山东省2008年普通高中学生学业水平考试数学试题
- 格式:doc
- 大小:285.50 KB
- 文档页数:6
山东省二○○八年夏季普通高中学生学业水平考试物理试题注意事项:本试题共分三卷。
第一部分为单项选择题;第二部分和第三部分由多种题型组成。
第一部分、第二部分为全体考生必做题;第三部分为选做题,提供了两个选修模块的试题,考生必须选择其中一个模块的试题作答。
全卷共100分,考试时间为90分钟。
第一部分(42分,共同必做)一、(本题共14个小题,每小题3分,共42分。
在每小题给出的4个选项中,只有1个选项是正确的。
选对的得3分,选错或不答的得0分)1.研究下列物体运动时,能把物体看做质点的是( )A.研究从北京开往上海的一列火车的运动B.研究体操运动员在地面翻滚前进的动作C.研究百米跑运动员的起跑动作D.研究地球的自转2.下列几组共点力,可能使物体处于平衡状态的有( )A.5 N、1 N、2 N B.2N、8 N、3 NC.2 N、3 N、4 N D.2 N、3 N、10 N3.关于摩擦力与弹力的关系,下列说法正确的是( )A.有弹力一定有摩擦力B.有摩擦力一定有弹力C.弹力越大.摩擦力一定越大D.摩擦力越大,弹力一定越大4.下列事例中有关速度的说法,正确的是( )A.汽车速度计上显示80 km/h,指的是平均速度B.某高速公路上的限速为110 km/h,指的是平均速度C.火车从济南到北京的速度约为220 km/h,指的是瞬时速度D.子弹以900 m/s的速度从枪口射出,指的是瞬时速度5.关于运动的合成,下列说法正确的是( )A.合运动的速度一定比分运动的速度大B.合运动的速度一定比分运动的速度小C.合运动的速度可能比分运动的速度小D.两个匀速直线运动的合运动可能是曲线运动6.关于做匀速圆周运动的物体,下列说法正确的是( )A.线速度不变B.向心力不变C.角速度不变D.向心加速度不变7.汽车拉着拖车在水平道路上沿直线加速行驶,则( )A .汽车拉拖车的力大于拖车拉汽车的力B .汽车拉拖车的力与拖车拉汽车的力大小相等C .汽车拉拖车的力小于拖车拉汽车的力D .汽车拉拖车的力与拖车受到的阻力大小相等8.如图是甲、乙两物体运动的v-t 图象.由图象可知 ( )A .甲、乙两物体均做匀速直线运动B .甲、乙两物体均做匀减速直线运动C .甲的加速度比乙的加速度大D .甲的加速度比乙的加速度小9.由南向北行驶的坦克,某时刻欲射击位于其正西方向的固定目标。
高一数学试题 2008、7本卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分。
考试时间120分钟。
注意事项:1.答卷前,考生务必用2B 铅笔和0.5毫米黑色签字笔(中性笔)将姓名、准考证号、考试科目、试卷类型填涂在答题卡规定的位置上。
2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
答案不能答在试题卷上。
3.第Ⅱ卷必须用0.5毫米黑色签字笔(中性笔)作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
C. 3490x y -+=D. 34110x y -+= 或 3490x y --= 5. 若0,a b <<则下列不等式不能成立的是A .11a b>B .22a b> C .0a b >> D .1122a b⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭6.两灯塔A 、B 与海洋观察站C 的距离分别为(km)a 、2(km)a , 灯塔A 在C 北偏东30o ,B 在C 南偏东30o ,则A 、B 之间相距A .3(km)aB (km)C (km)D .2(km)a7. 设直线0ax by c ++=的倾斜角为α,且sin cos 0αα+=,则,a b 满足 A 1=+b aB 1=-b aC 0=+b aD 0=-b a8. 如图,平面内的两条相交直线1OP 和2OP 将该平面分割成四个部分Ⅰ、Ⅱ、Ⅲ、Ⅳ(不包括边界),若向量12OP aOP bOP u u u v u u u v u u u u v =-,且点P 落在第Ⅰ部分,则实数,a b 满足A.0,0a b <>B. 0,0a b ><C. 0,0a b <<D. 0,0a b >>9.函数22()cos ()sin ()1x x f x ππ=-++-是高一数学试题第Ⅱ卷(非选择题,共90分)二、填空:本大题共4小题,每小题4分,共16分。
2008年普通高等学校招生全国统一考试(山东卷)理科数学第Ⅰ卷(共60分)参考公式:球的表面积公式:24πS R =,其中R 是球的半径.如果事件A 在一次试验中发生的概率是p ,那么n 次独立重复试验中事件A 恰好发生k 次的概率:()(1)(012)k k n kn n P k C p p k n -=-=,,,,. 如果事件A B ,互斥,那么()()()P A B P A P B +=+. 如果事件A B ,相互独立,那么()()()P AB P A P B =.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.满足{}1234M a a a a ⊆,,,,且{}{}12312M a a a a a =,,,的集合M 的个数是( ) A .1B .2C .3D .4解析:本小题主要考查集合子集的概念及交集运算。
集合M 中必含有12,a a ,则{}12,M a a =或{}124,,M a a a =.选B. 2.设z 的共轭复数是z ,若4z z +=,8z z =,则zz等于( ) A .i B .i - C .1± D .i ±解析:本小题主要考查共轭复数的概念、复数的运算。
可设2z bi =+,由8z z ⋅=得248, 2.b b +==±()2222.88i z z i z ±===±选D.3.函数ππln cos 22y x x ⎛⎫=-<< ⎪⎝⎭的图象是( )xxA .B .C .D .解析:本小题主要考查复合函数的图像识别。
ln cos ()22y x x ππ=-<<是偶函数,可排除B 、D ,由cos 1ln cos 0x x ≤⇒≤排除C,选A.4.设函数()1f x x x a =++-的图象关于直线1x =对称,则a 的值为( ) A .3B .2C .1D .1-解:1x +、x a -在数轴上表示点x 到点1-、a 的距离,他们的和()1f x x x a =++-关于1x = 对称,因此点1-、a 关于1x =对称,所以3a =(直接去绝对值化成分段函数求解比较麻烦,如取特殊值解也可以) 5.已知πcos sin 6αα⎛⎫-+= ⎪⎝⎭7πsin 6α⎛⎫+ ⎪⎝⎭的值是( )A. BC .45-D .45解::3cos()sin sin 62παααα-+=+=,14cos 25αα+=,714sin()sin()cos .6625ππαααα⎫+=-+=-+=-⎪⎪⎝⎭6.右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )A .9πB .10πC .11πD .12π解:从三视图可以看出该几何体是由一个球和一个圆柱组合而成的,其表面及为22411221312.S ππππ=⨯+⨯⨯+⨯⨯=7.在某地的奥运火炬传递活动中,有编号为12318,,,,的18名火炬手.若从中任选3人,则选出的火炬手的编号能组成以3为公差的等差数列的概率为( )A .151B .168C .1306D .1408解:古典概型问题,基本事件总数为31817163C =⨯⨯。
2008年普通高等学校招生全国统一考试(山东卷)理科数学全解全析(1)满足M ⊆{}1234,,,a a a a 且{}{}12312,,,M a a a a a ⋂=的集合M 的个数是().1A ().2B ().3C ().4D2.设z 的共轭复数是z ,若4z z +=,8z z ⋅=,则zz等于 ().A i ().B i - ().1C ± ().D i ±【标准答案】:D 。
【试题分析】 可设2z b i =+,由8z z ⋅=得248, 2.b b +==±()2222.88i z z i z ±===±【高考考点】: 共轭复数的概念、复数的运算。
【易错提醒】: 可能在以下两个方面出错:一是不能依据共轭复数条件设2z bi =+简化运算;二是由248b +=只求得 2.b =【学科网备考提示】: 理解复数基本概念并进行复数代数形式的四则运算是复数内容的基本要求,另外待定系数法、分母实数化等解题技巧也要引起足够重视。
3、函数ln cos ()22y x x ππ=-<<的图象是5.已知4cos()sin 365παα-+=,则7sin()6πα+的值是 23().5A -23().5B 4().5C - 4().5D 【标准答案】:C 。
【试题分析】:334cos()sin cos sin 36225παααα-+=+=,134cos sin 225αα+=, 7314sin()sin()sin cos .66225ππαααα⎛⎫+=-+=-+=- ⎪ ⎪⎝⎭【高考考点】: 三角函数变换与求值。
【易错提醒】: 不能由334cos()sin cos sin 36225παααα-+=+=得到134c o s s i n 225αα+=是思考受阻的重要体现。
【学科网备考提示】:三角变换与求值主要考查诱导公式、和差公式的熟练应用,其间会涉及一些计算技巧,如本题中的为需而变。
2008年山东省初中学生毕业与高中阶段学校招生考试数 学 试 题注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷2页为选择题,36分;第Ⅱ卷8页为非选择题,84分;全卷共12页,满分120分,考试时间为120分钟.2.答第Ⅰ卷前,考生务必将自己的姓名、考号、考试科目涂写在答题卡上,考试结束,试题和答题卡一并收回.3.第Ⅰ卷每题选出答案后,必须用2B 铅笔把答题卡上对应题目的答案标号【ABCD 】涂黑.如需改动,先用橡皮擦干净,再改涂其它答案.4.考试时,不允许使用科学计算器.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.2-的相反数是 A .-2B .2C .12D .21-2.只用下列图形不能镶嵌的是A .三角形B .四边形C .正五边形D .正六边形 3.下列计算结果正确的是A .4332222y x xy y x -=⋅-B .2253xy y x -=y x 22-C .xy y x y x 4728324=÷D .49)23)(23(2-=---a a a4.在平面直角坐标系中,若点P (m -3,m +1)在第二象限,则m 的取值范围为 A .-1<m <3 B .m >3 C .m <-1 D .m >-15.将一正方形纸片按下列顺序折叠,然后将最后折叠的纸片沿虚线剪去上方的小三角形.将纸片展开,得到的图形是6.若关于x 的一元二次方程0235)1(22=+-++-m m x x m 的常数项为0,则m 的值等于 A .1B .2C.1或2D .B .A . C . D .x图 1OA B D C P4 9图 27.某书店把一本新书按标价的九折出售,仍可获利20%.若该书的进价为21元,则标价为A .26元B .27元C .28元D .29元8.如图,一个空间几何体的主视图和左视图都是边长为1的正三角形, 俯视图是一个圆,那么这个几何体的侧面积是A .4πB .π42C .π22D .2π9.如图1,在矩形ABCD 中,动点P 从点B出发,沿BC ,CD ,DA 运动至点A 停止.设点P 运动的路程为x ,△ABP 的面积为y ,如果y 关于x 的函数图象如图2所示,则△ABC 的面积是A .10B .16C .18D .2010.“上升数”是一个数中右边数字比左边数字大的自然数(如:34,568,2469等).任取一个两位数,是 “上升数”的概率是A .21 B .52 C .53 D .18711.若A (1,413y -),B (2,45y -),C (3,41y )为二次函数245y x x =+-的图象上的三点,则1,y 2,y 3y 的大小关系是A .123y y y <<B .213y y y <<C .312y y y <<D .132y y y <<12.如图所示,AB 是⊙O 的直径,AD =DE ,AE 与BD 交于点C ,则图中与∠BCE 相等的角有 A .2个 B .3个 C .4个 D .5 个B E D AC O绝密★启用前 试卷类型:A山东省2008年初中学生毕业与高中阶段学校招生考试数 学 试 题第Ⅱ卷(非选择题 共84分)注意事项:1.第Ⅱ卷共8页,用钢笔或圆珠笔直接写在试卷上.2.答卷前将密封线内的项目填写清楚. 二、填空题:本大题共5小题,每小题填对得4分,共20分.只要求填写最后结果.13.在2008年北京奥运会国家体育场的“鸟巢”钢结构工程施工建设中,首次使用了我国科研人员自主研制的强度为4.581亿帕的钢材.4.581亿帕用科学计数法表示为__________帕(保留两位有效数字).14.如图,已知AB ∥CD ,BE 平分∠ABC , ∠CDE =150°,则∠C =__________.15.分解因式:ab b a 8)2(2+- =____________.16.将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:所剪次数12 3 4 … n 正三角形个数 471013…a n则a n = (用含n 的代数式表示).17.如图,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作正三角形ABC 和正三角形CDE ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连结PQ .以下五个结论:① AD =BE ; ② PQ ∥AE ;③ AP =BQ ;④ DE =DP ; ⑤ ∠AOB =60°.恒成立的结论有______________(把你认为正确的序号都填上).三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤. 18.(本题满分6分) 先化简,再求值:11ab a b ⎛⎫- ⎪-+⎝⎭÷222b a ab b -+,其中21+=a ,21-=b .19.(本题满分8分)振兴中学某班的学生对本校学生会倡导的“抗震救灾,众志成城”自愿捐款活动进行抽样调查,得到了一组学生捐款情况的数据.下图是根据这组数据绘制的统计图,图中从左到右各长方形的高度之比为3︰4︰5︰8︰6,ABCDEABC E DOP Q又知此次调查中捐款25元和30元的学生一共42人.(1)他们一共调查了多少人?(2)这组数据的众数、中位数各是多少?(3)若该校共有1560名学生,估计全校学生捐款多少元?20.(本题满分8分)为迎接2008年奥运会,某工艺厂准备生产奥运会标志“中国印”和奥运会吉祥物“福娃”.该厂主要用甲、乙两种原料,已知生产一套奥运会标志需要甲原料和乙原料分别为4盒和3盒,生产一套奥运会吉祥物需要甲原料和乙原料分别为5盒和10盒.该厂购进甲、乙原料的量分别为20000盒和30000盒,如果所进原料全部用完,求该厂能生产奥运会标志和奥运会吉祥物各多少套?21.(本题满分10分)在梯形ABCD 中,AB ∥CD ,∠A =90°, AB =2,BC =3,CD =1,E 是AD 中点.求证:CE ⊥BE .22. (本题满分10分) 如图,AC 是某市环城路的一段,AE ,BF ,CD 都是南北方向的街道,其与环城路AC 的交叉路口分别是A ,B ,C .经测量花卉世界D 位于点A 的北偏东45°方向、点B 的北偏东30°方向上,AB =2km ,∠DAC =15°.(1)求B ,D 之间的距离; (2)求C ,D 之间的距离.23.(本题满分10分) (1)探究新知:如图1,已知△ABC 与△ABD 的面积相等, 试判断AB 与CD 的位置关系, 并说明理由. 10 15 20 25 30 捐款数/元 人数AC B DE ABC 中山路文化路D和平路45° 15°30° 环城路 EF A BD C图 1(2)结论应用:① 如图2,点M ,N 在反比例函数xky(k >0)的图象上,过点M 作ME ⊥y 轴,过点N 作NF ⊥x 轴,垂足分别为E ,F .试证明:MN ∥EF .② 若①中的其他条件不变,只改变点M ,N 的位置如图3所示,请判断 MN 与EF 是否平行.24.(本题满分12分)在△ABC 中,∠A =90°,AB =4,AC =3,M 是AB 上的动点(不与A ,B 重合),过M 点作MN ∥BC 交AC 于点N .以MN 为直径作⊙O ,并在⊙O 内作内接矩形AMPN .令AM =x . (1)用含x 的代数式表示△MNP 的面积S ; (2)当x 为何值时,⊙O 与直线BC 相切?(3)在动点M 的运动过程中,记△MNP 与梯形BCNM 重合的面积为y ,试求y 关于x 的函数表达式,并求x 为何值时,y 的值最大,最大值是多少?AB C M N D图 2 O A B C M N P图 1O ABC M N PO O y NM 图 2E Fx Nx O y DM图 3 N山东省二○○八年中等学校招生考试 数学试题参考解答及评分意见评卷说明:1.选择题和填空题中的每小题,只有满分和零分两个评分档,不给中间分.2.解答题每小题的解答中所对应的分数,是指考生正确解答到该步骤所应得的累计分数.本答案对每小题只给出一种解法,对考生的其他解法,请参照评分意见进行评分.3.如果考生在解答的中间过程出现计算错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多不超过正确解答分数的一半;若出现严重的逻辑错误,后续部分就不再给分. 一、选择题(本大题共8小题,每小题3分,共24分)题号 1 2 3 4 5 6 7 8 答案 C C A CBABD二、填空题 (本大题共5小题,每小题4分,共20分)9.8106.4⨯;10.120°;11.2)2(b a +;12.2π;13.28元;14.13+n ;15.5216.①②③⑤.三、解答题 (本大题共7小题,共64分):17.(本题满分6分)解:原式=222))(()()(b ab a bb a b a b a b a +-÷+---+ ……………………………2分=b b a b a b a b 2)())((2-⋅+- …………………………………………3分 =ba b a +-)(2. ……………………………………………………………4分当21+=a ,21-=b 时,原式=222222=⨯. …………………………………………………6分 18.(本题满分8分) 解:(1)设捐款30元的有6x 人,则8x +6x =42.∴ x =3. …………………………………………………………2分 ∴ 捐款人数共有:3x +4x +5x +8x +6x =78(人). ……………………3分 (2)由图象可知:众数为25(元);由于本组数据的个数为78,按大小顺序排列处于中间位置的两个数都是25(元),故中位数为25(元).…………………6分(3) 全校共捐款:(9×10+12×15+15×20+24×25+18×30)×781560=34200(元).……………8分 19.(本题满分8分)解:设生产奥运会标志x 套,生产奥运会吉祥物y 套.根据题意,得⎩⎨⎧=+=+②00300103①0020054.y x ,y x ……………………………………………2分①×2-②得:5x =10000.∴ x =2000. ………………………………………………………………6分 把x =2000代入①得:5y =12000.∴ y =2400.答:该厂能生产奥运会标志2000套,生产奥运会吉祥物2400套.………8分 20.(本题满分10分)证明: 过点C 作CF ⊥AB ,垂足为F .……………… 1分∵ 在梯形ABCD 中,AB ∥CD ,∠A =90°, ∴ ∠D =∠A =∠CF A =90°. ∴四边形AFCD 是矩形. AD=CF , BF=AB -AF=1.……………………………… 3分 在R t △BCF 中, CF 2=BC 2-BF 2=8, ∴ CF=22.∴ A D =C F =22.……………………………………………………………… 5分 ∵ E 是AD 中点, ∴ D E =A E =21A D =2.…………………………………………………… 6分在R t △ABE 和 R t △DEC 中, EB 2=AE 2+AB 2=6, EC 2= DE 2+CD 2=3, EB 2+ EC 2=9=BC 2.∴ ∠C E B =90°.…………………………………………………………… 9分 ∴ EB ⊥EC . …………………………………………………………………… 10分 21.(本题满分10分) 解:(1)如图,由题意得,∠EAD =45°,∠FBD =30°. ∴ ∠EAC =∠EAD +∠DAC =45°+15°=60°. ∵ AE ∥BF ∥CD ,∴ ∠FBC =∠EAC =60°.∴ ∠DBC =30°. …………………………2分 又∵ ∠DBC =∠DAB +∠ADB ,∴ ∠ADB =15°.∴ ∠DAB =∠ADB . ∴ BD =AB =2.即B ,D 之间的距离为2km .… …………………………………………………5分 (2)过B 作BO ⊥DC ,交其延长线于点O , 在Rt △DBO 中,BD =2,∠DBO =60°.∴ DO =2×sin60°=2×323=,BO =2×cos60°=1.………………………………8分 O A BC 中山路文化路D和平路45° 15° 30° 环城路EF A C B DE F在Rt △CBO 中,∠CBO =30°,CO =BO tan30°=33, ∴ CD =DO -CO =332333=-(km ). 即C ,D 之间的距离为332k m . ………………………………………………10分 22.(本题满分10分)(1)证明:分别过点C ,D ,作CG ⊥AB ,DH ⊥AB , 垂足为G ,H ,则∠CGA =∠DHB =90°.……1分∴ CG ∥DH .∵ △ABC 与△ABD 的面积相等,∴ CG =DH . …………………………2分 ∴ 四边形CGHD 为平行四边形.∴ AB ∥CD . ……………………………3分(2)①证明:连结MF ,NE . …………………4分设点M 的坐标为(x 1,y 1),点N 的坐标为(x 2,y 2).∵ 点M ,N 在反比例函数xky =(k >0)的图象上, ∴ k y x =11,k y x =22. ∵ ME ⊥y 轴,NF ⊥x 轴, ∴ OE =y 1,OF =x 2.∴ S △EFM =k y x 212111=⋅, ………………5分S △EFN =k y x 212122=⋅. ………………6分 ∴S △EFM =S △EFN . ……………… 7分由(1)中的结论可知:MN ∥EF . ………8分② MN ∥EF . …………………10分 (若学生使用其他方法,只要解法正确,皆给分.) 23.(本题满分12分) 解:(1)∵MN ∥BC ,∴∠AMN =∠B ,∠ANM =∠C . ∴ △AMN ∽ △ABC .∴ AM AN AB AC=,即43x AN=.∴ AN =43x . ……………2分∴ S =2133248MNP AMNS S x x x ∆∆==⋅⋅=.(0<x <4) ………………3分 (2)如图2,设直线BC 与⊙O 相切于点D ,连结AO ,OD ,则AO =OD =21MN . 在Rt △ABC 中,BC =22AB AC +=5. 由(1)知 △AMN ∽ △ABC .A B DC 图 1 G HxOy D NM图 3EFAMNOA BCMNP图 1 O xOyNM 图 2 EF∴ AM MN AB BC=,即45x MN=.∴ 54MN x =, ∴ 58OD x =. …………………5分过M 点作MQ ⊥BC 于Q ,则58MQ OD x ==. 在Rt △BMQ 与Rt △BCA 中,∠B 是公共角, ∴ △BMQ ∽△BCA . ∴ BM QM BC AC=.∴ 55258324xBM x ⨯==,25424AB BM MA x x =+=+=. ∴ x =4996. ∴ 当x =4996时,⊙O 与直线B C 相切.…………………………………………7分(3)随点M 的运动,当P 点落在直线BC 上时,连结AP ,则O 点为AP 的中点.∵ MN ∥BC ,∴ ∠AMN =∠B ,∠AOM =∠APC . ∴ △AMO ∽ △ABP .∴ 12AM AO AB AP ==. AM =MB =2.故以下分两种情况讨论:① 当0<x ≤2时,2Δ83x S y PMN ==.∴ 当x =2时,2332.82y =⨯=最大 …………………………………………8分 ② 当2<x <4时,设PM ,PN 分别交BC 于E ,F .∵ 四边形AMPN 是矩形,∴ PN ∥AM ,PN =AM =x . 又∵ MN ∥BC , ∴ 四边形MBFN 是平行四边形. ∴ FN =BM =4-x .∴ ()424PF x x x =--=-. 又△PEF ∽ △ACB .∴ 2PEF ABCS PF AB S ∆∆⎛⎫= ⎪⎝⎭. ∴ ()2322PEF S x ∆=-. ……………………………………………………… 9分 A BCM N P 图 4O EF ABCMNP 图 3OMNP PEF y S S ∆∆=-=()222339266828x x x x --=-+-.……………………10分当2<x <4时,29668y x x =-+-298283x ⎛⎫=--+ ⎪⎝⎭.∴ 当83x =时,满足2<x <4,2y =最大. ……………………………11分 综上所述,当83x =时,y 值最大,最大值是2. ……………………………12分声明:本资料由 考试吧( ) 收集整理,转载请注明出自 服务:面向较高学历人群,提供计算机类,外语类,学历类,资格类,会计类,工程类,医学类等七大类考试的全套考试信息服务及考前培训.。
2008年普通高等学校招生全国统一考试(山东文科数学及答案第I 卷(共60分)参考公式:1锥体的体积公式: V Sh ,其中S 是锥体的底面积,h 是锥体的高.32球的表面积公式: S =4 T R ,其中R 是球的半径. 如果事件 A , B 互斥,那么P (A BHP (A ) P (B ).一、选择题:本大题共 12小题,每小题5分,共 有一项是符合题目要求的.C . 3函数y =1 ncosxi n::: x ::: n的图象是I 2 2丿6.右图是一个几何体的三视图,根据图中数据, 可得该几何体的表面积是( ) A . 9 n B . 10 n60分.在每小题给出的四个选项中,只 1.满足 M 三问,a 2, O J , a 4?,且 M Pp. a ,a ,乱:-〔a a 2的集合M 的个数是2. 设z 的共轭复数是Z.z=8 , 则-等于(zC . -1D . _i3. y 二f (x )是幕函数,则函数 f (x )的图象不过第四象限.在它的逆命题、否命题、逆否命题三个命题中, A . 35.设函数 f(x)C . 1D 011 -x 2, x < f 1 ]< 2则fx +x -2,X A1,lf(2)丿15 A .1627 16D . 18俯视图 o L 2 V o丿I 3 v4 .给出命题:若函数真命题的个数是( B . 2的值为(2侧(左)视图2正(主)视图C . 11nD . 12 nx 亠57•不等式 ------- 2》2的解集是()(X-1)2准方程是( )2 2B . (x -2)2 (y -1)2 hx12.已知函数f (x )=log a (2 ,b-1)(a 0, a=1)的图象如图所示,贝U a, b 满足的关系A.(x —3)2 y_7” (n4L rt f rf 10.已知 cos 1sin :- =—\ 3,则 sin l165 I2怎2.34A .B .c .55511•若圆C 的半径为1,圆心在第一象限,且与直线¥的值是2 2C . (x -1) (y -3) =1D . 2(y-1)2 =1B .,3C .D .三,18 .已知a ,△ ABC 的三个内角A, BC 勺对边,向的大小分别为 A ,m L n ,且 acosB bcosA =csin C ,则角 An n A. -6 39.从某项综合能力测试中抽取B .2 n n ~3,6亠 n n … n n C . 一,一D . -3 63 3分数5 4 3 2 1 人数2010303010A . ,3B .4x-3y=0和x 轴相切,则该圆的标是( )A . 0 :: a ' ::b :: 14_1B. 0 < b a :: 1-14D . 0 :: a ::C . 3D .100人的成绩,统计如表,则这100人成绩的标准差为(第H卷(共90分)二、填空题:本大题共 4小题,每小题4分,共16分.2 213.已知圆C: x y -6x -4y • 8 = 0 •以圆C 与坐标轴的交点分别作为双曲线的一个焦则z = 2x y 的最大值为 ______________ . 三、解答题:本大题共 6小题,共74分. 17. (本小题满分12分)已知函数 f (x) = . 3sin(• ■ x ?丨)- cos( x " ■ ) ( 0 ::: • ::: n ,> 0 )为偶函数,且函数ny = f (x)图象的两相邻对称轴间的距离为-.(I)求f I n 的值;8n(n)将函数y = f(x)的图象向右平移个单位后,得到函数y = g(x)的图象,求g(x)的6单调递减区间.18. (本小题满分12分)现有8名奥运会志愿者,其中志愿者 A , A ,, A 3通晓日语,B 1, B 2, B 3通晓俄语,C 1, C 2 通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各(I)求A 被选中的概率;点和顶点,则适合上述条件的双曲线的标准方程为 14•执行右边的程序框图,若 p =0.8, 则输出的n 二 ____________ . x15.已知 f (3 ) =4xlog 2 3 233 , 则 f (2) f(4) f (8) ||( f (28)的值等于16.设x , y 满足约束条件x - y +2》0, 』5x-y-10 < 0, x 》0,n = n +1__________ J结束1名,组成一个小组.否.输出n(n)求B1和G不全被选中的概率.19. (本小题满分12分)如图,在四棱锥 P _ ABCD 中,平面PAD _平面ABCD , AB // DC , △ PAD 是等边三 角形,已知 BD=2AD=8,AB=2DC=4.,5 .(I)设M 是PC 上的一点,证明:平面 MBD _平面PAD ; (n)求四棱锥 P - ABCD 的体积.20. (本小题满分12 分) 将数列'a n 』中的所有项按每一行比上一行多一项的规则排成如下数表:a 1a 2 a 3a 4 a5a6a 7 a 8a9a10记表中的第一列数 6, a 2, 34, 37,构成的数列为 Z , ^=^=1. S n 为数列 g 的前n 项和,且满足b S2b:S 2"(n > 2).b n SnSn(I)证明数列1 .... ...................... . •、成等差数列,并求数列bn f 的通项公式;(n)上表中,若从第三行起,第一行中的数按从左到右的顺序均构成等比数列,且公比为4同一个正数•当a 8i时,求上表中第k(k > 3)行所有项的和.9121. (本小题满分12分)设函数f (x)二x 2e x4 ' ax 3 bx 2,已知x ~ -2和x = 1为f (x)的极值点.(I)求a 和b 的值; (n)讨论f (x)的单调性;2 3 2(川)设g(x^-x -x,试比较f (x)与g(x)的大小.322. (本小题满分14分)已知曲线C i:凶+国=1(a Ab >0)所围成的封闭图形的面积为4亦,曲线C i的内切圆半径a b2 5为•记C2为以曲线C i与坐标轴的交点为顶点的椭圆.3(I)求椭圆C2的标准方程;(n)设AB是过椭圆C2中心的任意弦,I是线段AB的垂直平分线. M是I上异于椭圆中心的点.(1)若MO| =》OA ( O为坐标原点),当点A在椭圆C2上运动时,求点M的轨迹方程;(2)若M是I与椭圆C2的交点,求△AMB的面积的最小值.2008年普通高等学校招生全国统一考试(山东卷)文科数学(答案)一、选择题1. B2. D3. A4. C5. A6. D9. B 10. C 11. B 12. A7. D 8. C二、填空题2 2x y ’14. 4 15.2008 16. 1113. 14 121.满足M —0, a2, a s, a/,且M 门”©, a?, a?』的集合M的个数是(B )A . 1B . 2 C. 3 D . 4解析:本小题主要考查集合子集的概念及交集运算。
山东省潍坊市2008届高中毕业生5月统一考试数学(理)试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分。
考试时间120分钟。
第Ⅰ卷(选择题 共60分)注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
不能答在试卷上。
3.考试结束,监考人将本试卷和答题卡一并收回. 参考公式:如果事件A 、B 互斥,那么 球的表面积公 P (A+B )=P (A )+P (B ) S=42R π如果事件A 、B 相互独立,那么 其中R 表示球的半径 P (A ·B )=P (A )·P (B ) 球的体积公式 如果事件A 在依次实验中发生的概率是 V 球=334R πP ,那么n 次独立重复实验中恰好发生k 其中R 表示球的半径 次的概率kn kkn n P P C k P --=)1()(一、选择题(本大题翻工12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的) 1.设全集},1|{},03|{,-<=<+==x x B x x x A R U 则右图中阴影部分表示的集合为 ( ) A .{x|x >0}B .}03|{<<-x xC .}13|{-<<-x xD .}1|{-<x x2.下列四个函数中,在区间(0,1)上为减函数的是( )A .x y 2log=B .y=cosxC .xy )21(-=D .31x y =3.如果一个空间几何体的主视图与左视图均为全等的等边三角形,俯视图为一个半径为1的圆及其圆心,那么这个几何体的体积为( )A .π33 B .π332 C .π3 D .3π4.函数0)(0,1;01),cos()(2=⎪⎩⎪⎨⎧≥-<<-=a f x e x x x f x 则π,则a 的所有可能值组成的集合为( )A .{0}B .}22,0{-C .}22,0{D .}22,22{-5.函数)1(||>=a x xay x的图象的大致形状是 ( )6.已知a ,b 是两条不重合的直线,α,β,γ是三个两两不重合的平面,给出下列四个命题:①若a ⊥α,a ⊥β,则βα// ②若βαγβγα//,,则⊥⊥③若b a b a //,,,//则βαβα⊂⊂ ④若b a b a //,,,//则=⋂=⋂γβγαβα 其中正确命题的序号是 ( )A .①②B .①③C .③④D .①④7.一植物园参观路径如右图所示,若要全部参观并且路线不重复,则不同的参观路线种数共有( ) A .6种 B .8种C .36种D .48种8.给出下列判断:①mn n m ab b a )(=;②函数x e y --=1是增函数;③a <0是方程0122=++x ax 至少有一个负实数根的充分不必要条件; ④)ln(ln x y x y -==与的图象关于y 轴对称. 其中正确判断的个数为 ( )A .1B .2C .3D .49.已知函数1)4(sin 2)4cos()4(sin 222-++---=πππx x x y ,则函数的最小正周期T 和它的图象的一条对称轴方程是( )A .T=2π,一条对称轴方程为8π=x B .T=2π,一条对称轴方程为83π=xC .T=π,一条对称轴方程为8π=xD .T=π,一条对称轴方程为83π=x10.当a 为任意实数时,直线012)1(=++--a y x a 恒过定点P ,则过点P 的抛物线的标准方程是( )A .y xx y 342922=-=或 B .y x x y 342922==或 C .yx x y 342922-==或D . y x x y 342922-=-=或11.已知等比数列{a n }的各项均不等于1的正数,数列{b n }满足,12,18,ln 63===b b a b n n 则数列{b n }的前n 项和的最大值等于 ( )A .126B .130C .132D .13412.如果以原点为圆心的圆经过双曲线)0,0(12222>>=-b a by ax 的焦点,并且被直线c cax (2=为双曲线的半焦距)分为弧长为2:1的两段弧,则该双曲线的离心率等于( )A .2B .3C .25 D .26第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在涂中横线上.13.已知双曲线的右焦点为(5,0),一条渐近线方程为02=-y x ,则双曲线的标准方程为 . 14.已知==∈+=)21(lg,0)2(lg ),(2)(f f R k xk x f 则若 .15.如图,已知正四棱台ABCD —A 1B 1C 1D 1的上底面边长为1,下底面边长为2,高为1,则直线B 1C 与面ACC 1A 1所成角 的正切值是 . 16.给出下列四个命题: ①若;11,0b a b a >>>则②若b b a a b a 11,0->->>则③若;22,0b a ba b a b a >++>>则④ba b a b a 12,12,0,0+=+>>则且若的最小值为9.其中正确..命题的序号是 .(把你认为正确命题的序号都填上) 三、解答题“本大体共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,.21,53cos -=⋅=BC AB B 且(Ⅰ)求△ABC 的面积; (Ⅱ)若a=7,求角C.18.(本小题满分12分)已知数列{a n }的前n 项和为S n ,首项为a 1,且1,a n ,S n 等差数列. (Ⅰ)求数列{a n }的通项公式; (Ⅱ)设T n 为数列{na 1}的前n 项和,若对于成立,总有34,*-<∈∀m T N n n 其中m ∈N *,求m 的最小值.四棱锥S —ABCD 的底面是直角梯形,22,90=====︒=∠=∠CD SC SB BC AB BCD ABC ,侧面SBC ⊥底面ABCD (Ⅰ)由SA 的中点E 作底面的垂线EH ,试确定垂足H 的位置; (Ⅱ)求二面角E —BC —A 的大小.20.(本小题满分12分)某汽车生产企业上年度生产一品牌汽车的投入成本为10万元/辆,出厂价为13万元/辆,年销售量为5000辆.本年度为适应市场需求,计划提高产品档次,适当增加投入成本,若每辆车投入成本增加的比例为x (0<x <1),则出厂价相应提高的比例为0.7x ,年销售量也相应增加.已知年利润=(每辆车的出厂价-每辆车的投入成本)×年销售量. (Ⅰ)若年销售量增加的比例为0.4x ,为使本年度的年利润比上年度有所增加,则投入成本增加的比例x 应在什么范围内? (Ⅱ)年销售量关于x 的函数为)352(32402++-=x x y ,则当x 为何值时,本年度的年利润最大?最大利润为多少?有一幅椭圆型彗星轨道图,长4cm ,高cm 32,如下图,已知O 为椭圆中心,A 1,A 2是长轴两端点,太阳位于椭圆的左焦点F 处.(Ⅰ)建立适当的坐标系,写出椭圆方程,并求出当彗星运行到太阳正上方时二者在图上的距离; (Ⅱ)直线l 垂直于A 1A 2的延长线于D 点,|OD|=4,设P 是l 上异于D 点的任意一点,直线A 1P ,A 2P 分别交椭圆于M 、N (不同于A 1,A 2)两点,问点A 2能否在以MN 为直径的圆上?试说明理由.22.(本小题满分14分)已知二次函数t t t t y l c bx ax x f .20(8:,)(212≤≤+-=++=其中直线为常数);2:2=x l .若直线l 1、l 2与函数f (x )的图象以及l 1,y 轴与函数f (x )的图象所围成的封闭图形如阴影所示.(Ⅰ)求a 、b 、c 的值(Ⅱ)求阴影面积S 关于t 的函数S (t )的解析式;(Ⅲ)若,ln 6)(m x x g +=问是否存在实数m ,使得y=f (x )的图象与y=g (x )的图象有且只有两个不同的交点?若存在,求出m 的值;若不存在,说明理由.山东省潍坊市2008届高中毕业生5月统一考试参考答案一、选择题:本题考查基本知识和基本运算,每小题5分,共60分. CBABC DDCDA CA二、填空题:本题考查基本知识和基本运算,每小题4分,共16分.13.120522=-yx14.4 15.66 16.②④三、解答题:本大题共6小题,共74分. 17.(I ))cos(||||B BC AB BC AB -=⋅π=.35,2153cos =∴-=-=-ac ac B ac ………………………………3分又,54cos1sin ),,0(,53cos 2=-=∴∈=B B B B π且14543521sin 21=⨯⨯=⋅=∴∆B ac S ABC …………………………6分(Ⅱ)由(Ⅰ)知ac=35,又a=7,∴c=5,24,325357225492=∴=⨯⨯⨯-+=b b,………………………9分由正弦定理得22sin ,sin 55424,sin sin =∴==C CCc Bb 即,又)2,0(,π∈∴>C c a4π=∴C …………………………………………………………12分18.(本小题满分12分)解:(Ⅰ)由题意知,12+=n n S a 当n=1时,2a 1=a 1+1,∴a 1=1, 当n ≥2时,S n =2a n -1,S n-1=2a n-1-1两式相减得122--=n n n a a a ,………………………………3分 整理得,21=-n n a a∴数列{a n }是以1为首项,2为公比的等比数列,……………………5分11112212---=⋅=⋅=∴n n n n a a …………………………………………6分(Ⅱ)nn a a a T 1 (112)1+++=1221 (2)1211-++++=n22122112111<-=--=-n n…………………………………………9分∵对于.10,23434,*≥≥--<∈∀m m m T N n n 即成立,即只须有∴m 的最小值为10.………………………………………………12分 19.(本小题满分12分)解:(Ⅰ)作SO ⊥BC 于O ,则SO ⊂平面SBC ,又面SBC ⊥底面ABCD 面SBC ∩面ABCD=BC , ∴SO ⊥底面ABCD ,①又SO ⊂平面SAO ,∴面SAO ⊥底面ABCD ……4分 作EH ⊥AO ,∴EH ⊥面ABCD ②即H 为垂足,由①、②知,EH//SO ,又E 为SA 的中点,∴H 是AO 的中点……………………………………………………………………6分(Ⅱ)过H 作HF ⊥BC 于F ,连EF ,又(I )知EH ⊥平面ABCD ,∴EH ⊥BC , ∴BC ⊥平面EFH ,∴BC ⊥EF ,∴∠HFE 为面EBC 和底面ABCD 所成二面角的平面角.………………9分 在等边△SBC 中,∵SO ⊥BC ,∴O 为BC 中点,又BC=2, 31222=-=∴SO ,.23arctan,23123tan ,121,2321=∠∴===∠∆∴====HFE HFEH HFE EHF Rt AB HF So EH 中,在又∴二面角E —BC —A 为23arctan20.(本小题满分12分)解:(I )由题意得:上年度的利润为(13-10)×5000=15000万元;本年度每辆车的投入成本为10×(1+x ); 本年度每辆车的出厂价为13×(1+0.7x ); 本年度年销售量为5000×(1+0.4x ),……………………2分 因此本年度的利润为)4.01(5000)9.03()4.01(5000)]1(10)7.01(13[x x x x x y +⨯⨯-=+⨯⨯+⨯-+⨯=),10(15000150018002<<++-=x x x ………………………………4分由,650,1500015000150018002<<>++-x x x 解得所以当650<<x 时,本年度的年利润比上年度有所增加.………………6分(Ⅱ)本年度的利润为)55.48.49.0(3240)352(3240)9.03()(232++-⨯=++-⨯⨯-=x x x x x x x f…………………………………………………………………………7分 则),3)(59(972)5.46.97.2(3240)(2'--=+-⨯=x x x x x f 由,395,0)('===x x x f 或解得……………………………………9分当)(,0)()95,0('x f x f x >∈时,是增函数;当)(,0)()1,95('x f x f x <∈时,是减函数.∴当95=x 时,20000)95()(=f x f 取极大值万元,因为f (x )在(0,1)上只有一个极大值,所以它是最大值, 所以当95=x 时,本年度的年利润最大,最大利润为20000万元。
2008年普通高等学校招生全国统一考试(山东文科数学及答案第Ⅰ卷(共60分)参考公式:锥体的体积公式:13V Sh =,其中S 是锥体的底面积,h 是锥体的高. 球的表面积公式:24πS R =,其中R 是球的半径. 如果事件A B ,互斥,那么()()()P A B P A P B +=+.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.满足{}1234M a a a a ⊆,,,,且{}{}12312M a a a a a =,,,的集合M 的个数是( ) A .1B .2C .3D .42.设z 的共轭复数是z ,若4z z +=,8z z =,则zz等于( ) A .iB .i -C .1±D .i ±3.函数ππln cos 22y x x ⎛⎫=-<< ⎪⎝⎭的图象是( )4.给出命题:若函数()y f x =是幂函数,则函数()y f x =的图象不过第四象限.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是( ) A .3 B .2 C .1 D .05.设函数2211()21x x f x x x x ⎧-⎪=⎨+->⎪⎩,,,,≤则1(2)f f ⎛⎫⎪⎝⎭的值为( ) A .1516B .2716-C .89D .186.右图是一个几何体的三视图,根据图中数据, 可得该几何体的表面积是( ) A .9π B .10πxxA .B .C .D .俯视图 正(主)视图 侧(左)视图C .11πD .12π7.不等式252(1)x x +-≥的解集是( ) A .132⎡⎤-⎢⎥⎣⎦,B .132⎡⎤-⎢⎥⎣⎦,C .(]11132⎡⎫⎪⎢⎣⎭,,D .(]11132⎡⎫-⎪⎢⎣⎭,,8.已知a b c ,,为ABC △的三个内角A B C,,的对边,向量1)(c o s s i n )A A =-=,,m n .若⊥m n ,且cos cos sin a B b A c C +=,则角A B ,的大小分别为( ) A .ππ63,B .2ππ36, C .ππ36,D .ππ33,9.( )ABC .3D .8510.已知πcos sin 6αα⎛⎫-+= ⎪⎝⎭7πsin 6α⎛⎫+ ⎪⎝⎭的值是( ) A .5-B .5C .45-D .4511.若圆C 的半径为1,圆心在第一象限,且与直线430x y -=和x 轴相切,则该圆的标准方程是( )A .227(3)13x y ⎛⎫-+-= ⎪⎝⎭B .22(2)(1)1x y -+-=C .22(1)(3)1x y -+-=D .223(1)12x y ⎛⎫-+-= ⎪⎝⎭12.已知函数()log (21)(01)xa f xb a a=+->≠,的图象如图所示,则a b ,满足的关系是( ) A .101a b -<<<B .101b a -<<<C .101b a -<<<-D .1101ab --<<<第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.13.已知圆22:6480C x y x y +--+=.以圆C 与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件的双曲线的标准方程为.14.执行右边的程序框图,若0.8p =,则输出的n = .15.已知2(3)4log 3233xf x =+,则8(2)(4)(8)(2)f f f f ++++的值等于 .16.设x y ,满足约束条件20510000x y x y x y ⎧-+⎪--⎪⎨⎪⎪⎩,,,,≥≤≥≥则2z x y =+的最大值为 . 三、解答题:本大题共6小题,共74分. 17.(本小题满分12分) 已知函数())cos()f x x x ωϕωϕ=+-+(0πϕ<<,0ω>)为偶函数,且函数()y f x =图象的两相邻对称轴间的距离为π2.(Ⅰ)求π8f ⎛⎫⎪⎝⎭的值; (Ⅱ)将函数()y f x =的图象向右平移π6个单位后,得到函数()y g x =的图象,求()g x 的单调递减区间. 18.(本小题满分12分)现有8名奥运会志愿者,其中志愿者123A A A ,,通晓日语,123B B B ,,通晓俄语,12C C ,通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组. (Ⅰ)求1A 被选中的概率;(Ⅱ)求1B 和1C 不全被选中的概率.19.(本小题满分12分)如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,AB DC ∥,PAD △是等边三角形,已知28BD AD ==,2AB DC ==(Ⅰ)设M 是PC 上的一点,证明:平面MBD ⊥平面PAD ; (Ⅱ)求四棱锥P ABCD -的体积. 20.(本小题满分12分)将数列{}n a 中的所有项按每一行比上一行多一项的规则排成如下数表:1a 2a 3a 4a 5a 6a 7a 8a 9a 10a记表中的第一列数1247a a a a ,,,,构成的数列为{}n b ,111b a ==.n S 为数列{}n b 的前n 项和,且满足221(2)nn n nb n b S S =-≥. (Ⅰ)证明数列1n S ⎧⎫⎨⎬⎩⎭成等差数列,并求数列{}n b 的通项公式;(Ⅱ)上表中,若从第三行起,第一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数.当81491a =-时,求上表中第(3)k k ≥行所有项的和. 21.(本小题满分12分) 设函数2132()x f x x eax bx -=++,已知2x =-和1x =为()f x 的极值点.ABCMPD(Ⅰ)求a 和b 的值; (Ⅱ)讨论()f x 的单调性; (Ⅲ)设322()3g x x x =-,试比较()f x 与()g x 的大小. 22.(本小题满分14分)已知曲线11(0)x yC a b a b+=>>:所围成的封闭图形的面积为曲线1C 的内切圆半径2C 为以曲线1C 与坐标轴的交点为顶点的椭圆. (Ⅰ)求椭圆2C 的标准方程;(Ⅱ)设AB 是过椭圆2C 中心的任意弦,l 是线段AB 的垂直平分线.M 是l 上异于椭圆中心的点.(1)若M O O A λ=(O 为坐标原点),当点A 在椭圆2C 上运动时,求点M 的轨迹方程; (2)若M 是l 与椭圆2C 的交点,求AMB △的面积的最小值.2008年普通高等学校招生全国统一考试(山东卷)文科数学(答案)一、选择题 1.B 2.D 3.A 4.C 5.A 6.D 7.D 8.C 9.B 10.C 11.B 12.A二、填空题13.221412x y -=14.415.2008 16.111.满足{}1234M a a a a ⊆,,,,且{}{}12312M a a a a a =,,,的集合M 的个数是( B ) A .1 B .2 C .3D .4解析:本小题主要考查集合子集的概念及交集运算。
2008年山东省中考数学试题注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷4页为选择题,36分;第Ⅱ卷8页为非选择题,84分;全卷共12页,满分120分.考试时间为120分钟.2.答Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目和试卷类型涂写在答题卡上,并在本页正上方空白处写上姓名和准考证号.考试结束,试题和答题卡一并收回.3.第Ⅰ卷每题选出答案后,必须用2B 铅笔把答题卡上对应题目的答案标号(A B C D)涂黑.如需改动,先用橡皮擦干净,再改涂其它答案.第Ⅰ卷 (选择题 共36分)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1.下列运算中,正确的是A .235a a a +=B .3412a a a ⋅=C .236a a a =÷ D .43a a a -=2.右图是北京奥运会自行车比赛项目标志,图中两车轮所在圆的位置关系是A .内含B .相交C .相切D .外离3.如图,已知△ABC 为直角三角形,∠C =90°,若沿图中虚线 剪去∠C ,则∠1+∠2等于A .315° B.270° C .180° D.135°4.如图,点A 的坐标为(1,0),点B 在直线y x =-上运动,当线段AB 最短时,点B 的坐标为A .(0,0)B .(12,-12) C .(22,-22) D .(-12,12) 5.小华五次跳远的成绩如下(单位:m ):3.9,4.1, 3.9,3.8,4.2.关于这组数据, 下列说法错误的是A .极差是0.4B .众数是3.9C .中位数是3.98D .平均数是3.98第2题图第3题图第4题图6.如图,已知⊙O 的半径为5,弦AB =6,M 是AB 上任意一点,则线段OM 的长可能是A .2.5B .3.5C .4.5D .5.57.下列四副图案中,不是轴对称图形的是8.已知代数式2346x x -+的值为9,则2463x x -+的值为A .18B .12 C.9 D .79.一个正方体的表面展开图如图所示,每一个面上都写有一个整数, 并且相对两个面上所写的两个整数之和都相等,那么A .a =1,b =5B .a =5,b =1C .a =11,b =5D .a =5,b =1110.国家规定“中小学生每天在校体育活动时间不低于1小时”.为此,我市就“你每天在校体育活动时间是多少”的问题随机调查了某区300名初中学生.根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是:A组:0.5h t <; B组:0.5h 1h t <≤; C组:1h 1.5h t <≤;D组: 1.5h t ≥.根据上述信息,你认为本次调查数据的中位数落在 A .B 组 B .C 组 C .D 组 D .A 组11.如图,扇形OAB 是圆锥的侧面展开图,若小正方形方格的边长为1 cm ,则这个圆锥的底面半径为 A .22cm B .2cmC .22cm D .21cm12.如图,两个高度相等且底面直径之比为1∶2的圆柱形水杯,甲杯装满液体,乙杯是空杯.若把甲杯中的液体全部倒入乙 杯,则乙杯中的液面与图中点P 的距离是 A .43cm B .6cmA. B. C. D.ABOM第6题图第9题图AOB第11题图A B C D 组别人数第10题图第12题图C .8cmD .10cm2008年山东省枣庄市中考数学试题第Ⅱ卷 (非选择题 共84分)注意事项:1.第Ⅱ卷共8页,用钢笔或圆珠笔(蓝色或黑色)直接写在试卷上. 2.答卷前将密封线内的项目填写清楚.二、填空题:本大题共6小题,共24分.只要求填写最后结果,每小题填对得4分.13.如图,在△ABC 中,AB =2,AC =2,以A 为圆心,1为半径的圆与边BC 相切,则BAC ∠的度数是 .14.函数y =211x x +-中,自变量x 的取值范围是 . 15.已知二次函数c bx ax y ++=21(0≠a )与一次函数)0(2≠+=k m kx y 的图象相交于点A (-2,4),B (8,2)(如图所示),则能使21y y >成立的x 的取值范围是 . 16.已知x 1、x 2是方程x 2-3x -2=0的两个实根,则(x 1-2) (x 2-2)= .17.将边长分别为2、3、5的三个正方形按如图方式排列,则图中阴影部分的面积为 . 、18.在实数的原有运算法则中,我们补充新运算法则 “ * ” 如下:当a ≥b 时,2*a b b =;当a < b 时,*a b a =.则当x = 2时,(1*)(3*)x x x - =__________.(“ · ” 和 “ – ”仍为实数运算中的乘号和减号)三、解答题:本大题共7小题,共60分.解答时,要写出必要的文字说明、证明过程或演算步骤. 19.(本题满分7分)先化简,再求值:22212221x x x x x x --+--+÷x ,其中x=23.ABC第13题图第15题图第17题B ′ ABCE Oxy20.(本题满分7分)一口袋中装有四根长度分别为1cm ,3cm ,4cm 和5cm 的细木棒,小明手中有一根长度为3cm 的细木棒,现随机从袋内取出两根细木棒与小明手中的细木棒放在一起,回答下列问题: (1)求这三根细木棒能构成三角形的概率; (2)求这三根细木棒能构成直角三角形的概率; (3)求这三根细木棒能构成等腰三角形的概率.21.(本题满分8分)某一工程,在工程招标时,接到甲、乙两个工程队的投标书.施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元.工程领导小组根据甲、乙两队的投标书测算,有如下方案: (1)甲队单独完成这项工程刚好如期完成; (2)乙队单独完成这项工程要比规定日期多用6天;(3)若甲、乙两队合做3天,余下的工程由乙队单独做也正好如期完成.试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.22.(本题满分8分)如图,在直角坐标系中放入一个边长OC 为9的矩形纸片ABCO .将纸片翻折后,点B 恰好落在x 轴上,记为B ′,折痕为CE ,已知tan ∠OB ′C =34. (1)求B ′ 点的坐标;(2)求折痕CE 所在直线的解析式.23.(本题满分10分)已知:如图,在半径为4的⊙O 中,AB ,CD 是两条直径,M 为OB 的中点,CM 的延长线交⊙O 于点E ,且EM >MC .连结DE ,DE =15.(1) 求证:AM MB EM MC ⋅=⋅; (2) 求EM 的长;(3)求sin ∠EOB 的值.A BCEDOM24.(本题满分10分)在直角坐标平面中,O 为坐标原点,二次函数2(1)4y x k x =-+-+的图象与y 轴交于点A ,与x 轴的负半轴交于点B ,且6OAB S ∆=.(1)求点A 与点B 的坐标; (2)求此二次函数的解析式;(3)如果点P 在x 轴上,且△ABP 是等腰三角形,求点P 的坐标.25.(本题满分10分)把一副三角板如图甲放置,其中90ACB DEC == ∠∠,45A = ∠,30D = ∠,斜边6cm AB =,7cm DC =.把三角板DCE 绕点C 顺时针旋转15°得到△D 1CE 1(如图乙).这时AB 与CD 1相交于点O ,与D 1E 1相交于点F . (1)求1OFE ∠的度数; (2)求线段AD 1的长;(3)若把三角形D 1CE 1绕着点C 顺时针再旋转30°得△D 2CE 2,这时点B 在△D 2CE 2的内部、外部、还是边上?说明理由.(甲)ACE DB B(乙)AE 1CD 1OF2008年山东省枣庄市中考数学试题参考答案及评分意见评卷说明:1.选择题和填空题中的每小题,只有满分和零分两个评分档,不给中间分.2.解答题每小题的解答中所对应的分数,是指考生正确解答到该步所应得的累计分数.本答案中每小题只给出一种解法,考生的其他解法,请参照评分意见进行评分.3.如果考生在解答的中间过程出现计算..错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多不超过正确解答分数的一半,若出现较严重的逻辑错误,后续部分就不给分. 一、选择题:(本大题共12小题,每小题3分,共36分)二、填空题:(本大题共6小题,每小题4分,共24分)13.105° 14.x ≥-12 且x ≠115.x <-2或x >8 16.-4 17.15418.-2三、解答题:(本大题共7小题,共60分) 19.(本题满分7分)解:原式=()()()()x x x x x x x 1221112⨯--+-+-…………………………………………2分=11-+x x +1 =12-x x . …………………………………………………………………5分 当x =23时,原式=223213⨯-=-4.……………………………………………………7分 20.(本题满分7分)解:用枚举法或列表法,可求出从四根细木棒中取两根细木棒的所有可能情况共有6种.枚举法:(1,3)、(1,4)、(1,5)、(3,4)、(3,5)、(4,5)共有6种.…4分 (1)P (构成三角形)=4263=; …………………………………………………5分 题 号 1 2 3 4 5 6 7 8 9 10 11 12 答 案DDBBCCADABCB(2)P (构成直角三角形)=16; …………………………………………………6分 (3)P (构成等腰三角形)=36=12. ……………………………………………7分21.(本题满分8分)解:设规定日期为x 天.由题意,得163=++x x x . …………………………………… 3分 解之,得 x =6.经检验,x =6是原方程的根. ……………………………………5分 显然,方案(2)不符合要求; 方案(1):1.2×6=7.2(万元); 方案(3):1.2×3+0.5×6=6.6(万元). 因为7.2>6.6,所以在不耽误工期的前提下,选第三种施工方案最节省工程款. ………………8分 22.(本题满分8分)解:(1)在Rt △B ′OC 中,tan ∠OB ′C =34,OC =9, ∴934OB ='. ………………………………………………………………………2分 解得OB ′=12,即点B ′ 的坐标为(12,0). ………………………………………3分 (2)将纸片翻折后,点B 恰好落在x 轴上的B ′ 点,CE 为折痕, ∴ △CBE ≌△CB ′E ,故BE =B ′E ,CB ′=CB =OA .由勾股定理,得 CB ′=22OB OC '+=15. … …………………………………4分 设AE =a ,则EB ′=EB =9-a ,AB ′=AO -OB ′=15-12=3. 由勾股定理,得 a 2+32=(9-a )2,解得a =4.∴点E 的坐标为(15,4),点C 的坐标为(0,9). ·········· 5分 设直线CE 的解析式为y =kx +b ,根据题意,得 9,415.b k b =⎧⎨=+⎩ …………… 6分解得9,1.3b k =⎧⎪⎨=-⎪⎩∴CE 所在直线的解析式为 y =-13x +9. …………………8分23.(本题满分10分)解:⑴ 连接AC ,EB ,则∠CAM =∠BEM . ……………1分A BCEDO MF又∠AMC =∠EMB , ∴△AMC ∽△EMB . ∴EM MBAM MC=,即AM MB EM MC ⋅=⋅.………3分 (2) ∵DC 为⊙O 的直径,∴∠DEC =90°,EC =22228(15)7.DC DE -=-= ………………………4分∵OA =OB =4,M 为OB 的中点,∴AM =6,BM =2. …………………………………5分 设EM =x ,则CM =7-x .代入(1),得 62(7)x x ⨯=-.解得x 1=3,x 2=4.但EM >MC ,∴EM=4. …………………………………………7分 (3) 由(2)知,OE =EM =4.作EF ⊥OB 于F ,则OF =MF =41OB =1. ………………8分在Rt △EOF 中,EF =,15142222=-=-OF OE …………………………9分∴sin ∠EOB =415=OE EF . ……………………………………………………………10分 24.(本题满分10分)解:(1)由解析式可知,点A 的坐标为(0,4). …………………………………1分 ∵1462OAB S BO ∆=⨯⨯=,∴BO =3. ∴点B 的坐标为(-3,0). ………………………………………………………2分 (2)把点B 的坐标(-3,0)代入4)1(2+-+-=x k x y ,得2(3)(1)(3)40k --+-⨯-+=. 解得351-=-k . …………………4分∴所求二次函数的解析式为4352+--=x x y . …………………………………5分 (3)因为△ABP 是等腰三角形,所以①当AB =AP 时,点P 的坐标为(3,0). …………………………………………6分 ②当AB =BP 时,点P 的坐标为(2,0)或(-8,0). …………………………8分 ③当AP =BP 时,设点P 的坐标为(x ,0).根据题意,得3422+=+x x .解得 67=x .∴点P 的坐标为(67,0). ……………………………………10分综上所述,点P 的坐标为(3,0)、(2,0)、(-8,0)、(67,0).25.(本题满分10分)54123 OFB1ECA 1D解:(1)如图所示,315∠=,190E ∠= ,∴1275∠=∠=. ………………………………1分 又45B ∠=,∴114575120OFE B ∠=∠+∠=+= . ………3分 (2)1120OFE ∠= ,∴∠D 1FO =60°.1130CD E ∠= ,∴490∠= .··················· 4分 又AC BC = ,6AB =,∴3OA OB ==.90ACB ∠= ,∴116322CO AB ==⨯=. ·············· 5分 又17CD = ,∴11734OD CD OC =-=-=.在1Rt AD O △中,222211345AD OA OD =+=+=. ········· 6分 (3)点B 在22D CE △内部. ···················· 7分 理由如下:设BC (或延长线)交22D E 于点P ,则2153045PCE ∠=+= . 在2Rt PCE △中,27222CP CE ==, ………… ········ 9分 72322CB =<,即CB CP <,∴点B 在22D CE △内部. ……………10分声明:本资料由 考试吧( ) 收集整理,转载请注明出自 服务:面向较高学历人群,提供计算机类,外语类,学历类,资格类,会计类,工程类,医学类等七大类考试的全套考试信息服务及考前培训.。
山东省2008年夏季普通高中学生学业水平考试地理试题注意事项:1·本试题分为第1卷和第Ⅱ卷两部分。
第l卷1至2页,为选择题,50分;第Ⅱ卷3至4页,为非选择题,50分;共100分。
考试时间为90分钟。
2·答第1卷前务必将自己的姓名、考号、考试科目涂写在答题卡上。
考试结束时,试题和答题卡一并收回。
3·第l卷每题选出答案后,都必须用28铅笔把答题卡上对应题目的答案标号(ABCD)涂黑。
如需改动,必须先用橡皮擦干净,再改涂其他答案。
第1卷(选择题共50分)一、选择题(下列各题的四个选项中。
只有一个最符合题意。
每小题2分。
共50分) 1.“天上星星亮晶晶,数来数去数不清。
”童谣中所说的“星星”,绝大多数是A.行星 B.恒星 C.彗星 D.流星2.从元旦到春节期间,太阳直射点的位置和移动方向是A.在南半球,向北移动 B.在北半球,向南移动C.在南半球,向南移动 D.在北半球,向北移动3.地球上纬度相同的地方A.地方时相同 B.区时相同 C.正午太阳高度角相同 D.自转线速度不同物质运动与能量交换贯穿大自然运动和演化的全过程。
来自太阳的外部力量激荡着江河海流,孕育出风云变幻;来自地球内部的力量驱动着褶皱与断层,营造出高山深壑。
据此完成4~5题。
4.导致“背斜成谷”的主要地质作用是A.岩浆活动 B.侵蚀作用 C.风化作用 D.沉积作用5.下列地形地貌,主要由内力作用形成的是A.喀斯特地貌 8.东非大裂谷 C.恒河三角洲 D.风蚀蘑菇6.修建水库主要是对水循环的哪一个环节施加了重要影响A.蒸发 B.降水 C.水汽输送 D.地表径流7.下列自然灾害中,最有可能由人类活动诱发的是A.地震 B.海啸 C.暴雨 D.泥石流树木年轮是气候变化的历史证据之一。
读某地树木年轮示意图(图1),完成8~9题。
8.图l中的树木年轮所反映的气候变化规律是A.寒冷~温暖一寒冷交替变化B.温暖一寒冷一温暖交替变化C.暖干~暖湿一暖干交替变化D.湿冷一干冷一湿冷交替变化9.在树木年轮M形成时期,该地最有可能出现的自然现象是A.荒漠化加剧 B.暖冬频繁C.海平面下降 D.洪水泛滥图2是世界某大洲局部图,读图完成l0~11题。
山东省2008年普通高中学生学业水平考试数学试题
第Ⅰ卷(选择题 共45分)
一、选择题(本答题共15个小题,每小题3分,共45分,在每小题给出的四个选项中,只有一个符合题目要求)
1.若全集U={1.,2,3,4},集合M={1,2},N={2,3},则集合C U (M N)= ( ) A.{1,2,3} B.{2} C.{1,3,4} D.{4}
2.若一个几何体的三视图都是三角形,则这个集合体是 ( ) A. 圆锥 B.四棱锥 C.三棱锥 D.三棱台
3.若点P(-1,2)在角θ的终边上,则tan θ等于 ( ) A. -2 B. 55-
C. 2
1
- D. 552 4.下列函数中,定义域为R 的是 ( ) A. y=x B. y=log 2X C. y=x 3
D. y=
x
1
5.设a >1,函数f (x )=a |x|
的图像大致是 ( )
6.为了得到函数y=sin (2x-
3
π)(X ∈R )的图像,只需把函数 y=sin2x 的图像上所有的点 ( )
A.向右平移3π个单位长度
B.向右平移6π
个单位长度 C.向左平移3π个单位长度 D.向左平移6
π
个单位长度
7.若一个菱长为a 的正方形的个顶点都在半径为R 的球面上,则a 与R 的关系是
( )
A. R=a
B. R=
a 2
3
C. R=2a
D. R=a 3 8.从1,2,3,4,5这五个数字中任取两数,则所取两数均为偶数,则所取两数均为偶数的概率是 ( ) A.
101 B. 51 C. 52 D. 5
3 9.若点A (-2,-3)、B (0,y )、C (2,5)共线,则y 的值等于 ( )
A. -4
B. -1
C. 1
D. 4
10.在数列{a n }中,a n+1=2a n ,a 1=3,则a 6为 ( )
A. 24
B. 48
C. 96
D. 192
11.在知点P (5a+1,12a )在圆(x-1)2
+y 2
=1的内部,则实数a 的取值范围是 ( )
A. -1<a <1
B. a <13
1
C.51-<a <51
D. 13
1-<a <131
12.设a ,b ,c ,d ∈R ,给出下列命题: ①若ac >bc ,则a >b ;
②若a >b ,c >d ,则a+b >b+d ; ③若a >b ,c >d ,则ac >bd ; ④若ac 2
>bc 2,
则a >b ;
其中真命题的序号是 ( ) A. ①② B. ②④ C. ①②④ D. ②③④
13.已知某学校高二年级的一班和二班分别有m 人和n 人(m ≠n )。
某次学校考试中,两班学生的平均分分别为a 和b (a ≠b ),则这两个班学生的数学平均分为 ( )
A.
2b a + B. ma+nb C. n m nb ma ++ D. n
m b
a ++
14.如图所示的程序框图中, 若给变量x 输入-2008, 则变量y 的输出值为 ( ) A. -1 B . -2008
C. 1
D. 2008
15.在△ABC 中,若a=25,c=10,A=300
,则B 等于 ( )
A. 1050
B. 600
或1200
C. 150
D. 1050
或150
第Ⅱ卷 (非选择题 共55分)
二、填空题(本大题共5个小题,每小题4分,共20分,把答案填在题中的横线上) 16.函数y=2sin (
2
1
3
+
x π
)的最小正周期是 。
17.今年某地区有30000名同学参加普通高中学生学业水平考试,为了了解考试成绩,现准备采用系统抽样的方法抽取样本。
已确定样本容量为300,给所有考生编号为1~30000以后,随机抽取的第一个样本号码为
97,则抽取的样本中最大的号码数应
为 .
18.已知函数f (x )=⎩
⎨⎧+01x )0()
0(<≥x x ,则f (f (-2))= .
19.已知直线a ,b 和平面α,若a ⊥b ,a ⊥α,则b 与α的位置关系是 . 20.若x ,y 满足⎩⎨
⎧≤≤+x
y y x 23
,则z=3x+4y 的最大值是 。
三、解答题(本小题共5个小题,共35分,解答时应写出文字说明、证明过程或演算步骤) 21.(本小题满分6分)求函数f (x )=2sin (x+6
π
)-2cosx 的最大值。
22. (本小题满分6分)直线L 过直线L 1:x+y-1=0与直线L 2:x-y+1=0的交点,且与直线L 3:3x+5y=7垂直,求直线L 的方程。
23. (本小题满分7分)在盒子里有大小相同,仅颜色不同的5个小球,其中红球3个,黄球2个,现从中任取一球请确定颜色后再放回盒子里,取出黄球则不再取球,且最多取3次,求: (1)取一次就结束的概率; (2)至少取到2个红球的概率。
24. (本小题满分8分)等差数列{a n }中,a 1+a 4+a 7=15,a 3+a 6+a 9=3,求该数列前9项和S 9.
25. (本小题满分8分)已知奇函数f (x )=a
b x ++2x 的定义域为R ,且f (1)=21
.
(1)求实数a 、b 的值:
(2)证明函数f (x )在区间(-1,1)上为增函数:
(3)若g (x=3-x
-f (x ),证明g (x )在(-+∞∞,)上有零点。
山东省2008年学业水平(会考)考试答案
一、选择题
1.D
2.C
3.A
4.C
5.A
6. B
7.B
8.A
9. C 10. C 11.D 12.B 13. C 14.A 15.D 二、填空题
16、 6 17、 29997 18、 1 19、b α∥或b α⊂ 20、 11 三、解答题
21. 解:
x
x x x x x f cos sin 3cos 2)cos 2
1
sin 23(
2)(-=-+= = 2sin(x -
6π
). ∵ -1≤sin(x -6
π
)≤1
∴ f (x)max = 2 .
22. 解:联立x+y-1=0与x-y+1=0, 得 x = 0, y = 1 . ∴直线l 1与直线l 2的交点是(0,1). 因为直线l 3的斜率是k 3= 53
-
, 且直线l ⊥直线l 3 . 所以,直线l 的斜率是k = 3
5
.
因此,直线l 的方程是5x – 3y + 3 = 0. 23. 解:(1)设第一次就取到黄球的事件为A , 则P (A )=
5
2
(2)设前两次取到红球,且第三次取到黄球的事件为B,
设前三次均取到红球为事件C, 则B 、C 为互斥事件, 故所求事件的概率为:
P (B ∪C )= P (B )+ P(C)
= 25
9
555333555233=⨯⨯⨯⨯+⨯⨯⨯⨯
24. 解:由 ⎩⎨
⎧=++=++315963741a a a a a a 得,⎩⎨⎧==1
5
64a a
得 a 1+a 9 = a 4+a 6 = 6 所以,S 9=
272
991=+)
(a a 25. 解:(1)因为f(X)的定义域为R ,且为奇函数, 所以f(0)=0,即=0,所以b=0,
又f(1)= 21 所以1a 1+=2
1所以a=1 (2)由(1)知f (x )=1
x x
2+
设-1<X 1<X 2<1, f (x 1)-f (x 2)=
-+1x x 2
111x x 22
2
+ =1)1)(x (x x 22
2
12
21212
21++--+x x x x x =1)
1)(x (x )
()(222
112212
1++---X X X X X X
=
1)
1)(x (x ))(1(x 2
2211221++--x x x 由 -1<X 1<X 2<1, 得X 2 -X 1>0 , x 1x 2<1 . ∴f(x 1) – f (x 2) < 0 , f (x 1) < f(x 2)
∴ 函数f(x)在区间(-1,1)上为增函数 .
(3)∵ g(x) = 3-x
-
1
x x
2
1+ , ∴ g(0) =1>0 . g(1) =
.06
1
2131<-=- ∴ g(0)g(1) < 0 .
∴ g(x)在(0,1)内至少有一个零点. 因此,函数g(x)在(-∞,+∞)上有零点.。