎛⎫=+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(1)若π6βα=-,求向量OA 与OB 的夹角; (2)若2AB OB ≥ 对任意实数,αβ都成立,求实数λ的取值范围. 【思路引导】(1)由题意结合平面向量的坐标表示,结合平面向量的数量积运算法则可得1cos sin62πθ==. 则向量OA 与OB 的夹角为3π. (2)原问题等价于2230OA OB λ-⋅-≥任意实数,αβ都成立.分离参数可得()23sin 2λαβλ-≥-任意实数,αβ都成立.结合三角函数的性质求解关于实数λ的不等式可得3λ≥.解析:(1)由题意, ()cos ,sin (0)OA λαλαλ=>, ()sin ,cos OB ββ=-, 所以 OA λ=, 1OB =, 设向量OA 与OB 的夹角为θ, 所以()()cos sin sin cos cos sin 1OA OB OA OBλαβλαβθαβλ-+⋅===-⋅⋅.因为6πβα=-,即6παβ-=,所以1cos sin62πθ==.又因为[]0,θπ∈,所以3πθ=,即向量OA 与OB 的夹角为3π.(2)因为2AB OB ≥对任意实数,αβ都成立,而1OB =, 所以24AB ≥,即()24OB OA-≥任意实数,αβ都成立. .因为OA λ=,所以2230OA OB λ-⋅-≥任意实数,αβ都成立. 所以()22sin 30λλαβ---≥任意实数,αβ都成立.因为0λ>,所以()23sin 2λαβλ-≥-任意实数,αβ都成立.所以2312λλ-≥,即2230λλ--≥,又因为0λ>,所以3λ≥1. .【河北省唐山市第一中学2019-2020学年高三上学期10月月考】已知向量()2cos 1,2sin a x x ωω=+,()()6cos 0b x x ωωω=->.(1)当2x k πωπ≠+,k Z ∈时,若向量()1,0c =,()3,0d =,且()()//a c b d -+,求224sin cos x x ωω-的值;(2)若函数()f x a b =⋅的图象的相邻两对称轴之间的距离为4π,当,86x ππ⎡⎤∈-⎢⎥⎣⎦时,求函数()f x 的最大值和最小值. 【思路引导】(1)先将a c -和b d +用坐标形式表示出来,然后根据向量平行对应的坐标表示得到tan x ω的值,然后利用22sin cos 1x x ωω+=将224sin cos x x ωω-进行变形即可求值; (2)计算并化简()f x ,根据相邻两对称轴之间的距离为4π求解出ω的值,然后根据x 范围即可求解出()f x 的最大值和最小值.解:(1)因为()2cos ,2sin a c x x ωω-=,()6cos ,cos b d x x ωω+=,又因为()()//a cb d -+,2cos x x x ωωω=,又因为()2xk k Z πωπ≠+∈,所以tan x ω=,所以22222222114sin cos 4tan 1834sin cos 1sin cos tan 113112x x x x x x x x ωωωωωωωω----====-+++; (2)()())2cos 112sin cos f x a b ωx ωx ωx ωx =⋅=+-+)22cos 1sin 2sin 222sin 23x x x x x πωωωωω⎛⎫=-+==+ ⎪⎝⎭,因为相邻两对称轴之间的距离为4π,所以242T ππ=⨯=,所以224Tπω==,所以2ω=, 所以()2sin 43πf x x ⎛⎫=+⎪⎝⎭,因为,86x ππ⎡⎤∈-⎢⎥⎣⎦,所以4,36ππx π⎛⎫⎡⎤+∈- ⎪⎢⎥⎝⎭⎣⎦, 所以()max 2sin22f x π==,此时24x π=,()min 2sin 16f x π⎛⎫=-=- ⎪⎝⎭,此时8x π=-. 2. 已知向量(sin ,1),(3cos ,cos 2)(0)2Am x n A x x A ==>,函数()f x m n =⋅的最大值为6. (Ⅰ)求A ;(Ⅱ)将函数()y f x =的图象向左平移12π个单位,再将所得图象上各点的横坐标缩短为原来的12倍,纵坐标不变,得到函数()y g x =的图象.求()g x 在5[0,]24π上的值域. 【解析】(Ⅰ)()(sin ,1)cos ,cos 2)sin 2.26A f x m n x x x A x π⎛⎫=⋅=⋅=+ ⎪⎝⎭ 因为()f x m n =⋅的最大值为6,所以 6.A = (Ⅱ)将函数()y f x =的图象向左平移12π个单位, 得到()6sin 26sin 2.1263t x x x πππ⎡⎤⎛⎫⎛⎫=++=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦再将所得图象上各点的横坐标缩短为原来的12倍,纵坐标不变, 得到()6sin 4.3g x x π⎛⎫=+ ⎪⎝⎭因为5[0,],24x π∈所以74,336x πππ≤+≤ ()6sin 43g x x π⎛⎫=+ ⎪⎝⎭的最小值为76sin 3,6π⨯=-最大值为6sin 6,2π⨯=所以()g x 在5[0,]24π上的值域为[]3,6.- 3. 【河南省郑州市第一中学2019-2020学年高三上学期期中】已知点()2,0A ,()0,2B -,()2,0F -,设AOC α∠=,[)0,2απ∈,其中O 为坐标原点.(1)设点C 在x 轴上方,到线段AF 3AFC π∠=,求α和线段AC 的大小;(2)设点D 为线段OA 的中点,若2OC =,且点C 在第二象限内,求)3cos y DC OB BC OA α=⋅+⋅的取值范围. 【思路引导】(1)过点C 作AF 的垂线,垂足为点E ,可得出CE =2CF =,可得出OCF ∆为等边三角形,可求出α的值,然后在ACF ∆中利用余弦定理求出AC ;(2)由题中条件求出DC 、OB 、OA 的坐标,化简)cos y OB BC OA α=⋅+⋅的解析式为4cos 223y πα⎛⎫=++ ⎪⎝⎭,再根据α的取值范围,结合余弦函数的定义域与基本性质可求出y 的取值范围.解:(1)过C 作AF 的垂线,垂足为E ,则CE =在直角三角形FCE 中,2sin CEFC CFE==∠,又2OF =,3OFC π∠=,所以OFC ∆为正三角形.所以3FOC π∠=,从而23FOC παπ=-∠=.在AFC ∆中,AC ==; (2)()2,0A ,点D 为线段OA 的中点,()1,0D ∴,2OC =且点C 在第二象限内,()2cos ,2sin C αα∴,,2παπ⎛⎫∈ ⎪⎝⎭,从而()2cos 1,2sin DC αα=-,()2cos ,2sin 2BC αα=+,()2,0OA =,()0,2OB =-,则)2cos cos 4cos y OB BC OA αααα=⋅+⋅=-+()221cos 24cos 223πααα⎛⎫=-++=++ ⎪⎝⎭,因为,2παπ⎛⎫∈⎪⎝⎭,所以472,333πππα⎛⎫+∈ ⎪⎝⎭,从而1cos 2123πα⎛⎫-<+≤ ⎪⎝⎭, 04cos 2263πα⎛⎫∴<++≤ ⎪⎝⎭,因此,)cos y OB BC OA α=⋅+⋅的取值范围为(]0,6.4. 【河北省衡水市深州市2019-2020学年高三上学期12月月考】已知向量()()2,22=+a x ωϕ,2,⎛= ⎝⎭b ,其中0>ω,02πϕ<<,函数()f x a b =⋅的图像过点()1,2B ,点B 与其相邻的最高点的距离为4. (1)求函数()f x 的单调递减区间;(2)计算()()()122019f f f ++⋅⋅⋅+的值. 【思路引导】(1)先求出()1cos2()f x x ωϕ=-+,则()1,2B 为函数()f x 的图象的一个最高点,又点B 与其相邻的最高点的距离为4,所以242πω=,可得4πω=,再将点()1,2B 代入求出4πϕ=即可求出()1sin 2f x x π=+,最后令322222k x k πππππ+≤≤+解之即可求出函数()f x 的单调递减区间;(2)根据函数()f x 的最小正周期4,则()()()()()()()()()()1220195041234123f f f f f f f f f f ++⋅⋅⋅+=++++++⎡⎤⎣⎦求出()1f 、()2f 、()3f 、()4f 的值代入计算即可.解:(1)因为()()2,22=+a x ωϕ,2,22⎛=- ⎝⎭b()22()1cos 2()22∴=⋅=⋅-+=-+f x a b x x ωϕωϕ ()max 2∴=f x ,则点()1,2B 为函数()f x 的图象的一个最高点.点B 与其相邻的最高点的距离为4,242∴=πω,得4πω=. 函数()f x 的图象过点()1,2B ,1cos 222⎛⎫∴-+=⎪⎝⎭πϕ即sin 21=ϕ. 02πϕ<<,4πϕ∴=.()1cos 21sin 442⎛⎫∴=-+=+ ⎪⎝⎭f x x x πππ,由322222k x k πππππ+≤≤+,得4143k x k +≤≤+,k Z ∈.()f x ∴的单调递减区间是[]41,43++k k ,k Z ∈.(2)由(1)知,()1sin2=+f x x π,()f x ∴是周期为4的周期函数,且()12f =,()21f =,()30f =,()41f =()()()()12344∴+++=f f f f而201945043=⨯+,()()()12201945042102019∴++⋅⋅⋅+=⨯+++=f f f5. 【河北省衡水中学2017届高三下学期二调考试】 已知向量()()23sin ,1,cos ,cos 1m x n x x ωωω==+,设函数()f x m n b =⋅+.(1)若函数()f x 的图象关于直线6x π=对称,[]0,3ω∈,求函数()f x 的单调递增区间;(2)在(1)的条件下,当70,12x π⎡⎤∈⎢⎥⎣⎦时,函数()f x 有且只有一个零点,求实数b 的取值范围. 思路引导:(1)根据平面向量数量积运算求解出函数()•f x m n b =+,利用函数()f x 的图象关于直线6x π=对称,且[]0,3ω∈可得1ω=,结合三角函数的性质可得其单调区间;(2)当70,12x π⎡⎤∈⎢⎥⎣⎦时,求出函数()f x 的单调性,函数()f x 有且只有一个零点,利用其单调性求解求实数b 的取值范围. 试题解析: 解:向量()3sin ,1m x ω=, ()cos ,cos21n x x ωω=+,()2•3sin cos cos 1f x m n b x x x b ωωω=+=+++133cos2sin 222262x x b x b πωωω⎛⎫=+++=+++ ⎪⎝⎭ (1)∵函数()f x 图象关于直线6x π=对称,∴()2?662k k Z πππωπ+=+∈,解得: ()31k k Z ω=+∈,∵[]0,3ω∈,∴1ω=,∴()3sin 262f x x b π⎛⎫=+++ ⎪⎝⎭,由222262k x k πππππ-≤+≤+,解得: ()36k x k k Z ππππ-≤≤+∈,所以函数()f x 的单调增区间为(),36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦.(2)由(1)知()3sin 262f x x b π⎛⎫=+++ ⎪⎝⎭,∵70,12x π⎡⎤∈⎢⎥⎣⎦, ∴42,663x πππ⎡⎤+∈⎢⎥⎣⎦, ∴2,662x πππ⎡⎤+∈⎢⎥⎣⎦,即0,6x π⎡⎤∈⎢⎥⎣⎦时,函数()f x 单调递增; 42,663x πππ⎡⎤+∈⎢⎥⎣⎦,即7,612x ππ⎡⎤∈⎢⎥⎣⎦时,函数()f x 单调递减. 又()03f f π⎛⎫=⎪⎝⎭, ∴当70312f f ππ⎛⎫⎛⎫>≥ ⎪ ⎪⎝⎭⎝⎭或06f π⎛⎫= ⎪⎝⎭时函数()f x 有且只有一个零点. 即435sinsin326b ππ≤--<或3102b ++=,所以满足条件的52b ⎛⎧⎫∈-⋃- ⎨⎬ ⎩⎭⎝⎦. 6. 已知(sin ,cos ),(sin ,sin )a x x b x x ==,函数()f x a b =⋅. (1)求()f x 的对称轴方程; (2)若对任意实数[,]63x ππ∈,不等式()2f x m -<恒成立,求实数m 的取值范围. 【思路引导】(I )利用平面向量数量积的坐标表示、二倍角公式以及两角和与差的正弦公式将函数()f x 化为12242x π⎛⎫-+ ⎪⎝⎭,利用242x k k Z πππ-=+∈,可得对称轴方程;(II )原不等式化为sin 24x π⎛⎫-≥⎪⎝⎭,利用3222444k x k k Z πππππ+≤-≤+∈,可得结果;(Ⅲ)2f x m -()<恒成立,等价于2max m f x ->(),利用63x ππ⎡⎤∈⎢⎥⎣⎦,,求得5212412x πππ≤-≤,可得max f x (),从而可得结果.【详解】(I )()21cos21sin sin cosx sin222x f x a b x x x -=⋅=+⋅=+ 1sin 2242x π⎛⎫=-+ ⎪⎝⎭,令242x k k Z πππ-=+∈,,解得328k x k Z ππ=+∈,. ∴f x ()的对称轴方程为328k x k Z ππ=+∈,.(II )由1f x ()≥得121242x π⎛⎫-+≥ ⎪⎝⎭,即sin 242x π⎛⎫-≥⎪⎝⎭, ∴3222444k x k k Z πππππ+≤-≤+∈,. 故x 的取值集合为42xk x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭,.(Ⅲ)∵63x ππ⎡⎤∈⎢⎥⎣⎦,,∴5212412x πππ≤-≤, 又∵sin y x =在02π⎡⎤⎢⎥⎣⎦,上是增函数,∴5sin sin 212412x sin πππ⎛⎫≤-≤ ⎪⎝⎭,又5sinsin 12644πππ⎛⎫=+=⎪⎝⎭,∴()f x 在63x ππ⎡⎤∈⎢⎥⎣⎦,时的最大值是()122max f x =+=,∵2f x m -()<恒成立,∴2max m f x ->(),即54m >,∴实数m 的取值范围是⎫+∞⎪⎪⎝⎭.7. 【江苏省淮安市淮阴中学2019-2020学年高三期中数学试题】在如图所示的平面直角坐标系中,已知点(1,0)A 和点(1,0)B -,1OC =,且AOC=x ∠,其中O 为坐标原点.(1)若34x π=,设点D 为线段OA 上的动点,求||OC OD +的最小值; (2)若0,2x π⎡⎤∈⎢⎥⎣⎦,向量m BC =,(1cos ,sin 2cos )n x x x =--,求m n ⋅的最小值及对应的x 值. 【思路引导】(1)设D (t ,0)(0≤t ≤1),利用二次函数的性质求得它的最小值.(2)由题意得⋅=m n 1sin (2x 4π+),再利用正弦函数的定义域和值域 求出它的最小值.解:(I )设(,0)(01)D t t ≤≤,又22C ⎛⎫- ⎪ ⎪⎝⎭所以22OC OD t ⎛+=-+ ⎝⎭所以22211||122OC OD t t +=++=-+ 21(01)22t t ⎛⎫=-+≤≤ ⎪ ⎪⎝⎭所以当2t =时,||OC OD +最小值为2. (II )由题意得(cos ,sin )C x x ,(cos 1,sin )m BC x x ==+ 则221cos sin 2sin cos 1cos2sin 2m n x x x x x x ⋅=-+-=--124x π⎛⎫=-+ ⎪⎝⎭因为0,2x π⎡⎤∈⎢⎥⎣⎦,所以52444x πππ≤+≤ 所以当242x ππ+=时,即8x π=时,sin 24x π⎛⎫+⎪⎝⎭取得最大值1所以8x π=时,1224m n x π⎛⎫⋅=-+ ⎪⎝⎭取得最小值1所以m n ⋅的最小值为1,此时8x π=8. 已知向量(1,3p =,()cos ,sin q x x =. (1)若//p q ,求2sin 2cos x x -的值;(2)设函数()f x p q =⋅,将函数()f x 的图象上所有的点的横坐标缩小到原来的12(纵坐标不变),再把所得的图象向左平移3π个单位,得到函数()g x 的图象,求()g x 的单调增区间. 【思路引导】(1)由//p q ,可得出tan x =2sin 2cos x x -的值;(2)利用平面向量数量积的坐标运算以及辅助角公式可得出()2sin 6f x x π⎛⎫=+⎪⎝⎭,利用三角函数图象变换规律得出()52sin 26g x x π⎛⎫=+⎪⎝⎭,然后解不等式()5222262k x k k Z πππππ-+≤+≤+∈,可得出函数()y g x =的单调递增区间. 解:(1)(1,3p =,()cos ,sin q x x =,且//p q ,sin x x ∴=,则tan x =222222sin cos cos 2tan 1sin 2cos sin cos tan 1x x x x x x x x x --∴-===++;(2)()cos 2sin 6f x p q x x x π⎛⎫=⋅=+=+ ⎪⎝⎭,由题意可得()52sin 22sin 2366g x x x πππ⎡⎤⎛⎫⎛⎫=++=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 由()5222262k x k k Z πππππ-+≤+≤+∈,得()236k x k k Z ππππ-+≤≤-+∈. ∴函数()y g x =的单调递增区间为()2,36k k k Z ππππ⎡⎤-+-+∈⎢⎥⎣⎦.9. 已知向量(3sin ,cos )x x =m ,(cos )x x =-n ,()f x =⋅m n . (1)求函数()f x 的最大值及取得最大值时x 的值; (2)若方程()f x a =在区间0,2π⎡⎤⎢⎥⎣⎦上有两个不同的实数根,求实数a 的取值范围. 【思路引导】(1)先通过数量积求出5()26f x x π⎛⎫=+⎪⎝⎭,再根据三角函数即可求出最大值.(2)方程()f x a =在区间0,2π⎡⎤⎢⎥⎣⎦上有两个不同的实数根表示()f x a =与y 在区间0,2π⎡⎤⎢⎥⎣⎦上有两个不同的交点,画出()f x 在0,2π⎡⎤⎢⎥⎣⎦的图像易得a 的取值范围. 【详解】(1)23()3sin cos sin 22f x x x x x =⋅=-=-+m n35cos 2)sin 22222226x x x x π⎛⎫+-=-+=+ ⎪⎝⎭.当52262x k πππ+=+,即6x k ππ=-,k ∈Z 时,函数f (x(2)由于0,2x π⎡⎤∈⎢⎥⎣⎦时,55112,666x πππ⎡⎤+∈⎢⎥⎣⎦.而函数()g x x =在区间53,62ππ⎡⎤⎢⎥⎣⎦上单调递减,在区间311,26ππ⎡⎤⎢⎥⎣⎦上单调递增.又11362g g ππ⎛⎫⎛⎫==⎪⎪⎝⎭⎝⎭56g π⎛⎫=⎪⎝⎭结合图象(如图),所以方程()f x a =在区间0,2π⎡⎤⎢⎥⎣⎦上有两个不同的实数根时,a ⎛∈ ⎝⎦.故实数a 的取值范围为⎛ ⎝⎦. 10. 【黑龙江省大庆实验中学2019届高三上学期第一次月考】已知O 为坐标原点,()22cos ,1OA x =,()1,OB x a =+ ()R,R x a a ∈∈且为常数,若()•f x OA OB =. (Ⅰ)求函数()f x 的最小正周期和单调递减区间; (Ⅱ)若0,2x π⎡⎤∈⎢⎥⎣⎦时,函数()f x 的最小值为2,求实数a 的值. 【思路引导】(1)通过向量的数量积,把OA ,OB 的坐标,代入函数解析式,利用向量积的运算求得函数解析式,进而得到函数()f x 的最小正周期和单调递减区间; (2)通过x ∈[0,2π],求出相位的范围,然后求出函数的最大值,利用最大值为2,直接求得a . 解:(1)由题意()()22cos ,1,1,3sin2(,,OA x OB x a x R a R a ==-∈∈是常数)所以()22cos cos212sin 216f x x x a x x a x a π⎛⎫=++=+++=+++ ⎪⎝⎭, ∴()f x 的最小正周期为22ππ=, 令3222,262k x k k Z πππππ+≤+≤+∈,得2,63k x k k Z ππππ+≤≤+∈, 所以()f x 的单调递减区间为2,,63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦. (2)当0,2x π⎡⎤∈⎢⎥⎣⎦时,72,666x πππ⎡⎤+∈⎢⎥⎣⎦, ∴当7266x ππ+=,即2x π=时,()f x 有最小值a ,所以2a = .。
专题08正弦定理与余弦定理一、本专题要特别小心:1。
解三角形时的分类讨论(锐角钝角之分)2。
边角互化的选取3。
正余弦定理的选取4.三角形中的中线问题5。
三角形中的角平分性问题6.多个三角形问题二.【学习目标】掌握正、余弦定理,能利用这两个定理及面积计算公式解斜三角形,培养运算求解能力.三.【方法总结】1。
利用正弦定理,可以解决以下两类有关三角形的问题:(1)已知两角和任一边,求其他两边和一角;(2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角).2。
由正弦定理容易得到:在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即A>B⇔a>b⇔sin A>sin B。
3。
已知三角形两边及其一边的对角解三角形时,利用正弦定理求解时,要注意判断三角形解的情况(存在两解、一解和无解三种可能).而解的情况确定的一般方法是“大边对大角且三角形钝角至多一个”.4。
利用余弦定理,可以解决以下三类有关三角形的问题:(1)已知三边,求三个角;(2)已知两边和它们的夹角,求第三边和其余角;(3)已知两边和其中一边的对角,求其他边和角.(4)由余弦值确定角的大小时,一定要依据角的范围及函数值的正负确定。
四.【题型方法】}(一)正弦定理辨析三角形例1.已知数列的前项和(1)若三角形的三边长分别为,求此三角形的面积;(2)探究数列中是否存在相邻的三项,同时满足以下两个条件:①此三项可作为三角形三边的长;②此三项构成的三角形最大角是最小角的2倍.若存在,找出这样的三项;若不存在,说明理由。
【答案】(1)(2)见解析【解析】解:数列的前n项和.当时,,当时,,又时,,所以,不妨设三边长为,,,所以所以假设数列存在相邻的三项满足条件,因为,设三角形三边长分别是n,,,,三个角分别是,,由正弦定理:,所以由余弦定理:,即化简得:,所以:或舍去当时,三角形的三边长分别是4,5,6,可以验证此三角形的最大角是最小角的2倍.所以数列中存在相邻的三项4,5,6,满足条件.练习1.以下关于正弦定理或其变形的叙述错误的是A.在中,B.在中,若,则C.在中,若,则;D.在中,【答案】B【解析】在中,;在中,若,则或,即或;在中,若,则;在中,,选B.练习2.在中,内角所对的边分别是,若,则的值为()A.B.C.1 D.【答案】D【解析】根据正弦定理可得故选D。
高考专题训练二十 三角函数、平面向量、立体几何、概率与统计型
解答题
班级_______ 姓名________ 时间:45分钟 分值:80分 总得分_______ 1.(2020·浙江卷
)
已知函数f (x )=A sin ⎝ ⎛⎭
⎪⎫π3x +φ,x ∈R ,A >0,0<φ<π2.y =f (x )的部分图象如图所示,P 、Q 分别为该图象的最高点和最低点,点P 的坐标为(1,A ).
(1)求f (x )的最小正周期及φ的值;
(2)若点R 的坐标为(1,0),∠PRQ =2π
3
,求A 的值.
分析:本题主要考查三角函数的图象与性质、三角运算等基础知识. 解:(1)由题意得,T =2π
π3
=6.
因为P (1,A )在y =A sin ⎝ ⎛⎭⎪⎫π3x +φ的图象上, 所以sin ⎝ ⎛⎭
⎪⎫π3+φ=1.
又因为0<φ<π
2,
所以φ=π
6
.
(2)设点Q 的坐标为(x 0,-A ),
由题意可知π3x 0+π6=3π
2
,得x 0=4,所以Q (4,-A ),
如图,连接PQ ,在△PRQ 中,∠PRQ =2π
3
,由余弦定理得
cos ∠PRQ =RP 2+RQ 2-PQ 22RP ·RQ =A 2+9+A 2-9+4A 22A ·9+A
2
=-1
2, 解得A 2
=3.
又A >0,所以A = 3. 2.(2020·辽宁卷)
如图,四边形ABCD 为正方形,QA ⊥平面ABCD ,PD ∥QA ,QA =AB =1
2PD .
(1)证明:PQ ⊥平面DCQ ;
(2)求棱锥Q -ABCD 的体积与棱锥P -DCQ 的体积的比值.
分析:本小题主要考查了空间中点、线、面的位置关系,重点是线面垂直的证明,还考查了三棱锥体积的求法.
解:(1)证明:由条件知四边形PDAQ 为直角梯形.
因为AQ ⊥平面ABCD ,所以平面PDAQ ⊥平面ABCD ,交线为AD . 又四边形ABCD 为正方形,DC ⊥AD ,所以DC ⊥平面PDAQ ,可得PQ ⊥DC . 在直角梯形PDAQ 中可得DQ =PQ =2
2
PD ,则PQ ⊥QD . 所以PQ ⊥平面DCQ .
(2)设AB =a .由题设知AQ 为棱锥Q -ABCD 的高,所以棱锥Q -ABCD 的体积V 1=13
a 3
.
由(1)知PQ 为棱锥P -DCQ 的高,而PQ =2a ,△DCQ 的面积为22
a 2
,所以棱锥P -DCQ 的体积V 2=13
a 3
.
故棱锥Q -ABCD 的体积与棱锥P -DCQ 的体积的比值为1.
3.(2020·天津卷)编号分别为A 1,A 2,…,A 16的16名篮球运动员在某次训练比赛中的得分记录如下:
(2)(ⅰ)用运动员编号列出所有可能的抽取结果; (ⅱ)求这2人得分之和大于50的概率.
分析:本小题主要考查用列举法计算随机事件所含的基本事件数、古典概型及其概率计算公式等基础知识,考查数据处理能力及运用概率知识解决简单的实际问题的能力.
解:(1)4,6,6.
(2)(ⅰ)得分在区间[20,30)内的运动员编号为A 3,A 4,A 5,A 10,A 11,A 13.从中随机抽取2人,所有可能的抽取结果有:{A 3,A 4},{A 3,A 5},{A 3,A 10},{A 3,A 11},{A 3,A 13},{A 4,A 5},{A 4,A 10},{A 4,A 11},{A 4,A 13},{A 5,A 10},{A 5,A 11},{A 5,A 13},{A 10,A 11},{A 10,A 13},{A 11,
A 13},共15种.
(ⅱ)“从得分在区间[20,30)内的运动员中随机抽取2人,这2人得分之和大于50”(记为事件B )的所有可能结果有:{A 4,A 5},{A 4,A 10},{A 4,A 11},{A 5,A 10},{A 10,A 11},共5种.
所以P (B )=515=1
3
.
4.(2020·福建卷)某日用品按行业质量标准分成五个等级,等级系数X 依次为1,2,3,4,5.现从一批该日用品中随机抽取20件,对其等级系数进行统计分析,得到频率分布表如下:
(1)的恰有2件,求a ,b ,c 的值;
(2)在(1)的条件下,将等级系数为4的3件日用品记为x1,x2,x3,等级系数为5的2件日用品记为y1,y2.现从x1,x2,x3,y1,y2这5件日用品中任取两件(假定每件日用品被取出的可能性相同),写出所有可能的结果,并求这两件日用品的等级系数恰好相等的概率.分析:本小题主要考查概率、统计等基础知识,考查数据处理能力、运算求解能力及分类与整合思想.
解:(1)由频率分布表得a+0.2+0.45+b+c=1,即a+b+c=0.35.
因为抽取的20件日用品中,等级系数为4的恰有3件,所以b=3
20
=0.15.
等级系数为5的恰有2件,所以c=2
20
=0.1.
从而a=0.35-b-c=0.1.
所以a=0.1,b=0.15,c=0.1.
(2)从日用品x1,x2,x3,y1,y2中任取两件,所有可能的结果为:
(x1,x2),(x1,x3),(x1,y1),(x1,y2),(x2,x3),(x2,y1),(x2,y2),(x3,y1),(x3,y2),(y1,y2).
设事件A表示“从日用品x1,x2,x3,y1,y2中任取两件,其等级系数相等”,则A包含的基本事件为:
(x1,x2),(x1,x3),(x2,x3),(y1,y2),共4个.
又基本事件的总数为10,
故所求的概率为P(A)=4
10
=0.4.。