北师大数学八上课件4.4第3课时两个一次函数图象的应用册
- 格式:pptx
- 大小:1.19 MB
- 文档页数:8
4 一次函数的应用(第3课时)学习目标1.能通过函数图象获取信息,掌握两个一次函数图象的应用;(重点)2.能利用同一坐标系内两个函数图象的关系,解决简单的实际问题. (难点)自主学习学习任务一 新课导入1.某工程队在“村村通”工程中修建的公路长度y (米)与时间x (天)之间的关系如图1.根据图象提供的信息,可知该公路的长度是 米.图1 图22.一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售, 售出土豆质量x (千克)与他手中持有的钱(含备用零钱)y (元)的关系如图2所示,结合图象回答下列问题:(1)农民自带的零钱是 ;(2)降价前他每千克土豆出售的价格是 ;(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱) 是26元,他一共带了 千克土豆.学习任务二 探究两个一次函数图象在同一坐标系中的应用1.如图3,l 1反映了某公司产品的销售收入与销售量的关系,l 2反映了该公司产品的销售成本与销售量的关系,根据图象填空:(1)当销售量为2 t 时,销售收入= 元, 销售成本=元.(2)当销售量为6 t 时,销售收入= 元, 销售成本=元.(3)当x =3时,销售收入= 元,销售成本= 元;盈利(收入-成本)= 元.(4)当销售量等于 时,销售收入等于销售成本.(5)当销售量 时,该公司盈利(收入大于成本);当销售量 时,该公司亏损(收入小于成本).(6) l 1对应的函数表达式是 ,l 2对应的函数表达式是 .分组讨论.k 1表示 ,b 1表示 ;k 2表示 ,b 2表示 .2.我边防局接到情报,近海处有一可疑船只A 正向公海方向行驶.边防局迅速派出快艇B 追赶(如图4①),图4②中l 1,l 2分别表示两船相对于海岸的距离s (n mile)与追赶时间t (min)之间的关系.① ②图4根据图象回答下列问题:(1) 表示B 到海岸的距离与追赶时间之间的关系.(2) 速度快.(3)10 min 内B (填“能”或“不能”)追上A .(4)如果一直追下去,那么B (填“能”或“不能”)追上A .(5)当A 逃到离海岸12 n mile 的公海时,B 将无法对其进行检查.照此速度,B (填“能”或“不能”)在A 逃入公海前将其拦截.(6)l 1与l 2对应的两个一次函数s =k 1t +b 1与s =k 2t +b 2中,k 1,k 2的实际意义分别是 ,可疑船只A 与快艇B 的速度分别是 .合作探究如图5,小聪和小慧去某风景区游览,约好在“飞瀑”见面,上午7:00小聪乘电动汽车从“古刹”出发,沿景区公路去“飞瀑”,车速为 36 km/h ,小慧也于上午7:00从“塔林”出发,骑电动自行车沿景区公路去“飞瀑”,车速为26 km/h.(1)当小聪追上小慧时,他们是否已经过了“草甸”?(2)当小聪到达“飞瀑”时,小慧离“飞瀑”还有多少千米?当堂达标1.如图6,OA ,BA 分别表示甲、乙两名学生运动的一次函数图象,图中s 和t 分别表示运动路程和运动时间,根据图象可知,快者的速度比慢者的速度每秒快( )A.2.5米B.2米C.1.5米D.1米图6 图7 图52.甲、乙两人以相同路线前往离学校12千米的地方参加植树活动.如图7表示的是甲、乙两人前往目的地所行驶的路程s (千米)随时间t (分)变化的函数图象,则每分钟乙比甲多行驶的路程是( )A.0.5千米B.1千米C.1.5千米D.2千米3.一段笔直的公路AC 长20千米,途中有一处休息点B ,AB 长15千米,甲、乙两名长跑爱好者同时从点A 出发,甲以15千米/时的速度匀速跑至点B ,原地休息半小时后,再以10千米/时的速度匀速跑至终点C ;乙以12千米/时的速度匀速跑至终点C .下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y (千米)与时间x (时)函数关系的图象是( )A B C D4.某通信公司推出①②两种通信收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的通信时间x (分)与收费y (元)之间的函数关系如图8所示.(1)有月租费的收费方式是 (填“①”或“②”),月租费是 元;(2)分别求出①②两种收费方式中y 与x 之间的函数关系式;(3)请你根据用户通信时间的多少,给出经济实惠的选择建议.课后提升 如图9,l A 与 l B 分别表示A 步行与B 骑车同一路上行驶的路程s 与时间t 的关系.(1)B 出发时与A 相距多少千米?(2)走了一段路后,自行车发生故障,进行修理,所用的时间是多少小时?(3)B 出发后经过多少小时与A 相遇?(4)若B 的自行车不发生故障,保持出发时的速度前进,那么经过多少时间与A 相遇?在图中表示出这个相遇点C .反思感悟我的收获:我的易错点:图8参考答案当堂达标1.C2.A3.C4.解:(1)①30(2)设y有=k1x+30,y无=k2x,由题意得500k1+30=80,k1=0.1;500k2=100,k2=0.2. 故所求的关系式为y有=0.1x+30;y无=0.2x.(3)由y有=y无,得0.2x=0.1x+30,解得x=300.当x=300时,y有=y无=60.故由题图可知当通话时间在300分钟内时,选择通信收费方式②实惠;当通话时间超过300分钟时,选择通信收费方式①实惠;当通话时间为300分钟时,选择通信收费方式①,②一样实惠.课后提升解:(1)由题图可知,B出发时与A相距10千米.(2)B修理自行车所用的时间为:1.5-0.5=1小时.(3)3小时时两人的路程都是22.5千米,所以,B出发后3小时与A相遇.(4)出发时A的速度为22.5103=256千米/时,B的速度为7.50.5=15千米/时,设若B的自行车不发生故障,保持出发时的速度前进,x小时与A相遇,根据题意得,15x-256x=10,解得x=1213.答:经过1213h与A相遇,图10中点C即为相遇点.图10。
八年级数学上册4.4一次函数的应用第3课时两个一次函数图象的应用教案新版北师大版一. 教材分析本次课的内容是北师大版八年级数学上册4.4一次函数的应用第3课时,主要讲述了两个一次函数图象的应用。
本节课的内容是学生学习一次函数的进一步延伸,通过分析两个一次函数图象的交点、斜率等特征,培养学生解决实际问题的能力。
二. 学情分析学生在学习了八年级数学上册前几章的内容后,对一次函数的基本概念、性质和图象已经有了一定的了解。
但在解决实际问题时,还需要进一步引导他们运用一次函数的知识进行分析。
此外,学生可能对两个一次函数图象的交点、斜率等特征的理解不够深入,需要通过实例进行讲解和练习。
三. 教学目标1.理解两个一次函数图象的交点、斜率等特征,并能够运用这些特征解决实际问题。
2.培养学生的分析问题和解决问题的能力,提高他们的数学思维水平。
3.培养学生合作交流的能力,提高他们的团队协作能力。
四. 教学重难点1.重点:掌握两个一次函数图象的交点、斜率等特征,并能够运用这些特征解决实际问题。
2.难点:如何引导学生运用一次函数的知识分析实际问题,并找出解决问题的方法。
五. 教学方法采用问题驱动法、案例教学法和小组合作法。
通过设置问题情境,引导学生运用一次函数的知识进行分析;通过案例讲解,让学生了解两个一次函数图象的交点、斜率等特征;通过小组合作,培养学生的团队协作能力和沟通能力。
六. 教学准备1.准备相关的案例和问题,以便在课堂上进行讲解和练习。
2.准备多媒体教学设备,以便进行图象展示和讲解。
3.准备练习题,以便在课堂上进行巩固和拓展。
七. 教学过程1.导入(5分钟)通过设置一个实际问题,引导学生运用一次函数的知识进行分析。
例如:某商店进行促销活动,商品的原价一次函数为y=2x+1,促销价一次函数为y=x+3。
问:当商品原价等于促销价时,商品的价格是多少?2.呈现(15分钟)通过多媒体展示两个一次函数图象,让学生观察并分析图象的交点、斜率等特征。
八年级数学上册4.4一次函数的应用第3课时两个一次函数图象的应用说课稿(新版北师大版)一. 教材分析本次说课的内容是北师大版八年级数学上册4.4一次函数的应用第3课时,这部分内容主要让学生学会利用两个一次函数图象解决实际问题。
教材通过生活实例引入两个一次函数图象的交点坐标,让学生理解交点坐标的意义,并学会如何求解交点坐标。
同时,教材还引导学生通过观察图象来判断两个函数的交点个数,以及如何利用交点坐标解决实际问题。
二. 学情分析学生在学习本节课之前,已经掌握了一次函数图象的基本知识,包括一次函数的定义、图象的性质等。
但是,对于两个一次函数图象的交点坐标以及应用,可能还存在一定的困惑。
因此,在教学过程中,我将会重点引导学生理解和掌握交点坐标的意义,以及如何利用交点坐标解决实际问题。
三. 说教学目标1.知识与技能目标:让学生理解和掌握两个一次函数图象的交点坐标的意义,以及如何求解交点坐标;让学生学会通过观察图象来判断两个函数的交点个数,并能够利用交点坐标解决实际问题。
2.过程与方法目标:通过生活实例的引入,培养学生的观察能力和思维能力;通过小组合作探究,培养学生的合作意识和团队精神。
3.情感态度与价值观目标:让学生感受到数学与生活的紧密联系,激发学生学习数学的兴趣和热情。
四. 说教学重难点1.教学重点:让学生理解和掌握两个一次函数图象的交点坐标的意义,以及如何求解交点坐标;让学生学会通过观察图象来判断两个函数的交点个数,并能够利用交点坐标解决实际问题。
2.教学难点:如何引导学生理解和掌握交点坐标的意义,以及如何利用交点坐标解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作探究法等。
2.教学手段:利用多媒体课件、黑板、粉笔等。
六. 说教学过程1.导入新课:通过一个实际问题引入本节课的内容,让学生观察图象,引导学生思考两个函数的交点坐标有什么意义。
2.讲解新课:讲解两个一次函数图象的交点坐标的意义,以及如何求解交点坐标。