2011年广东省深圳市第一次调研数学(文科)
- 格式:doc
- 大小:1.37 MB
- 文档页数:12
2011年广东省高考数学试卷(文科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.(5分)(2011•广东)设复数z满足iz=1,其中i为虚数单位,则z=()A.﹣i B.i C.﹣1 D.1【考点】复数代数形式的乘除运算.【专题】数系的扩充和复数.【分析】我们可以利用待定系数法求出Z,我们设Z=x+yi,结合已知中iz=1,结合复数相等的充要条件,我们易构造出一个关于x,y的方程组,解方程组即可求出满足条件的复数Z的值.【解答】解:设Z=x+yi∵iz=1,∴i(x+yi)=﹣y+xi=1故x=0,y=﹣1∴Z=﹣i故选A【点评】本题考查的知识点是复数代数形式的乘除运算,其中利用复数相等的充要条件,构造出一个关于x,y 的方程组,是解答本题的关键.2.(5分)(2011•广东)已知集合A={(x,y)|x,y为实数,且x2+y2=1},B=|(x,y)|x,y为实数,且x+y=1},则A∩B的元素个数为()A.4 B.3 C.2 D.1【考点】交集及其运算.【专题】集合.【分析】观察两集合发现,两集合表示两点集,要求两集合交集元素的个数即为求两函数图象交点的个数,所以联立两函数解析式,求出方程组的解,有几个解就有几个交点即为两集合交集的元素个数.【解答】解:联立两集合中的函数关系式得:,由②得:x=1﹣y,代入②得:y2﹣y=0即y(y﹣1)=0,解得y=0或y=1,把y=0代入②解得x=1,把y=1代入②解得x=0,所以方程组的解为或,有两解,则A∩B的元素个数为2个.故选C【点评】此题考查学生理解交集的运算,考查了求两函数交点的方法,是一道基础题.本题的关键是认识到两集合表示的是点坐标所构成的集合即点集.3.(5分)(2011•广东)已知向量=(1,2),=(1,0),=(3,4).若λ为实数,(+λ)∥,则λ=()A.B.C.1 D.2【考点】平面向量共线(平行)的坐标表示.【专题】平面向量及应用.【分析】根据所给的两个向量的坐标,写出要用的+λ向量的坐标,根据两个向量平行,写出两个向量平行的坐标表示形式,得到关于λ的方程,解方程即可.【解答】解:∵向量=(1,2),=(1,0),=(3,4).∴=(1+λ,2)∵(+λ)∥,∴4(1+λ)﹣6=0,∴故选B.【点评】本题考查两个向量平行的坐标表示,考查两个向量坐标形式的加减数乘运算,考查方程思想的应用,是一个基础题.4.(5分)(2011•广东)函数f(x)=+lg(1+x)的定义域是()A.(﹣∞,﹣1) B.(1,+∞)C.(﹣1,1)∪(1,+∞)D.(﹣∞,+∞)【考点】函数的定义域及其求法.【专题】函数的性质及应用.【分析】根据题意,结合分式与对数函数的定义域,可得,解可得答案.【解答】解:根据题意,使f(x)=+lg(1+x)有意义,应满足,解可得(﹣1,1)∪(1,+∞);故选:C.【点评】本题考查函数的定义域,首先牢记常见的基本函数的定义域,如果涉及多个基本函数,取它们的交集即可.5.(5分)(2011•广东)不等式2x2﹣x﹣1>0的解集是()A.(﹣,1)B.(1,+∞)C.(﹣∞,1)∪(2,+∞)D.(﹣∞,﹣)∪(1,+∞)【考点】一元二次不等式的解法.【专题】不等式的解法及应用.【分析】将不等式的左边分解因式得到相应的方程的根;利用二次方程解集的形式写出解集.【解答】解:原不等式同解于(2x+1)(x﹣1)>0∴x>1或x<故选:D【点评】本题考查二次不等式的解法:判断相应的方程是否有根;若有根求出两个根;据二次不等式解集的形式写出解集.6.(5分)(2011•广东)已知平面直角坐标系xOy上的区域D由不等式组给定.若M(x,y)为D上的动点,点A的坐标为,则z=•的最大值为()A.3 B.4 C.3 D.4【考点】二元一次不等式(组)与平面区域;数量积的坐标表达式.【专题】不等式的解法及应用.【分析】首先做出可行域,将z=•的坐标代入变为z=,即y=﹣x+z,此方程表示斜率是﹣的直线,当直线与可行域有公共点且在y轴上截距最大时,z有最大值.【解答】解:首先做出可行域,如图所示:z=•=,即y=﹣x+z做出l 0:y=﹣x,将此直线平行移动,当直线y=﹣x+z经过点B时,直线在y轴上截距最大时,z有最大值.因为B(,2),所以z的最大值为4故选:B【点评】本题考查线性规划、向量的坐标表示,考查数形结合思想解题.7.(5分)(2011•广东)正五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五棱柱对角线的条数共有()A.20 B.15 C.12 D.10【考点】棱柱的结构特征.【专题】立体几何.【分析】抓住上底面的一个顶点,看从此顶点出发的对角线有多少条即可解决.【解答】解:由题意正五棱柱对角线一定为上底面的一个顶点和下底面的一个顶点的连线,因为不同在任何侧面内,故从一个顶点出发的对角线有2条.正五棱柱对角线的条数共有2×5=10条.故选D【点评】本题考查计数原理在立体几何中的应用,考查空间想象能力.8.(5分)(2011•广东)设圆C与圆x2+(y﹣3)2=1外切,与直线y=0相切,则C的圆心轨迹为()A.抛物线B.双曲线C.椭圆 D.圆【考点】圆的切线方程;圆与圆的位置关系及其判定;抛物线的定义.【专题】直线与圆.【分析】由动圆与定圆相外切可得两圆圆心距与半径的关系,然后利用圆与直线相切可得圆心到直线的距离与半径的关系,借助等量关系可得动点满足的条件,即可的动点的轨迹.【解答】解:设C的坐标为(x,y),圆C的半径为r,圆x2+(y﹣3)2=1的圆心为A,∵圆C与圆x2+(y﹣3)2=1外切,与直线y=0相切∴|CA|=r+1,C到直线y=0的距离d=r∴|CA|=d+1,即动点C定点A的距离等于到定直线y=﹣1的距离由抛物线的定义知:C的轨迹为抛物线.故选A【点评】本题考查了圆的切线,两圆的位置关系及抛物线的定义,动点的轨迹的求法,是个基础题.9.(5分)(2011•广东)如图,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体体积为()A.B.4 C. D.2【考点】由三视图求面积、体积.【专题】立体几何.【分析】根据已知中的三视图及相关视图边的长度,我们易判断出该几何体的形状及底面积和高的值,代入棱锥体积公式即可求出答案.【解答】解:由已知中该几何中的三视图中有两个三角形一个菱形可得这个几何体是一个四棱锥由图可知,底面两条对角线的长分别为2,2,底面边长为2故底面棱形的面积为=2侧棱为2,则棱锥的高h==3故V==2故选C【点评】本题考查的知识点是由三视图求面积、体积其中根据已知求出满足条件的几何体的形状及底面面积和棱锥的高是解答本题的关键.10.(5分)(2011•广东)设f(x),g(x),h(x)是R上的任意实值函数,如下定义两个函数(f°g)(x)和((f•g)(x)对任意x∈R,(f°g)(x)=f(g(x));(f•g)(x)=f(x)g(x),则下列等式恒成立的是()A.((f°g)•h)(x)=((f•h)°(g•h))(x)B.((f•g)°h)(x)=((f°h)•(g°h))(x)C.((f°g)°h)(x)=((f°h)°(g°h))(x)D.((f•g)•h)(x)=((f•h)•(g•h))(x)【考点】抽象函数及其应用.【专题】函数的性质及应用.【分析】根据定义两个函数(f°g)(x)和((f•g)(x)对任意x∈R,(f°g)(x)=f(g(x));(f•g)(x)=f(x)g(x),然后逐个验证即可找到答案.【解答】解:A、∵(f°g)(x)=f(g(x)),(f•g)(x)=f(x)g(x),∴((f°g)•h)(x)=(f°g)(x)h(x)=f(g(x))h(x);而((f•h)°(g•h))(x)=(f•h)((g•h)(x))=f(g(x)h(x))h(g(x)h(x));∴((f°g)•h)(x)≠((f•h)°(g•h))(x)B、∵((f•g)°h)(x)=(f•g)(h(x))=f(h(x))g(h(x))((f°h)•(g°h))(x)=(f°h)•(x)(g°h)(x)=f(h(x))g(h(x))∴((f•g)°h)(x)=((f°h)•(g°h))(x)C、((f°g)°h)(x)=((f°g)(h(x))=f(g(h(x))),((f°h)°(g°h))(x)=f(h(g(h(x))))∴((f°g)°h)(x)≠((f°h)°(g°h))(x);D、((f•g)•h)(x)=f(x)g(x)h(x),((f•h)•(g•h))(x)=f(x)h(x)g(x)h(x),∴((f•g)•h)(x)≠((f•h)•(g•h))(x).故选B.【点评】此题是个基础题.考查学生分析解决问题的能力,和知识方法的迁移能力.二、填空题(共5小题,考生作答4小题每小题5分,满分20分)11.(5分)(2011•广东)已知{a n}是递增等比数列,a2=2,a4﹣a3=4,则此数列的公比q= 2 .【考点】等比数列的通项公式.【专题】等差数列与等比数列.【分析】由已知{a n}是递增等比数列,a2=2,我们可以判断此数列的公比q>1,又由a2=2,a4﹣a3=4,我们可以构造出一个关于公比q的方程,解方程即可求出公比q的值.【解答】解:∵{a n}是递增等比数列,且a2=2,则公比q>1又∵a4﹣a3=a2(q2﹣q)=2(q2﹣q)=4即q2﹣q﹣2=0解得q=2,或q=﹣1(舍去)故此数列的公比q=2故答案为:2【点评】本题考查的知识点是等比数列的通项公式,其中利用等比数列的通项公式及a2=2,a4﹣a3=4,构造出一个关于公比q的方程,是解答本题的关键.12.(5分)(2011•广东)设函数f(x)=x3cosx+1,若f(a)=11,则f(﹣a)= ﹣9 .【考点】函数奇偶性的性质.【专题】函数的性质及应用.【分析】由于函数f(x)=x3cosx+1,是一个非奇非偶函数,故无法直接应用函数奇偶性的性质进行解答,故可构造函数g(x)=f(x)﹣1=x3cosx,然后利用g(x)为奇函数,进行解答.【解答】解:令g(x)=f(x)﹣1=x3cosx则g(x)为奇函数,又∵f(a)=11,∴g(a)=f(a)﹣1=11﹣1=10∴g(﹣a)=﹣10=f(﹣a)﹣1∴f(﹣a)=﹣9故答案为:﹣9【点评】本题考查的知识点是函数奇偶性的性质,其中构造出奇函数g(x)=f(x)﹣1=x3cosx,是解答本题的关键.13.(5分)(2011•广东)工人月工资y(元)与劳动生产率x(千元)变化的回归方程为=50+80x,下列判断正确的是②①劳动生产率为1千元时,工资为130元;②劳动生产率提高1千元,则工资提高80元;③劳动生产率提高1千元,则工资提高130元;④当月工资为210元时,劳动生产率为2千元.【考点】线性回归方程.【专题】概率与统计.【分析】回归方程═50+80x变量x增加一个单位时,变量产生相应变化,从而对选项一一进行分析得到结果.【解答】解::∵对x的回归直线方程=50+80x,∴=(x+1)+50,∴﹣=80(x+1)+50﹣80x﹣50=80.所以劳动生产率提高1千元,则工资提高80元,②正确,③不正确.①④不满足回归方程的意义.故答案为:②.【点评】主要考查知识点:统计.本题主要考查线性回归方程的应用,考查线性回归方程自变量变化一个单位,对应的预报值是一个平均变化,这是容易出错的知识点.14.(5分)(2011•广东)已知两曲线参数方程分别为(0≤θ<π)和(t∈R),它们的交点坐标为(1,).【考点】参数方程化成普通方程;直线的参数方程;椭圆的参数方程.【专题】坐标系和参数方程.【分析】利用同角三角函数的基本关系及代入的方法,把参数方程化为普通方程,再利用消去参数t化曲线的参数方程为普通方程,最后解方程组求得两曲线的交点坐标即可.【解答】解:曲线参数方程(0≤θ<π)的直角坐标方程为:;曲线(t∈R)的普通方程为:;解方程组:得:∴它们的交点坐标为(1,).故答案为:(1,).【点评】本题考查同角三角函数的基本关系,参把数方程化为普通方程的方法,以及求两曲线的交点坐标的方法,考查运算求解能力.属于基础题.15.(2011•广东)如图,在梯形ABCD中,AB∥CD,AB=4,CD=2.E,F分别为AD,BC上点,且EF=3,EF∥AB,则梯形ABFE与梯形EFCD的面积比为7:5 .【考点】相似三角形的性质.【专题】解三角形.【分析】根据EF的长度和与上下底平行知是梯形的中位线,设出中位线分成的两个梯形的高,根据梯形的面积公式写出两个梯形的面积,都是用含有高的代数式来表示的,求比值得到结果.【解答】解:∵E,F分别为AD,BC上点,且EF=3,EF∥AB,∴EF是梯形的中位线,设两个梯形的高是h,∴梯形ABFE的面积是,梯形EFCD的面积∴梯形ABFE与梯形EFCD的面积比为=,故答案为:7:5【点评】本题考查梯形的中位线,考查梯形的面积公式是一个基础题,解题的时候容易出的一个错误是把两个梯形看成相似梯形,根据相似多边形的面积之比等于相似比的平方.三、解答题(共6小题,满分80分)16.(12分)(2011•广东)已知函数f(x)=2sin(x﹣),x∈R.(1)求f(0)的值;(2)设α,β∈,f(3)=,f(3β+)=.求sin(α+β)的值.【考点】两角和与差的正弦函数.【专题】三角函数的图像与性质.【分析】(1)把x=0代入函数解析式求解.(2)根据题意可分别求得sinα和sinβ的值,进而利用同角三角函数基本关系求得cosα和cosβ的值,最后利用正弦的两角和公式求得答案.【解答】解:(1)∵f(x)=2sin(x﹣),x∈R,∴f(0)=2sin(﹣)=﹣1(2)∵f(3)=2sinα=,f(3β+)=2sinβ=.∴sinα=,sinβ=∵α,β∈,∴cosα==,cosβ==∴sin(α+β)=sinαcosβ+cosαsinβ=【点评】本题主要考查了两角和与差的正弦函数.考查了对三角函数基础公式的熟练记忆.17.(13分)(2011•广东)在某次测验中,有6位同学的平均成绩为75分.用x n表示编号为n(n=1,2,…,6)的同学所得成绩,且前5位同学的成绩如下:(1)求第6位同学的成绩x6,及这6位同学成绩的标准差s;(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率.【考点】极差、方差与标准差;古典概型及其概率计算公式.【专题】概率与统计.【分析】(1)根据平均数公式写出这组数据的平均数表示式,在表示式中有一个未知量,根据解方程的思想得到结果,求出这组数据的方差,再进一步做出标准差.(2)本题是一个古典概型,试验发生包含的事件是从5位同学中选2个,共有C52种结果,满足条件的事件是恰有一位成绩在区间(68,75)中,共有C41种结果,根据概率公式得到结果.【解答】解:(1)根据平均数的个数可得75=,∴x6=90,这六位同学的方差是(25+1+9+25+9+225)=49,∴这六位同学的标准差是7(2)由题意知本题是一个古典概型,试验发生包含的事件是从5位同学中选2个,共有C52=10种结果,满足条件的事件是恰有一位成绩在区间(68,75)中,共有C41=4种结果,根据古典概型概率个数得到P==0.4.【点评】本题考查一组数据的平均数公式的应用,考查求一组数据的方差和标准差,考查古典概型的概率公式的应用,是一个综合题目.18.(13分)(2011•广东)如图所示的几何体是将高为2,底面半径为1的直圆柱沿过轴的平面切开后,将其中一半沿切面向右水平平移后得到的,A,A′,B,B′分别为的中点,O 1,O1′,O2,O2′分别为CD,C′D′,DE,D′E′的中点.(1)证明:O1′,A′,O2,B四点共面;(2)设G为A A′中点,延长A′O1′到H′,使得O1′H′=A′O1′.证明:BO2′⊥平面H′B′G.【考点】直线与平面垂直的判定;棱柱的结构特征;平面的基本性质及推论.【专题】空间位置关系与距离;立体几何.【分析】(1)要证O1′,A′,O2,B四点共面,即可证四边形BO2A′O1′为平面图形,根据A′O1′与B′O2′在未平移时属于同一条直径知道A′O1′∥B′O2′即BO2∥A′O1′再根据BO2=A′O1′=1即可得到四边形BO2A′O1′是平行四边形,则证.(2)建立空间直角坐标系,要证BO 2′⊥平面H′B′G只需证,,根据坐标运算算出•,的值均为0即可【解答】证明:(1)∵B′,B分别是中点∴BO2∥B′O2′∵A′O1′与B′O2′在未平移时属于同一条直径∴A′O1′∥B′O2′∴BO2∥A′O1′∵BO2=A′O1′=1∴四边形BO2A′O1′是平行四边形即O1′,A′,O2,B四点共面(2)以D为原点,以向量DE所在的直线为X轴,以向量DD′所在的直线为Z轴,建立如图空间直角坐标系,则B(1,1,0),O2′(0,1,2),H′(1,﹣1,2),A(﹣1,﹣1,0),G(﹣1,﹣1,1),B′(1,1,2)则=(﹣1,0,2),=(﹣2,﹣2,﹣1),=(0,﹣2,0)∵•=0,=0∴BO2′⊥B′G,BO2′⊥B′H′即,∵B′H′∩B′G=B′,B′H′、B′G⊂面H′GB′∴BO2′⊥平面H′B′G【点评】本题考查了直线与平面垂直的判定,棱柱的结构特征,平面的基本性质及推论以及空间向量的基本知识,属于中档题.19.(14分)(2011•广东)设a>0,讨论函数f(x)=lnx+a(1﹣a)x2﹣2(1﹣a)x的单调性.【考点】利用导数研究函数的单调性.【专题】导数的综合应用.【分析】求出函数的定义域,求出导函数,设g(x)=2a(1﹣a)x2﹣2(1﹣a)x+1,x∈(0,+∞),讨论a=1,a>1与0<a<1三种情形,然后利用函数的单调性与导函数符号的关系求出单调性.【解答】解:定义域{x|x>0}f′(x)==设g(x)=2a(1﹣a)x2﹣2(1﹣a)x+1,x∈(0,+∞)①若a=1,则g(x)=1>0∴在(0,+∞)上有f'(x)>0,即f(x)在(0,+∞)上是增函数.②若a>1则2a(1﹣a)<0,g(x)的图象开口向下,此时△=[﹣2(1﹣a)]2﹣4×2a(1﹣a)×1=4(1﹣a)(1﹣3a)>0方程2a(1﹣a)x2﹣2(1﹣a)x+1=0有两个不等的实根不等的实根为x1=,x2=且x1<0<x2∴在(0,)上g(x)>0,即f'(x)>0,f(x)是增函数;在(,+∞)上g(x)<0,即f'(x)<0,f(x)是减函数;③若0<a<1则2a(1﹣a)>0,g(x)的图象开口向上,此时△=[﹣2(1﹣a)]2﹣4×2a(1﹣a)×1=4(1﹣a)(1﹣3a)可知当≤a<1时,△≤0,故在(0,+∞)上,g(x)≥0,即f'(x)≥0,f(x)是增函数;当0<a<时,△>0,方程2a(1﹣a)x2﹣2(1﹣a)x+1=0有两个不等的实根不等的实根满足>>0故在(0,)和(,+∞)上g(x)>0,即f'(x)>0,f(x)是增函数;在(,)上g(x)<0,即f'(x)<0,f(x)是减函数.【点评】本题考查利用导函数讨论函数的单调性:导函数为正函数递增;导函数为负,函数递减,同时考查了分类讨论的数学思想方法,属于难题.20.(14分)(2011•广东)设b>0,数列{a n}满足a1=b,a n=(n≥2)(1)求数列{a n}的通项公式;(2)证明:对于一切正整数n,2a n≤b n+1+1.【考点】数列递推式;数列与不等式的综合.【专题】等差数列与等比数列.【分析】(1)由题设形式可以看出,题设中给出了关于数列a n的面的一个方程,即一个递推关系,所以应该对此递推关系进行变形整理以发现其中所蕴含的规律,观察发现若对方程两边取倒数则可以得到一个类似等差数列的形式,对其中参数进行讨论,分类求其通项即可.(2)由于本题中条件较少,解题思路不宜用综合法直接分析出,故求解本题可以采取分析法的思路,由结论探究其成立的条件,再证明此条件成立,即可达到证明不等式的目的.【解答】解:(1)∵(n≥2),∴(n≥2),当b=1时,(n≥2),∴数列{}是以为首项,以1为公差的等差数列,∴=1+(n﹣1)×1=n,即a n=1,当b>0,且b≠1时,(n≥2),即数列{}是以=为首项,公比为的等比数列,∴=×=,即a n=,∴数列{a n}的通项公式是(2)证明:当b=1时,不等式显然成立当b>0,且b≠1时,a n=,要证对于一切正整数n,2a n≤b n+1+1,只需证2×≤b n+1+1,即证∵==(b n+1+1)×(b n﹣1+b n﹣2+…+b+1)=(b2n+b2n﹣1+…+b n+2+b n+1)+(b n﹣1+b n﹣2+…+b+1)=b n[(b n+b n﹣1+…+b2+b)+(++…+)]≥b n(2+2+…+2)=2nb n所以不等式成立,综上所述,对于一切正整数n,有2a n≤b n+1+1,【点评】本题考点是数列的递推式,考查根据数列的递推公式求数列的通项,研究数列的性质的能力,本题中递推关系的形式适合用取倒数法将所给的递推关系转化为有规律的形式,两边取倒数,条件许可的情况下,使用此技巧可以使得解题思路呈现出来.数列中有请多成熟的规律,做题时要注意积累这些小技巧,在合适的情况下利用相关的技巧,可以简化做题.在(2)的证明中,采取了分析法的来探究解题的思路,通过本题希望能进一步熟悉分析法证明问题的技巧.21.(14分)(2011•广东)在平面直角坐标系xOy中,直线l:x=﹣2交x轴于点A,设P是l上一点,M是线段OP的垂直平分线上一点,且满足∠MPO=∠AOP.(1)当点P在l上运动时,求点M的轨迹E的方程;(2)已知T(1,﹣1),设H是E上动点,求|HO|+|HT|的最小值,并给出此时点H的坐标;(3)过点T(1,﹣1)且不平行与y轴的直线l1与轨迹E有且只有两个不同的交点,求直线l1的斜率k的取值范围.【考点】轨迹方程;直线与圆锥曲线的综合问题.【专题】综合题;压轴题;转化思想.【分析】(1)由于直线l:x=﹣2交x轴于点A,所以A(﹣2,0),由于P是l上一点,M是线段OP的垂直平分线上一点,且满足∠MPO=∠AOP,可以设点P,由于满足∠MPO=∠AOP,所以分析出MN∥AO,利用相关点法可以求出动点M的轨迹方程;(2)由题意及点M的轨迹E的方程为y2=4(x+1),且已知T(1,﹣1),又H是E 上动点,点O及点T都为定点,利用图形即可求出;(3)由题意设出过定点的直线方程l1并与点M的轨迹E的方程联立,利用有两个交点等价与联立之后的一元二次方程的判别式大于0,即可得到所求.【解答】解:(1)如图所示,连接OM,则|PM|=|OM|,∵∠MPO=∠AOP,∴动点M满足MP⊥l或M在x的负半轴上,设M(x,y)①当MP⊥l时,|MP|=|x+2|,|om|=,|x+2|=,化简得y2=4x+4 (x≥﹣1)②当M在x的负半轴上时,y=0(x≤﹣1),综上所述,点M的轨迹E的方程为y2=4x+4(x≥﹣1)或y=0(x<﹣1).(2)由题意画出图形如下:∵由(1)知道动点M 的轨迹方程为:y2=4(x+1).是以(﹣1,0)为顶点,以O(0,0)为焦点,以x=﹣2为准线的抛物线,由H引直线HB垂直准线x=﹣2与B点,则利用抛物线的定义可以得到:|HB|=|HO|,∴要求|HO|+|HT|的最小值等价于求折线|HB|+|HT|的最小值,由图可知当由点T直接向准线引垂线是与抛物线相交的H使得HB|+|HT|的最小值,故|HO|+|HT|的最小值时的H.(3)如图,设抛物线顶点A(﹣1,0),则直线AT的斜率,∵点T(1,﹣1)在抛物线内部,∴过点T且不平行于x,y轴的直线l1必与抛物线有两个交点,则直线l1与轨迹E的交点个数分以下四种情况讨论:①当K时,直线l1与轨迹E有且只有两个不同的交点,②当时,直线l1与轨迹E有且只有一个不同的交点,③当K=0时,直线l1与轨迹E有且只有一个交点,④当K>0时,直线l1与轨迹E有且只有两个不同的交点.综上所述,直线l1的斜率K的取值范围是(﹣]∪(0,+∞).【点评】此题重点考查了利用相关点法求动点的轨迹方程,还考查了利用抛物线的定义求出HO|+|HT|的最小值时等价转化的思想,还考查了直线与曲线有两个交点的等价转化思想.。
绝密★启用前 试卷类型:A2011年深圳市高三年级第一次调研考试数学(理科) 2011.3本试卷共6页,21小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生首先检查答题卡是否整洁无缺损,监考教师分发的考生信息条形码是否正确;之后务必用0.5毫米黑色字迹的签字笔在答题卡指定位置填写自己的学校、姓名和考生号,同时,将监考教师发放的条形码正向准确粘贴在答题卡的贴条形码区,请保持条形码整洁、不污损.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上.不按要求填涂的,答案无效.3.非选择题必须用0.5毫米黑色字迹的签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上,请注意每题答题空间,预先合理安排;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再做答.漏涂、错涂、多涂的答案无效.5.考生必须保持答题卡的整洁,考试结束后,将答题卡交回. 参考公式:如果事件A B 、互斥,那么P A B P A P B +=+()()(); 如果事件A B 、相互独立,那么P AB P A P B =()()(); 若柱体的底面积为S ,高为h ,则柱体的体积为V Sh =;若锥体的底面积为S ,高为h ,则锥体的体积为13V Sh =.一、选择题:本大题共8个小题;每小题5分,共40分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.1.已知a b ∈R ,,若3i 1i i a b +=+⋅()(其中i 为虚数单位),则A .11a b =-=,B .11a b =-=-,C .11a b ==-,D .11a b ==,2.已知p :“a =,q :“直线0x y +=与圆221x y a +-=()相切”.则p 是q 的A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件3.已知n S 为等差数列{}n a 的前n 项和,若11S =,424SS =,则64S S 的值为A .94B .32C .54D .44.如图,圆222:O x y +=π内的正弦曲线sin y x =与x 轴围成的区域记为M (图中阴影部分),随机往圆O 内投一个点A ,则点A 落在区域M 内的概率是 A .24π B .34π C .22πD .32π 5.在一条公路上每隔10公里有一个仓库,共有5个仓库.一号仓库存有10吨货物,二号仓库存有20吨货物,五号仓库存有40吨货物,其余两个仓库是空的.现在要把所有的货物集中存放在一个仓库里,若每吨货物运输1公里需要0.5元运输费,则最少需要的运费是A .450元B .500元C .550元D .600元6.一个几何体的三视图如图所示,则该几何体的体积(单位:3cm )为A .2B .1C .23D .1310040020一号 二号 三号 四号五号俯视图正(主)视图 侧(左)视图7.设平面区域D 是由双曲线2214y x -=的两条渐近线和直线680x y --=所围成三角形的边界及内部.当,x y D ∈()时,222x y x ++的最大值为A .24B .25C .4D .78.已知函数f x ()的定义域为 1 5-[,],部分对应值如下表.f x ()的导函数y f x '=()的图象如图所示.下列关于函数f x ()的命题: ①函数y f x =()是周期函数; ②函数f x ()在0 2[,]是减函数;③如果当 1 x t ∈-[,]时,f x ()的最大值是2,那么t 的最大值为4; ④当12a <<时,函数y f x a =-()有4个零点. 其中真命题的个数有 A .4个 B .3个 C .2个D .1个二、填空题:本大题共7小题,每小题5分,满分30分.本大题分为必做题和选做题两部分.(一)必做题:第9、10、11、12、13题为必做题,每道试题考生都必须作答. 9.已知全集U =R ,集合A 为函数ln 1f x x =-()()的定义域,则U A ð= . 10.设随机变量2~N 1 3X (,),且06P X P X a ≤=>-()(),则实数a 的值为 . 11.在ABC ∆中,已知a b c ,,分别为A ∠,B ∠,C ∠所对的边,S 为ABC ∆的面积.若向量2224 1p a b c q S =+-= ()(),,,满足//p q ,则C ∠= . 12.已知命题“x ∃∈R ,12x a x -++≤”是假命题,则实数a 的取值范围是 .13.已知a 为如图所示的程序框图中输出的结果,则二项式6(的展开式中含2x 项的系数是 .(注:框图中的赋值符号“=”也可以写成“←”或 “:=” )(二)选做题:第14、15题为选做题,考生只能选做一题,两题全答的,只计算前一题的得分.14.(坐标系与参数方程)在极坐标系中,设P 是直线 :cos sin 4l ρθθ+=()上任一点,Q是圆24cos 3C ρρθ=-:上任一点,则PQ 的最小值是 .15.(几何证明选讲)如图,割线PBC 经过圆心O ,1OB PB ==,OB 绕点O 逆时针旋转120︒到OD ,连PD 交圆O 于点E ,则PE = .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)已知函数cos sin 2424x x f x x ππ=++-+π()()()().(1)求f x ()的最小正周期; (2)若将f x ()的图象向右平移6π个单位,得到函数g x ()的图象,求函数g x ()在区间0π[,]上的最大值和最小值.BCDEPO第26届世界大学生夏季运动会将于2011年8月12日至23日在深圳举行,为了搞好接待工作,组委会在某学院招募了12名男志愿者和18名女志愿者.将这30名志愿者的身高编成如下茎叶图(单位:cm),这30名志愿者的身高如下:男女9 15 7 7 8 9 99 8 16 1 2 4 5 8 98 6 5 0 17 2 3 4 5 67 4 2 1 18 0 11 19若身高在175cm以上(包括175cm)定义为“高个子”,身高在175cm以下定义为“非高个子”,且只有“女高个子”才能担任“礼仪小姐”.(1)如果用分层抽样的方法从“高个子”和“非高个子”中抽取5人,再从这5人中选2人,那么至少有一人是“高个子”的概率是多少?(2)若从所有“高个子”中选3名志愿者,用ξ表示所选志愿者中能担任“礼仪小姐”的人数,试写出ξ的分布列,并求ξ的数学期望.18.(本小题满分14分)如图,AC是圆O的直径,点B在圆O上,30BAC∠=︒,BM AC⊥交AC于点M,EA⊥平面ABC,//FC EA,431AC EA FC===,,.(1)证明:EM BF⊥;(2)求平面BEF与平面ABC所成的锐二面角的余弦值.AB CEFMO∙已知点F 是椭圆222101x y a a +=>+()的右焦点,点 0M m (,)、0 N n (,)分别是x 轴、y 轴上的动点,且满足0MN NF ⋅= .若点P 满足2OM ON PO =+.(1)求点P 的轨迹C 的方程;(2)设过点F 任作一直线与点P 的轨迹C 交于A 、B 两点,直线OA ,OB 与直线x a =-分别交于点S ,T (O 为坐标原点),试判断FS FT ⋅是否为定值?若是,求出这个定值;若不是,请说明理由.20.(本小题满分14分)已知数列{}n a 是各项均不为0的等差数列,公差为d ,n S 为其前n 项和,且满足221n n a S -=,n *N ∈.数列{}n b 满足11n n n b a a +=⋅,n T 为数列{}n b 的前n 项和.(1)求1a ,d 和n T ;(2)若对任意的n *N ∈,不等式81n n T n λ<+⋅-()恒成立,求实数λ的取值范围; (3)是否存在正整数m n ,1m n <<(),使得1,,m n T T T 成等比数列?若存在,求出所有m n ,的值;若不存在,请说明理由.21.(本小题满分14分)已知函数ln 1af x x a x =+∈+R ()(). (1)当92a =时,如果函数g x f x k =-()()仅有一个零点,求实数k 的取值范围; (2)当2a =时,试比较f x ()与1的大小;(3)求证:1111ln 135721n n +>+++++ ()n ∈*N ().。
2011年高考广东卷文科数学试题与答案一、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设复数z 满足1iz =,其中i 为虚数单位,则z =A .i -B .iC .1-D .1 1.(A ).1()i z i i i i -===-⨯-2.已知集合{(,)|,A x y x y =为实数,且221}x y +=,{(,)|,B x y x y =为实数,且1}x y +=,则A B⋂的元素个数为A .4B .3C .2D .12.(C ).A B ⋂的元素个数等价于圆221x y +=与直线1x y +=的交点个数,显然有2个交点 3.已知向量(1,2),(1,0),(3,4)===a b c .若λ为实数,()λ+a b ∥c ,则λ= A .14B .12C .1D .23.(B ).(1,2)λλ+=+a b ,由()λ+a b ∥c ,得64(1)0λ-+=,解得λ=124.函数1()lg(1)1f x x x=++-的定义域是A .(,1)-∞-B .(1,)+∞C .(1,1)(1,)-⋃+∞D .(,)-∞+∞4.(C ).10110x x x -≠⎧⇒>-⎨+>⎩且1x ≠,则()f x 的定义域是(1,1)(1,)-⋃+∞5.不等式2210x x -->的解集是 A .1(,1)2-B .(1,)+∞C .(,1)(2,)-∞⋃+∞D .1(,)(1,)2-∞-⋃+∞5.(D ).21210(1)(21)02x x x x x -->⇒-+>⇒<-或1x >,则不等式的解集为1(,)(1,)2-∞-⋃+∞6.已知平面直角坐标系xO y 上的区域D 由不等式组0222x y x y⎧⎪⎨⎪⎩≤≤≤≤给定.若(,)M x y 为D 上的动点,点A的坐标为(2,1),则z O M O A=⋅的最大值为A .3B .4C .32D .4223正视图 图1 侧视图 图22 俯视图 2图36.(B ).2z x y =+,即2y x z =-+,画出不等式组表示的平面区域,易知当直线2y x z =-+经过点(2,2)时,z 取得最大值,m ax 2224z =⨯+=7.正五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五棱柱对角线的条数共有A .20B .15C .12D .10 7.(D ).正五棱柱中,上底面中的每一个顶点均可与下底面中的两个顶点构成对角线,所以一个正五棱柱对角线的条数共有5210⨯=条 8.设圆C 与圆22(3)1x y +-=外切,与直线0y =相切,则C 的圆心轨迹为 A .抛物线 B .双曲线 C .椭圆 D .圆8.(A ).依题意得,C 的圆心到点(0,3)的距离与它到直线1y =-的距离相等,则C 的圆心轨迹为抛物线 9.如图1 ~ 3,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体的体积为 A .43 B .4C .23D .29.(C ).该几何体是一个底面为菱形的四棱锥, 菱形的面积 1223232S =⨯⨯=,四棱锥的高为3, 则该几何体的体积112332333V S h ==⨯⨯=10.设(),(),()f x g x h x 是R 上的任意实值函数,如下定义两个函数()f g ()x 和()f g ()x :对任意x ∈R,()f g ()x =(())f g x ;()f g ()x =()()f x g x ,则下列等式恒成立的是A .(()f g h )()x =(()f h ()g h )()x B .(()f g h )()x =(()f h ()g h )()x C .(()f g h )()x =(()f g ()g h )()x D .(()f g h )()x =(()f g ()g h )()x 10.(B ).对A 选项 (()f g h )()x =()f g ()()x h x (())()f g x h x = (()f h ()g h )()x =()f h (()()g h x )=()f h ((()()g x h x ) (()())(()())f g x h x h g x h x = ,故排除A对B 选项 (()f g h )()x =()(())f g h x = (())(())f h x g h x (()f h ()g h )()x =()()()()f h x g h x (())(())f h x g h x =,故选B对C 选项 (()f g h )()x =()(())f g h x ((()))f g h x =(()f g ()g h )()x =()(()())()((()))f g g h x f g g h x = (((())))f g g h x =,故排除C对D 选项 (()f g h )()x =()()()()()()f g x h x f x g x h x =(()f g ()g h )()x =()()()()()()()()f g x g h x f x g x g x h x = ,故排除D二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分.(一)必做题(9 ~ 13题)11.已知{}n a 是递增的等比数列,若22a =,434a a -=,则此数列的公比q = . 11.2.2243224422402(2)(1)0a a a q a q q q q q -=⇒-=⇒--=⇒-+=2q ⇒=或1q =-∵{}n a 是递增的等比数列,∴2q =12.设函数3()cos 1f x x x =+.若()11f a =,则()f a -= . 12.9-3()cos 111f a a a =+=,即3()cos 10f a a a ==,则33()()cos()1cos 11019f a a a a a -=--+=-+=-+=-13.为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球时间x (单位:小时)与当天投篮命中率y 之间的关系:时间x 1 2 3 4 5 命中率y0.40.50.60.60.4小李这5天的平均投篮命中率为 ;用线性回归分析的方法,预测小李该月6号打6小时篮球的投篮命中率为 . 13.0.5;0.53小李这5天的平均投篮命中率1(0.40.50.60.60.4)0.55y =++++=3x =,1222221()()0.2000.1(0.2)0.01(2)(1)012()nii i ni i xx y y bx x ==--++++-===-+-+++-∑∑, 0.47ay b x =-= ∴线性回归方程0.010.47y x =+,则当6x =时,0.53y = ∴预测小李该月6号打6小时篮球的投篮命中率为0.53图4BAC DEF(二)选做题(14 ~ 15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)已知两曲线参数方程分别为5c o s sin x y θθ⎧=⎪⎨=⎪⎩(0)θπ<≤和254x t y t⎧=⎪⎨⎪=⎩(t ∈)R ,它们的交点坐标为___________.14.25(1,)5.5c o s sin x y θθ⎧=⎪⎨=⎪⎩表示椭圆2215x y +=(5501)x y -<≤≤≤且,254x t y t⎧=⎪⎨⎪=⎩表示抛物线245y x = 22221(5501)5450145x y x y x x x y x ⎧+=-<≤≤≤⎪⎪⇒+-=⇒=⎨⎪=⎪⎩且或5x =-(舍去), 又因为01y ≤≤,所以它们的交点坐标为25(1,)515.(几何证明选讲选做题)如图4,在梯形A B C D 中,A B ∥C D ,4A B =,2C D =,,E F 分别为,A D B C 上的点,且3E F =, E F ∥A B ,则梯形A B F E 与梯形E F C D 的面积比为________.15.75如图,延长,A D B C ,A D B C P =∵23C D E F =,∴49P C D P E F S S ∆∆=∵24C D A B=,∴416P C D P E FS S ∆∆=∴75A B E F E F C DS S =梯形梯形PBAC DEF三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知函数1()2sin ()36f x x π=-,x ∈R .(1)求(0)f 的值;(2)设,0,2παβ⎡⎤∈⎢⎥⎣⎦,10(3)213f πα+=,6(32)5f βπ+=,求sin()αβ+的值.16.解:(1)(0)2sin ()16f π=-=- (2)110(3)2sin [(3)]2sin 232613f πππααα+=+-==,即5sin 13α=16(32)2sin [(32)]2sin ()3625f ππβπβπβ+=+-=+=,即3co s 5β=∵,0,2παβ⎡⎤∈⎢⎥⎣⎦,∴212co s 1sin 13αα=-=,24sin 1co s 5ββ=-=∴5312463sin ()sin co s co s sin 13513565αβαβαβ+=+=⨯+⨯=17.(本小题满分13分)在某次测验中,有6位同学的平均成绩为75分.用n x 表示编号为n (1,2,,6)n = 的同学所得成绩,且前5位同学的成绩如下:编号n 1 2 3 4 5 成绩n x7076727072(1)求第6位同学的成绩6x ,及这6位同学成绩的标准差s ;(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率. 17.解:(1)61(7076727072)756x +++++=,解得690x =标准差22222222212611[()()()](5135315)766s x x x x x x =-+-++-=+++++=(2)前5位同学中随机选出的2位同学记为(,)a b ,,{1,2,3,4,5}a b ∈且a b ≠则基本事件有(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)共10种 这5位同学中,编号为1、3、4、5号的同学成绩在区间(68,75)中设A 表示随机事件“从前5位同学中随机选出2位同学,恰有1位同学成绩在区间(68,75)中”则A 中的基本事件有(1,2)、(2,3)、(2,4)、(2,5)共4种,则42()105P A ==BAB 'A 'CC 'DD 'EE 'GH '1O2O1O ' 2O '图5BAB 'A 'CC 'DD 'EE 'GH '1O2O1O ' 2O 'H18.(本小题满分13分)图5所示的几何体是将高为2,底面半径为1的直圆柱沿过轴的平面切开后,将其中一半沿切面向右水平平移后得到的.,,,A A B B ''分别为 C D , C D '', D E , D E ''的中点,1122,,,O O O O ''分别为C D ,C D '', D E ,D E ''的中点.(1)证明:12,,,O A O B ''四点共面;(2)设G 为A A '中点,延长1A O ''到H ',使得11O H A O ''''=.证明:2B O '⊥平面H B G ''.18.证明:(1)连接2,B O 22,O O '依题意得1122,,,O O O O ''是圆柱底面圆的圆心 ∴,,,C D C D D E D E ''''是圆柱底面圆的直径∵,,A B B ''分别为 CD '', DE , D E ''的中点 ∴1290A O D B O D ''''''∠=∠=∴1A O ''∥2B O '∵B B '//22O O ',四边形22O O B B ''是平行四边形 ∴2B O ∥2B O ',1A O ''∥2B O ∴12,,,O A O B ''四点共面(2)延长1A O '到H ,使得11O H A O ''=,连接1,,H H H O H B '' ∵11O H A O ''''=∴1O H ''//2O B '',四边形12O O B H ''''是平行四边形,∴12O O ''∥H B '' ∵1222O O O O '''⊥,122O O B O ''''⊥,2222O O B O O ''''= ∴12O O ''⊥面22O O B B ''∴H B ''⊥面22O O B B '',2B O '⊂面22O O B B '' ∴2B O H B '''⊥易知四边形A A H H ''是正方形,且边长2A A '= ∵11tan 2H H H O H O H '''∠=='',1tan 2A G A H G A H '''∠=='',1tan tan 1H O H A H G ''''∠⋅∠=∴190H O H A H G ''''∠+∠=,即1H O H G ''⊥易知12O O ''//H B ,四边形12O O B H ''是平行四边形 ∴2B O '∥1H O '∴2B O H G ''⊥,H G H B H ''''= ∴2B O '⊥平面H B G ''. 19.(本小题满分14分)设0a >,讨论函数2()ln (1)2(1)f x x a a x a x =+---的单调性. 19.解:函数()f x 的定义域为(0,)+∞212(1)2(1)1()2(1)2(1)a a x a x f x a a x a xx---+'=+---=令2()2(1)2(1)1g x a a x a x =---+224(1)8(1)121644(31)(1)a a a a a a a ∆=---=-+=--① 当103a <<时,0∆>,令()0f x '=,解得1(31)(1)2(1)a a a x a a -±--=-则当1(31)(1)02(1)a a a x a a ----<<-或1(31)(1)2(1)a a a x a a -+-->-时,()0f x '>当1(31)(1)1(31)(1)2(1)2(1)a a a a a a x a a a a -----+--<<--时,()0f x '<则()f x 在1(31)(1)(0,)2(1)a a a a a -----,1(31)(1)(,)2(1)a a a a a -+--+∞-上单调递增,在1(31)(1)1(31)(1)(,)2(1)2(1)a a a a a a a a a a -----+----上单调递减② 当113a ≤≤时,0∆≤,()0f x '≥,则()f x 在(0,)+∞上单调递增③ 当1a >时,0∆>,令()0f x '=,解得1(31)(1)2(1)a a a x a a -±--=-∵0x >,∴1(31)(1)2(1)a a a x a a ----=-则当1(31)(1)02(1)a a a x a a ----<<-时,()0f x '>当1(31)(1)2(1)a a a x a a ---->-时,()0f x '<则()f x 在1(31)(1)(0,)2(1)a a a a a -----上单调递增,在1(31)(1)(,)2(1)a a a a a ----+∞-上单调递减20.(本小题满分14分)设0b >,数列{}n a 满足1a b =,111n n n n b a a a n --=+-(n ≥2).(1)求数列{}n a 的通项公式; (2)证明:对于一切正整数n ,2n a ≤11n b ++.20.(1)解:∵111n n n n b a a a n --=+-∴111n n n a b a n a n --=+-∴1111nn n n a b a b--=⋅+ ① 当1b =时,111nn n n a a ---=,则{}nn a 是以1为首项,1为公差的等差数列∴1(1)1nn n n a =+-⨯=,即1n a =② 当0b >且1b ≠时,11111()11nn n n a b b a b--+=+-- 当1n =时,111(1)nn a bb b +=--∴1{}1nn a b +-是以1(1)b b -为首项,1b为公比的等比数列∴111()11nnn a bb b+=⋅-- ∴111(1)1(1)n nnnn ba b bbb b-=-=---∴(1)1nn nn b b a b-=-综上所述(1),01111nn n n b bb b a b b ⎧->≠⎪=-⎨⎪=⎩ 且, (2)证明:① 当1b =时,1212n n a b+=+=;② 当0b >且1b ≠时,211(1)(1)nn n b b b bb---=-++++要证121n n a b +≤+,只需证12(1)11nn nn b b bb+-≤+-,即证2(1)11nnn b b bb-≤+-即证21211n n nnb b bbb--≤+++++即证211()(1)2n n nb b bbn b--+++++≥ 即证21121111()()2n nnn b b b b n bbbb --+++++++++≥∵21121111()()n nnn b b bb bbbb--+++++++++21211111()()()()n nn nb b bb bbbb--=++++++++2121111122222n n n nb b bb n bbbb--≥⋅+⋅++⋅+⋅= ,∴原不等式成立∴对于一切正整数n ,2n a ≤11n b++.xy O 2x =-APlMMxyO 2x =-TNl HNH∙Hxy O TA 1l1l1l21.(本小题满分14分)在平面直角坐标系xO y 上,直线l :2x =-交x 轴于点A .设P 是l 上一点,M 是线段O P 的垂直平分线上一点,且满足M P O A O P ∠=∠.(1)当点P 在l 上运动时,求点M 的轨迹E 的方程;(2)已知(1,1)T -,设H 是E 上动点,求H O H T +的最小值,并给出此时点H 的坐标; (3)过点(1,1)T -且不平行于y 轴的直线1l 与轨迹E 有且只有两个不同的交点,求直线1l 的斜率k 的取值范围.21.解:(1)如图所示,连接O M ,则P M O M =∵M P O A O P ∠=∠,∴动点M 满足M P l ⊥或M 在x 的负半轴上,设(,)M x y ① 当M P l ⊥时,2M P x =+,22O M x y=+222x x y+=+,化简得244y x =+(1)x ≥-② 当M 在x 的负半轴上时,0y =(1)x <-综上所述,点M 的轨迹E 的方程为244y x =+(1)x ≥-或0y =(1)x <-(2)由(1)知M 的轨迹是顶点为(1,0)-,焦点为原点的抛物线和x 的负半轴0y =(1)x <- ① 若H 是抛物线上的动点,过H 作H N l ⊥于N由于l 是抛物线的准线,根据抛物线的定义有H O H N = 则H O H T H N H T +=+当,,N H T 三点共线时,H N H T +有最小值3T N = 求得此时H 的坐标为3(,1)4--② 若H 是x 的负半轴0y =(1)x <-上的动点 显然有3H O H T +>综上所述,H O H T +的最小值为3,此时点H 的坐标为3(,1)4--(3)如图,设抛物线顶点(1,0)A -, 则直线A T 的斜率12A T k =-∵点(1,1)T -在抛物线内部,数学(文科)试题B 第 11 页 (共 11 页)∴过点T 且不平行于,x y 轴的直线1l 必与抛物线有两个交点 则直线1l 与轨迹E 的交点个数分以下四种情况讨论:① 当12k ≤-时,直线1l 与轨迹E 有且只有两个不同的交点 ② 当102k -<<时,直线1l 与轨迹E 有且只有三个不同的交点③ 当0k =时,直线1l 与轨迹E 有且只有一个交点④ 当0k >时,直线1l 与轨迹E 有且只有两个不同的交点综上所述,直线1l 的斜率k 的取值范围是1(,](0,)2-∞-+∞。
2011年普通高等学校招生全国统一考试(广东卷)数学(文科)本试题共4页,21小题,满分150分,考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。
漏涂、错涂、多涂的,答案无效。
5.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
参考公式:锥体体积公式13V Sh =,其中S 为锥体的底面积,h 为锥体的高. 线性回归方程 y bxa =+ 中系数计算公式121()()()niii nii x x y y b x x ==--=-∑∑ , ay bx =- , 样本数据12,,,n x x x的标准差,s = 其中x ,y 表示样本均值.n 是正整数,则1221()()n n n n n n a b a b a a b ab b -----=-++++ .一、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设复数z 满足1iz =,其中i 为虚数单位,则z =A .i -B .iC .1-D .1 1.(A ).1()iz i i i i -===-⨯- 2.已知集合{(,)|,A x y x y =为实数,且221}x y +=,{(,)|,B x y x y =为实数,且1}x y +=,则A B ⋂的元素个数为A .4B .3C .2D .12.(C ).A B ⋂的元素个数等价于圆221x y +=与直线1x y +=的交点个数,显然有2个交点3.已知向量(1,2),(1,0),(3,4)===a b c .若λ为实数,()λ+a b ∥c ,则λ= A .14 B .12C .1D .2正视图图1 侧视图 图2 3.(B ).(1,2)λλ+=+a b ,由()λ+a b ∥c ,得64(1)0λ-+=,解得λ=124.函数1()lg(1)1f x x x=++-的定义域是 A .(,1)-∞- B .(1,)+∞ C .(1,1)(1,)-⋃+∞ D .(,)-∞+∞4.(C ).10110x x x -≠⎧⇒>-⎨+>⎩且1x ≠,则()f x 的定义域是(1,1)(1,)-⋃+∞5.不等式2210x x -->的解集是A .1(,1)2-B .(1,)+∞C .(,1)(2,)-∞⋃+∞D .1(,)(1,)2-∞-⋃+∞ 5.(D ).21210(1)(21)02x xx x x -->⇒-+>⇒<-或1x >,则不等式的解集为1(,)(1,)2-∞-⋃+∞6.已知平面直角坐标系xOy上的区域D 由不等式组02x y x ⎧⎪⎨⎪⎩≤≤给定.若(,)M x y 为D 上的动点,点A的坐标为,则z OM OA=⋅的最大值为A .3B .4 C..6.(B ).z y =+,即y z =+,画出不等式组表示的平面区域,易知当直线y z =+经过点时,z 取得最大值,max 24z =7.正五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五棱柱对角线的条数共有A .20B .15C .12D .10 7.(D ).正五棱柱中,上底面中的每一个顶点均可与下底面中的两个顶点构成对角线,所以一个正五棱柱对角线的条数共有5210⨯=条8.设圆C 与圆22(3)1x y +-=0y =相切,则C 的圆心轨迹为A .抛物线B .双曲线C .椭圆D .圆8.(A ).依题意得,C 的圆心到点(0,3)的距离与它到直线1y =-的距离相等,则C 的圆心轨迹为抛物线 9.如图1 ~ 3,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体的体积为A ..4C ..29.(C ).该几何体是一个底面为菱形的四棱锥,菱形的面积122S =⨯⨯=,四棱锥的高为3,则该几何体的体积11333V Sh ==⨯=10.设(),(),()f x g x h x 是R 上的任意实值函数,如下定义两个函数()f g ()x 和()f g ()x :对任意x ∈R ,()f g ()x =(())f g x ;()f g ()x =()()f x g x ,则下列等式恒成立的是A .(()f g h )()x =(()f h ()g h )()xB .(()f g h )()x =(()f h ()g h )()xC .(()f g h )()x =(()f g ()g h )()xD .(()f g h )()x =(()f g()g h )()x 10.(B ).对A 选项 (()f g h )()x =()f g ()()x h x (())()f g x h x = (()f h ()g h )()x =()f h (()()g h x )=()f h ((()()g x h x ) (()())(()())f g x h x h g x h x = ,故排除A对B 选项 (()f g h )()x =()(())f g h x = (())(())f h x g h x(()f h ()g h )()x =()()()()f h x g h x (())(())f h x g h x =,故选B 对C 选项 (()f g h )()x =()(())f g h x ((()))f g h x =(()f g ()g h )()x =()(()())()((()))f g g h x f g g h x = (((())))f g g h x =,故排除C对D 选项 (()f g h )()x =()()()()()()f g x h x f x g x h x =(()f g ()g h )()x =()()()()()()()()f g x g h x f x g x g x h x = ,故排除D二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分.(一)必做题(9 ~ 13题)11.已知{}n a 是递增的等比数列,若22a =,434a a -=,则此数列的公比q = . 11.2.2243224422402(2)(1)0a a a q a q q q q q -=⇒-=⇒--=⇒-+=2q ⇒=或1q =-∵{}n a 是递增的等比数列,∴2q =12.设函数3()cos 1f x x x =+.若()11f a =,则()f a -= . 12.9-3()cos 111f a a a =+=,即3()cos 10f a a a ==,则33()()cos()1cos 11019f a a a a a -=--+=-+=-+=-13.为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球时间x (单位:小时)与当天投篮命中率y 之间的关系:小李这5天的平均投篮命中率为 ;用线性回归分析的方法,预测小李该月6号打6小时篮球的投篮命中率为 . 13.0.5;0.53小李这5天的平均投篮命中率1(0.40.50.60.60.4)0.55y =++++= 3x =,1222221()()0.2000.1(0.2)0.01(2)(1)012()niii nii x x y y bx x ==--++++-===-+-+++-∑∑ , 0.47a y bx =-= ∴线性回归方程 0.010.47y x =+,则当6x =时,0.53y = ∴预测小李该月6号打6小时篮球的投篮命中率为0.53(二)选做题(14 ~ 15题,考生只能从中选做一题)图4BAC DEF14.(坐标系与参数方程选做题)已知两曲线参数方程分别为sin x y θθ⎧=⎪⎨=⎪⎩(0)θπ<≤和254x t y t⎧=⎪⎨⎪=⎩(t ∈)R ,它们的交点坐标为___________.14..sin x y θθ⎧=⎪⎨=⎪⎩表示椭圆2215x y +=(01)x y ≤≤≤,254x t y t⎧=⎪⎨⎪=⎩表示抛物线245y x =22221(01)5450145x y x y x x x y x ⎧+=<≤≤≤⎪⎪⇒+-=⇒=⎨⎪=⎪⎩或5x =-(舍去), 又因为01y ≤≤,所以它们的交点坐标为(1,515.(几何证明选讲选做题)如图4,在梯形ABCD 中,AB ∥CD ,4AB =,2CD =,,E F 分别为,AD BC 上的点,且3EF =, EF ∥AB ,则梯形ABFE 与梯形EFCD 的面积比为________.15.75如图,延长,AD BC ,AD BC P =∵23CD EF =,∴49PCD PEF S S ∆∆= ∵24CD AB =,∴416PCD PEF S S ∆∆= ∴75ABEF EFCDS S =梯形梯形三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.BA16.(本小题满分12分)已知函数1()2sin()36f x x π=-,x ∈R .(1)求(0)f 的值;(2)设,0,2παβ⎡⎤∈⎢⎥⎣⎦,10(3)213f πα+=,6(32)5f βπ+=,求sin()αβ+的值. 16.解:(1)(0)2sin()16f π=-=-(2)110(3)2sin[(3)]2sin 232613f πππααα+=+-==,即5sin 13α= 16(32)2sin[(32)]2sin()3625f ππβπβπβ+=+-=+=,即3cos 5β=∵,0,2παβ⎡⎤∈⎢⎥⎣⎦,∴12cos 13α==,4sin 5β== ∴5312463sin()sin cos cos sin 13513565αβαβαβ+=+=⨯+⨯= 17.(本小题满分13分)在某次测验中,有6位同学的平均成绩为75分.用n x 表示编号为n (1,2,,6)n = 的同学所得成绩,且前(1)求第6位同学的成绩6x ,及这6位同学成绩的标准差s ;(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率. 17.解:(1)61(7076727072)756x +++++=,解得690x =标准差7s === (2)前5位同学中随机选出的2位同学记为(,)a b ,,{1,2,3,4,5}a b ∈且a b ≠则基本事件有(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)共10种 这5位同学中,编号为1、3、4、5号的同学成绩在区间(68,75)中设A 表示随机事件“从前5位同学中随机选出2位同学,恰有1位同学成绩在区间(68,75)中”则A 中的基本事件有(1,2)、(2,3)、(2,4)、(2,5)共4种,则42()105P A == 18.(本小题满分13分)C C'图5C C E'图5所示的几何体是将高为2,底面半径为1的直圆柱沿过轴的平面切开后,将其中一半沿切面向右水平平移后得到的.,,,A A B B ''分别为 CD , C D '', DE , D E ''的中点,1122,,,O O O O ''分别为CD ,C D '', DE ,D E ''的中点.(1)证明:12,,,O A O B ''四点共面;(2)设G 为AA '中点,延长1A O ''到H ',使得11O H A O ''''=.证明:2BO '⊥平面H B G ''.18.证明:(1)连接2,BO 22,O O '依题意得1122,,,O O O O ''是圆柱底面圆的圆心 ∴,,,CD C D DE D E ''''是圆柱底面圆的直径∵,,A B B ''分别为 CD '', DE , D E ''的中点 ∴1290A O D B O D ''''''∠=∠=∴1A O ''∥2BO '∵BB '//22O ',四边形22O O B B ''是平行四边形 ∴2BO ∥2BO ' ∴1A O ''∥2BO∴12,,,O A O B ''四点共面(2)延长1A O '到H ,使得11O H AO ''=,连接1,,HH HO HB ''∵11O H A O ''''=∴1O H ''//2O B '',四边形12O O B H ''''是平行四边形 ∴12O O ''∥H B ''∵1222O O O O '''⊥,122O O B O ''''⊥,2222O O B O O ''''= ∴12O O ''⊥面22O O B B ''∴H B ''⊥面22O O B B '',2BO '⊂面22O O B B '' ∴2BO H B '''⊥易知四边形AA H H ''是正方形,且边长2AA '=∵11tan 2HH HO H O H'''∠=='',1tan 2A G A H G A H '''∠=='' ∴1tan tan 1HO H A H G ''''∠⋅∠= ∴190HO H A H G ''''∠+∠= ∴1HO H G ''⊥易知12O O ''//HB ,四边形12O O BH ''是平行四边形 ∴2BO '∥1HO '∴2BO H G ''⊥,H G H B H ''''= ∴2BO '⊥平面H B G ''.19.(本小题满分14分)设0a >,讨论函数2()ln (1)2(1)f x x a a x a x =+---的单调性.19.解:函数()f x 的定义域为(0,)+∞212(1)2(1)1()2(1)2(1)a a x a x f x a a x a x x---+'=+---=令2()2(1)2(1)1g x a a x a x =---+224(1)8(1)121644(31)(1)a a a a a a a ∆=---=-+=--① 当103a <<时,0∆>,令()0f x '=,解得x =则当0x <<或x >()0f x '>x <<时,()0f x '< 则()f x在,)+∞上单调递增,在上单调递减② 当113a ≤≤时,0∆≤,()0f x '≥,则()f x 在(0,)+∞上单调递增 ③ 当1a >时,0∆>,令()0f x '=,解得x =∵0x >,∴x =则当0x <<时,()0f x '>当x >时,()0f x '<则()f x在上单调递增,在)+∞上单调递减20.(本小题满分14分)设0b >,数列{}n a 满足1a b =,111n n n nba a a n --=+-(n ≥2).(1)求数列{}n a 的通项公式; (2)证明:对于一切正整数n ,2n a ≤11n b ++.20.(1)解:∵111n n n nba a a n --=+-∴111n n n a ba n a n --=+- ∴1111n n n n a b a b--=⋅+ ① 当1b =时,111n n n n a a ---=,则{}nn a 是以1为首项,1为公差的等差数列 ∴1(1)1nnn n a =+-⨯=,即1n a = ② 当0b >且1b ≠时,11111()11n n n n a b b a b--+=+-- 当1n =时,111(1)n n a b b b +=-- ∴1{}1n n a b+-是以1(1)b b -为首项,1b 为公比的等比数列 ∴111()11n n n a b b b+=⋅-- ∴111(1)1(1)n n nn n b a b b b b b-=-=--- ∴(1)1nn nn b b a b-=- 综上所述(1),01111nn n n b b b b a b b ⎧->≠⎪=-⎨⎪=⎩ 且, (2)证明:① 当1b =时,1212n n a b+=+=;② 当0b >且1b ≠时,211(1)(1)nn n b b b bb ---=-++++要证121n n a b +≤+,只需证12(1)11n n nn b b b b+-≤+-, 即证2(1)11n nn b b b b-≤+- 即证21211n n nn b b b b b--≤+++++ 即证211()(1)2n n n b b b b n b--+++++≥即证21121111()()2n nn n b b b b n b b b b --+++++++++≥∵21121111()()n nn n b b b b b b b b--+++++++++21211111()()()()n n n n bb b b b bb b--=++++++++2n ≥+= ,∴原不等式成立∴对于一切正整数n ,2n a ≤11n b++.21.(本小题满分14分)在平面直角坐标系xOy 上,直线l :2x =-交x 轴于点A .设P 是l 上一点,M 是线段OP 的垂直平分线上一点,且满足MPO AOP ∠=∠.(1)当点P 在l 上运动时,求点M 的轨迹E 的方程;(2)已知(1,1)T -,设H 是E 上动点,求HO HT +的最小值,并给出此时点H 的坐标; (3)过点(1,1)T -且不平行于y 轴的直线1l 与轨迹E 有且只有两个不同的交点,求直线1l 的斜率k 的取值范围.21.解:(1)如图所示,连接OM ,则PM OM =∵MPO AOP ∠=∠,∴动点M 满足MP l ⊥或M 在x 的负半轴上,设(,)M xy ① 当MP l ⊥时,2MPx =+,OM =2x +=244y x =+(1)x ≥-② 当M 在x 的负半轴上时,0y =(1)x <-综上所述,点M 的轨迹E 的方程为244y x =+(1)x ≥-或0y =(1)x <-(2)由(1)知M 的轨迹是顶点为(1,0)-,焦点为原点的抛物线和x 的负半轴0y =(1)x <- ① 若H 是抛物线上的动点,过H 作HN l ⊥于N由于l 是抛物线的准线,根据抛物线的定义有HO HN = 则HO HT HN HT +=+当,,N H T 三点共线时,HN HT +有最小值3TN =求得此时H 的坐标为3(,1)4--② 若H 是x 的负半轴0y =(1)x <-上的动点 显然有3HO HT +>综上所述,HO HT +的最小值为3,此时点H 的坐标为3(,1)4-- (3)如图,设抛物线顶点(1,0)A -,则直线AT 的斜率12ATk =-∵点(1,1)T -在抛物线内部,∴过点T 且不平行于,x y 轴的直线1l 必与抛物线有两个交点 则直线1l 与轨迹E 的交点个数分以下四种情况讨论:① 当12k ≤-时,直线1l 与轨迹E 有且只有两个不同的交点② 当102k -<<时,直线1l 与轨迹E 有且只有三个不同的交点③ 当0k =时,直线1l 与轨迹E 有且只有一个交点 ④ 当0k >时,直线1l 与轨迹E 有且只有两个不同的交点 综上所述,直线1l 的斜率k 的取值范围是1(,(0,)2-∞-+∞。
宝安区2010-2011年上学期高三调研考试试题文科数学本试卷共4页,21小题,满分150分.考试用时l20分钟. 参考公式:锥体的体积公式13V Sh =,其中S 是锥体的底面积,h 是锥体的高. 如果事件A 、B 互斥,那么()()()P A B P A P B +=+. 如果事件A 、B 相互独立,那么()()()P A B P A P B ⋅=⋅.一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1、在复平面内,复数 21i+ 对应的点与原点的距离是 A. 1B. C.2D. 2、已知,a bR ,则“33log log a b >”是 “11()()22a b <”的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 3、已知直线l 、m ,平面βα、,则下列命题中假命题是A.若βα//,α⊂l ,则β//lB.若βα//,α⊥l ,则β⊥lC.若α//l ,α⊂m ,则m l //D.若βα⊥,l =⋂βα,α⊂m ,l m ⊥,则β⊥m 4、若点P 到直线1y =-的距离比它到点(03),的距离小2,则点P 的轨迹方程为 A. 212x y = B.212y x = C.24x y = D.26x y =5、已知()xf x a b =+的图象如图所示,则()3f =A.23-C.3D.3或3-20正视图侧视图8080806、若0,0a b >>,则不等式1a b x-<<等价于 A.10x a -<<或10x b << B.11x b a -<< C.1x b <-或1x a > D.1x a <-或1x b>7、已知{}n a 是等差数列,154=a ,555=S ,则过点34(3,(4,),)P a Q a 的直线的斜率 A .4 B .41C .-4D .-148、某师傅需用合板制作一个工作台,工作台由主体和附属 两部分组成,主体部分全封闭,附属部分是为了防止工 件滑出台面而设置的护墙,其大致形状的三视图如右图 所示(单位长度: cm), 则按图中尺寸,做成的工作台用去 的合板的面积为(制作过程合板损耗和合板厚度忽略不计) A. 240000cm B. 240800cmC. 21600(2217)cmD. 241600cm9、设向量a 与b 的夹角为θ,定义a 与b 的“向量积”:a b ⨯是一个向量,它的模sin a b a b θ⨯=⋅⋅,若()()3,1,1,3a b =--=,则a b ⨯=3 B. 2C.3D. 410、已知函数:c bx x x f ++=2)(,其中:40,40≤≤≤≤c b ,记函数)(x f 满足条件:(2)12(2)4f f ≤⎧⎨-≤⎩为事件为A ,则事件A 发生的概率为 A . 14 B . 58 C . 12 D . 38二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11~13题)11、某班有学生52人,现用系统抽样的方法,抽取一个容量为4的样本,已知座位号分别为6,32,45的同学都在样本中,那么样本中另一位同学的座位号应该是 .ABC DA 1B 1C 1D 1P12、右图是一程序框图,则其输出结果为 . 13、路灯距地面为6m ,一个身高为1.6m 的人以1.2m/s 的速度从路灯的正底下,沿某直线离开路灯,那么人影长度S(m)与人从路灯的正底下离开路灯的时间t ()s 的 关系为 ,人影长度的变化速度v 为 (m/s ). (二)选做题(14~15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)已知曲线sin (11cos 222y x θθθ=⎧⎪⎨=-⎪⎩为参数)与直线x a =有两个不同的公共点,则实数a 的取值范围是 .15.(几何证明选讲选做题)如图,点P 在圆O 直径AB 的延长 线上,且2PB OB ==,PC 切圆O 于C 点,CD AB ⊥于 D 点,则PC = ,CD = . 三.解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16、(本小题满分13分)已知:函数()cos )f x x x =-. (1)求函数()f x 的最小正周期和值域; (2)若函数()f x 的图象过点6(,)5α,344ππα<<.求()4f πα+的值.17、(本小题满分13分)如图,已知1111ABCD A B C D -是底面为正方形的长方体,1160AD A ∠=,14AD =,点P 是1AD 上的动点.(1)试求四棱锥1111P A B C D -体积的最大值;(2)试判断不论点P 在1AD 上的任何位置,是否都有平面11B PA 垂直于平面11AA D ?并证明你的结论。
高中数学学习材料马鸣风萧萧*整理制作绝密★启用前 试卷类型:A深圳市高三年级第一次调研考试 数 学(文科)本试卷共8页,24小题,满分150分.考试用时120分钟. 注意事项:1.答卷前,考生务必用黑色字迹的签字笔在答题卡指定位置填写自己的学校、姓名 和考生号,并将条形码正向准确粘贴在答题卡的贴条形码区,请保持条形码整洁、 不污损.2.选择题每小题选出答案后,用2B 铅笔把答案涂在答题卷相应的位置上.3.非选择题必须用0.5毫米黑色字迹的签字笔作答,答案必须写在答题卡各题目指定 区域内;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和 涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再做答. 5.考生必须保持答题卡的整洁,考试结束后,将答题卡交回.第Ⅰ卷一、 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是 符合题目要求的.(1)已知集合A={-1,0,1 },B={ y|y=x 2-x,x ∈A },则A B= (A ){0}(B ) {2} (C ){0,1}(D ){-1,0} (2)若平面向量a =(m,1),b =(2,1),且(a -2b )//b ,则m= (A )1 (B )2 (C )3 (D )4 (3)设i 为虚数单位,已知12113,122i z z i i -==-++,则|z 1| ,|z 2| 的大小关系是 (A )|z 1| <|z 2| (B )|z 1| =|z 2| (C )|z 1| >|z 2| (D )无法比较(4)研究人员随机调查统计了某地1000名“上班族” 每天在工作之余使用手机上网的时间,并将其绘制为如图所示的频率分布直方图.若同一组数据用该区间的中点值作代表,则可估计该地“上班族”每天在工作之余使用手机上网的平均时间是 (A )1.78小时 (B )2.24小时(C )3.56小时 (D )4.32小时(5)已知函数2()cos sin f x x x =-,下列说法错误的是 (A )f (x)的最小正周期为π (B )2x π=是f (x)的一条对称轴(C )f (x) 在(4π-,4π)上单调递增 (D )| f (x)|的值域是[0,1](6)直线y=k(x+1)(k ∈R )与不等式组2202200x y x y x +-≤⎧⎪--≤⎨⎪≥⎩,表示的平面区域有公共点,则k 的取值范围是(A )[-2,2] (B )(-∞, -2] [2,+ ∞) (C )[-12,12] (D )(-∞,-12][12, +∞)(7)如图,网格纸上小正方形的边长为1,粗线画出 的是某几何体的三视图,则在该几何体中,最长 的棱的长度是(A )42 (B )25 (C )6 (D )43(8)函数f (x)=xcosx 在[-π,π]的大致图象为(A)(B)(C) (D) (9)已知22ππα-<<,且2sin cos 2αα+=,则a 的值为 (A )-12π (B )12π (C )- 512π (D )512π (10)已知A ,B ,C 是球面上三点,且AB=6,BC=8,AC=10,球心O 到平面ABC的距离等于该球半径的12,则此球的表面积为 (A )1003π (B )2003π (C )4003π (D )4009π (11)过抛物线y 2=2px(p>0)的焦点F ,且倾斜角为4π的直线与抛物线交于A,B 两 点,若弦AB 的垂直平分线经过点(0,2),则p 等于 (A )25 (B )23 (C )45 (D )43(12)已知a >0,若函数2324ln ,0,()34,0,a x x x f x x a x x ⎧⋅->⎪=⎨--≤⎪⎩且g(x)= f(x)+2a 至少有三个 零点,则a 的取值范围是(A )(12,1] (B )(1,2] (C )(1, +∞) (D )[1, +∞) 第Ⅱ卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答。
2011年深圳市高三年级第一次调研考试数学(文科)答案及评分标准故a 为(),h x 从而c 为()g x .8. 圆面222:()1C x a y a -+≤-的圆心(,0)a 在平面区域:24x y +<内,则210(,1)(1,2).204a a a ⎧->⇔∈-∞-⎨+<⎩ 9. 程序框图的作用是将三个实数按从小到大的顺序排列,若(2,3,1)P ,则(1,2,3)Q . 10.画图即知:函数ln y x =的图象与直线y x =-有唯一公共点(,),t t -e ln().x x x x x t =-⇔=-⇔=- 故两个函数的所有次不动点之和()0.m t t =+-=或利用函数ln y x =的图象与函数e xy =的图象关于直线y x =对称即得出答案. 二、填空题:11.25. 12.. .(108)2y x -=. 14.4. 15.第13题写或不写100x ≤都可以,写成如2108y x=-等均可.11. 画出左(侧)视图如图,其面积为 12.每个个体被抽入样的概率均为100110000100=, 在)3000,2500[内的频率为0.0005×(3000-2500)=0.25, 频数为10 000×0.25=2 500人,则该范围内应当抽取的人数为2 500×1001=25人. 13. 将各11 ,12,13,14,15对应的函数值分别写成297,296,295,294,293, 分母成等差数列,可知分母11(11)(1)9711108.n a a n n n =+--=-+=-14. 最长线段PQ 即圆22(2)4x y +-=的直径.15. 222(2)6,12.CB BD BA BD BD BD CD AD BD =⨯⇔=+⇔==⨯=三、解答题:16.解: (1)(1,sin )2a α=-,4(,2cos ),52b α=a b ⊥42sin cos 0,522a b αα∴⋅=-+=即4sin .5α=……………………3分α为第二象限角,3sin 4cos ,tan .5cos 3αααα∴==-==- ……6分(2) 在ABC ∆中,222,b c a +-=222cos 2b c a A bc +-∴==…9分(0,π)A ∈π,tan 1,4A A ∴== tan tan 1tan().1tan tan 7A A A ααα+∴+==--…………14分 17.证明: 平面SAD ⊥平面ABCD ,平面SAD 平面ABCD AD =,SM ⊂平面SAD ,SM AD ⊥SM ∴⊥平面ABCD ,…………………1分 BM ⊂平面,ABCD .SM BM ∴⊥ …………………2分 四边形ABCD 是直角梯形,AB //CD ,,AM AB =,DM DC = ,MAB MDC ∴∆∆都是等腰直角三角形,45,90,.AMB CMF BMC BM CM ∴∠=∠=︒∠=︒⊥………………4分 SM ⊂平面SMC ,CM ⊂平面SMC ,SM CM M =, BM ∴⊥平面SMC …………………………………………6分(1) 解: 三棱锥C SBM -与三棱锥S CBM -的体积相等,由( 1 ) 知SM ⊥平面ABCD ,得1113211()32SM BM CMV V SM AB CD AD⨯⨯=⨯+⨯,……………9分 设,AB a =由3CD AB =,,AM AB =,DM DC =得3,,,4,CD a BM CM AD a ====从而13.(3)48V V a a a ⨯==+⨯ ……12分 18.解:(1) 当{}{}0,1,2,0,1,2a b ∈∈时,等可能发生的基本事件(,)a b 共有9个:(00)(01)(02),(10)(11)(12)(20)(21)(22).,,,,,,,,,,,,,,,,…………………………4分其中事件A “1(1)03f a b =-+≥”,包含6个基本事件:(00)(01)(02)(11)(12)(22).,,,,,,,,,,, 故62()93P A ==.…………………………6分答:事件“(1)0f ≥”发生的概率23.………………7分(2) 31(),3f x x ax b =-+是R 上的奇函数,得(0)0,0.f b ==………………8分∴31(),3f x x ax =- 2()f x x a '=-, ………………………9分① 当1a ≥时,因为11x -≤≤,所以()0f x '≤,()f x 在区间[]1,1-上单调递减,从而1()(1)3g a f a ==-;……………………11分 ② 当1a ≤-时,因为11x -≤≤,所以()0f x '>,()f x 在区间[]1,1-上单调递增,从而1()(1)3g a f a =-=-+. ……………………13分综上,知1,13().1,13a a g a a a ⎧-≤-⎪⎪=⎨⎪-+≥⎪⎩……………………14分 19.解法一:以O 为原点,直线AD 为y 轴,建立如图所示的直角坐标系,依题意 可设抛物线弧OC 的方程为2(02)y ax x =≤≤ ∵点C 的坐标为(2,1), ∴221a =,14a =故边缘线OC 的方程为21(02)4y x x =≤≤. ……4分要使梯形ABEF 的面积最大,则EF 所在的直线必与抛物线弧OC 相切,设切点坐标为21(,)(02)4P t t t <<, ∵12y x '=,∴直线EF 的的方程可表示为211()42y t t x t -=-,即21124y tx t =-由此可求得21(2,)4E t t -,21(0,)4F t -.∴2211|||(1)|144AF t t =---=-,2211|||()(1)|144BE t t t t =---=-++,…8分设梯形ABEF 的面积为()S t ,则[]1()||||||2S t AB AF BE =⋅+2211(1)(1)44t t t =-+-++2122t t =-++2155(1)222t =--+≤. ……………………………………………………………10分∴当1t =时,5().2S t =,故()S t 的最大值为2.5. 此时||0.75,|| 1.75AF BE ==.………11分答:当0.75m, 1.75m AF BE ==时,可使剩余的直角梯形的面积最大,其最大值为22.5m . ………………………………………………………………………12分解法二:以A 为原点,直线AD 为y 轴,建立如图所示的直角坐标系,依题意可设抛物线弧OC 的方程为21(02)y ax x =+≤≤∵点C 的坐标为(2,2), ∴2212a +=,14a = 故边缘线OC 的方程为211(02)4y x x =+≤≤. ………4分 要使梯形ABEF 的面积最大,则EF 所在的直线必A B C DO F Ex yP与抛物线弧OC 相切,设切点坐标为21(,1)(02)4P t t t +<<,∵12y x '=,∴直线EF 的的方程可表示为2111()42y t t x t --=-,即211124y tx t =-+,由此可求得21(2,1)4E t t -+,21(0,1)4F t -+.∴21||14AF t =-,21||14BE t t =-++,……………7分设梯形ABEF 的面积为()S t ,则[]1()||||||2S t AB AF BE =⋅+2211(1)(1)44t t t =-+-++2122t t =-++2155(1)222t =--+≤. ……………………………………………………………10分∴当1t =时,5().2S t =,故()S t 的最大值为2.5. 此时||0.75,|| 1.75AF BE ==.20.解:(1)由点(,0)F ae -,点(0,)A b及b 得直线FA 的方程为1x ae +=-0ey -+=,…………………2分 ∵原点O 到直线FA的距离为2b =2e ==故椭圆C的离心率e =. ………7分 (2) 解法一:设椭圆C 的左焦点F (,0)2a -关于直线:20l x y +=的对称点为00(,)P x y,则有0001,22220.22x y =⎪⎨⎪⎪⋅+=⎪⎩ …………………………………………10分解之,得00,1010x a y a ==. P 在圆224x y +=上∴22()()41010a a +=, ∴22228,(1) 4.a b e a ==-=……………………………………13分故椭圆C 的方程为22184x y +=,点P 的坐标为68(,).55………………4分 解法二:因为F (,0)关于直线l 的对称点P 在圆O 上,又直线:20l x y +=经过 圆22:4O x y +=的圆心(0,0)O ,所以F (,0)也在圆O 上, ………9分从而22()04+=,22228,(1) 4.a b e a ==-= ………………………10分 故椭圆C 的方程为22184x y +=. ………………………………………11分 (2,0)F -与00(,)P x y 关于直线l 的对称,001,22220.22y x x y ⎧=⎪+⎪∴⎨-⎪⋅+=⎪⎩ 解之,得0068,55x y ==.故点P 的坐标为68(,).55……14分 21.(1) (ⅰ) 解: 11,2,a d ==21(1),2n n n dS na n -∴=+=646416,nS n n n +=+≥= 当且仅当64,n n =即8n =时,上式取等号.故64nS n+的最大值是16.…………4分 (ⅱ) 证明: 由(ⅰ)知2n S n =,当n ∈N *时,2222211111(2)4(2)n n n n S S n n n n +⎡⎤++==-⎢⎥++⎣⎦,……6分 222222132422311111111114134244(2)n n n S S S S S S n n +⎡⎤+⎛⎫⎛⎫+++=-+-++- ⎪ ⎪⎢⎥+⎝⎭⎝⎭⎣⎦, 2222222111111111412435(1)(2)n n n ⎡⎤⎛⎫=+++-++++⎪⎢⎥++⎝⎭⎣⎦222211111,412(1)(2)n n ⎡⎤=+--⎢⎥++⎣⎦……………………………………8分 22110,(1)(2)n n +>++22132422311115().41216n n n S S S S S S ++∴+++<+<………9分 (2)对n ∀∈N *,关于m 的不等式1(1)m a a m d n =+-≥的最小正整数解为32n c n =-,当1n =时,111(1)1a c d a +-=≥;……………………10分当2n ≥时,恒有11(1)(2)n n a c d n a c d n +-≥⎧⎨+-<⎩,即11(31)(3)0(31)(4)0d n a d d n a d -+-≥⎧⎨-+-<⎩,从而111310(31)2(3)014,1.31033(31)2(4)0d d a d d a d d a d -≥⎧⎪-⨯+-≥⎪⇔=≤<⎨-≤⎪⎪-⨯+-<⎩……………………12分当114,133d a =≤<时,对n ∀∈N *,且2n ≥时, 当正整数n m c <时,有1111.33n c m a a n --+<+<……………………13分所以存在这样的实数1a ,且1a 的取值范围是41,3⎡⎫⎪⎢⎣⎭.……………………14分[文档可能无法思考全面,请浏览后下载,另外祝您生活愉快,工作顺利,万事如意!]。
绝密★启用前 试卷类型:A2011年深圳市高三年级第一次调研考试数学(理科) 2011.3本试卷共6页,21小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生首先检查答题卡是否整洁无缺损,监考教师分发的考生信息条形码是否正确;之后务必用0.5毫米黑色字迹的签字笔在答题卡指定位置填写自己的学校、姓名和考生号,同时,将监考教师发放的条形码正向准确粘贴在答题卡的贴条形码区,请保持条形码整洁、不污损.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上.不按要求填涂的,答案无效.3.非选择题必须用0.5毫米黑色字迹的签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上,请注意每题答题空间,预先合理安排;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再做答.漏涂、错涂、多涂的答案无效.5.考生必须保持答题卡的整洁,考试结束后,将答题卡交回. 参考公式:如果事件A B 、互斥,那么P A B P A P B +=+()()(); 如果事件A B 、相互独立,那么P AB P A P B =()()(); 若柱体的底面积为S ,高为h ,则柱体的体积为V Sh =;若锥体的底面积为S ,高为h ,则锥体的体积为13V Sh =.一、选择题:本大题共8个小题;每小题5分,共40分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.1.已知a b ∈R ,,若3i 1i i a b +=+⋅()(其中i 为虚数单位),则A .11a b =-=,B .11a b =-=-,C .11a b ==-,D .11a b ==,2.已知p :“a =,q :“直线0x y +=与圆221x y a +-=()相切”.则p 是q 的A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件3.已知n S 为等差数列{}n a 的前n 项和,若11S =,424SS =,则64S S 的值为A .94B .32C .54D .44.如图,圆222:O x y +=π内的正弦曲线sin y x =与x 轴围成的区域记为M (图中阴影部分),随机往圆O 内投一个点A ,则点A 落在区域M 内的概率是 A .24π B .34π C .22πD .32π 5.在一条公路上每隔10公里有一个仓库,共有5个仓库.一号仓库存有10吨货物,二号仓库存有20吨货物,五号仓库存有40吨货物,其余两个仓库是空的.现在要把所有的货物集中存放在一个仓库里,若每吨货物运输1公里需要0.5元运输费,则最少需要的运费是A .450元B .500元C .550元D .600元6.一个几何体的三视图如图所示,则该几何体的体积(单位:3cm )为A .2B .1C .23D .1310040020一号 二号 三号 四号五号俯视图正(主)视图 侧(左)视图7.设平面区域D 是由双曲线2214y x -=的两条渐近线和直线680x y --=所围成三角形的边界及内部.当,x y D ∈()时,222x y x ++的最大值为A .24B .25C .4D .78.已知函数f x ()的定义域为 1 5-[,],部分对应值如下表.f x ()的导函数y f x '=()的图象如图所示.下列关于函数f x ()的命题: ①函数y f x =()是周期函数; ②函数f x ()在0 2[,]是减函数; ③如果当1 x t ∈-[,]时,f x ()的最大值是2,那么t 的最大值为4; ④当12a <<时,函数y f x a =-()有4个零点. 其中真命题的个数有 A .4个 B .3个 C .2个D .1个二、填空题:本大题共7小题,每小题5分,满分30分.本大题分为必做题和选做题两部分.(一)必做题:第9、10、11、12、13题为必做题,每道试题考生都必须作答. 9.已知全集U =R ,集合A 为函数ln 1f x x =-()()的定义域,则U A ð= . 10.设随机变量2~N 1 3X (,),且06P X P X a ≤=>-()(),则实数a 的值为 . 11.在ABC ∆中,已知a b c ,,分别为A ∠,B ∠,C ∠所对的边,S 为ABC ∆的面积.若向量2224 1p a b c q S =+-= ()(),,,满足//p q ,则C ∠= .12.已知命题“x ∃∈R ,12x a x -++≤”是假命题,则实数a 的取值范围是 .13.已知a 为如图所示的程序框图中输出的结果,则二项式6(的展开式中含2x 项的系数是 .(注:框图中的赋值符号“=”也可以写成“←”或 “:=” )(二)选做题:第14、15题为选做题,考生只能选做一题,两题全答的,只计算前一题的得分.14.(坐标系与参数方程)在极坐标系中,设P 是直线 :cos sin 4l ρθθ+=()上任一点,Q是圆24cos 3C ρρθ=-:上任一点,则PQ 的最小值是 . 15.(几何证明选讲)如图,割线PBC 经过圆心O ,1OB PB ==,OB 绕点O 逆时针旋转120︒到OD ,连PD 交圆O 于点E ,则PE = .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)已知函数cos sin 2424x x f x x ππ=++-+π()()()().(1)求f x ()的最小正周期; (2)若将f x ()的图象向右平移6π个单位,得到函数g x ()的图象,求函数g x ()在区间0π[,]上的最大值和最小值.BCDEPO第26届世界大学生夏季运动会将于2011年8月12日至23日在深圳举行,为了搞好接待工作,组委会在某学院招募了12名男志愿者和18名女志愿者.将这30名志愿者的身高编成如下茎叶图(单位:cm ),这30名志愿者的身高如下: 男 女9 15 7 7 8 9 9 9 8 16 1 2 4 5 8 9 8 6 5 0 17 2 3 4 5 6 7 4 2 1 18 0 1 1 19若身高在175cm 以上(包括175cm )定义为“高个子”,身高在175cm 以下定义为“非高个子”,且只有“女高个子”才能担任“礼仪小姐”.(1)如果用分层抽样的方法从“高个子”和“非高个子”中抽取5人,再从这5人中选2人,那么至少有一人是“高个子”的概率是多少?(2)若从所有“高个子”中选3名志愿者,用ξ表示所选志愿者中能担任“礼仪小姐”的人数,试写出ξ的分布列,并求ξ的数学期望.18.(本小题满分14分)如图,AC 是圆O 的直径,点B 在圆O 上,30BAC ∠=︒,BM AC ⊥交AC 于点M ,EA ⊥平面ABC ,//FC EA ,431AC EA FC ===,,.(1)证明:EM BF ⊥;(2)求平面BEF 与平面ABC 所成的锐二面角的余弦值.ABCE FMO∙已知点F 是椭圆222101x y a a +=>+()的右焦点,点 0M m (,)、0 N n (,)分别是x 轴、y 轴上的动点,且满足0MN NF ⋅= .若点P 满足2OM ON PO =+.(1)求点P 的轨迹C 的方程;(2)设过点F 任作一直线与点P 的轨迹C 交于A 、B 两点,直线OA ,OB 与直线x a =-分别交于点S ,T (O 为坐标原点),试判断FS FT ⋅是否为定值?若是,求出这个定值;若不是,请说明理由.20.(本小题满分14分)已知数列{}n a 是各项均不为0的等差数列,公差为d ,n S 为其前n 项和,且满足221n n a S -=,n *N ∈.数列{}n b 满足11n n n b a a +=⋅,n T 为数列{}n b 的前n 项和.(1)求1a ,d 和n T ;(2)若对任意的n *N ∈,不等式81n n T n λ<+⋅-()恒成立,求实数λ的取值范围; (3)是否存在正整数m n ,1m n <<(),使得1,,m n T T T 成等比数列?若存在,求出所有m n ,的值;若不存在,请说明理由.21.(本小题满分14分)已知函数ln 1af x x a x =+∈+R ()(). (1)当92a =时,如果函数g x f x k =-()()仅有一个零点,求实数k 的取值范围; (2)当2a =时,试比较f x ()与1的大小;(3)求证:1111ln 135721n n +>+++++ ()n ∈*N ().2011年深圳市高三年级第一次调研考试数学(理科)答案及评分标准说明:一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、对计算题当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数,选择题和填空题不给中间分数.二、填空题:本大题每小题5分,满分30分.9. (,1]-∞ . 10.8 . 11.4π. 12.(,3)(1,)-∞-+∞ .13. 192-. 14. 12-. 15.773. 三、解答题 16.(本小题满分12分) 已知函数)sin()42cos()42sin(32)(πππ+-++=x x x x f . (1)求)(x f 的最小正周期; (2)若将)(x f 的图象向右平移6π个单位,得到函数)(x g 的图象,求函数)(x g 在区间],0[π上的最大值和最小值.解:(1)x x x f sin )2sin(3)(++=πx x sin cos 3+= (2)分)cos 23sin 21(2x x +=)3sin(2π+=x . (4)分所以)(x f 的最小正周期为π2. …………………………………………………6分(2) 将)(x f 的图象向右平移6π个单位,得到函数)(x g 的图象, ∴⎥⎦⎤⎢⎣⎡+-=-=3)6(sin 2)6()(πππx x f x g )6sin(2π+=x . (8)分[0,]x π∈ 时,]67,6[6πππ∈+x , …………………………………………………9分∴当26ππ=+x ,即3π=x 时,sin()16x π+=,)(x g 取得最大值2. (10)分当766x ππ+=,即x π=时,1sin()62x π+=-,)(x g 取得最小值1-.………12分【说明】 本小题主要考查了三角函数中诱导公式、两角和与差的正余弦公式、二倍角公式、三角函数的性质和图象,以及图象变换等基础知识,考查了化归思想和数形结合思想,考查了运算能力. 17.(本小题满分12分)第26届世界大学生夏季运动会将于2011年8月12日至23日在深圳举行,为了搞好接待工作,组委会在某学院招募了12名男志愿者和18名女志愿者,调查发现,这30名志愿者的身高如下:(单位:cm )男 女9 15 7 7 8 9 9 9 8 16 1 2 4 5 8 9 8 6 5 0 17 2 3 4 5 6 7 4 2 1 18 0 1 1 19若身高在175cm 以上(包括175cm )定义为“高个子”,身高在175cm 以下定义为“非高个子”,且只有“女高个子”才能担任“礼仪小姐”.(1)如果用分层抽样的方法从“高个子”和“非高个子”中抽取5人,再从这5人中选2人,则至少有一人是“高个子”的概率是多少?(2)若从所有“高个子”中选3名志愿者,用ξ表示所选志愿者中能担任“礼仪小姐”的人数,试写出ξ的分布列,并求ξ的数学期望.解:(1)根据茎叶图,有“高个子”12人,“非高个子”18人,…………………………1分用分层抽样的方法,每个人被抽中的概率是61305=, …………………………2分所以选中的“高个子”有26112=⨯人,“非高个子”有36118=⨯人.…………………3分用事件A 表示“至少有一名“高个子”被选中”,则它的对立事件A 表示“没有一名“高个子”被选中”,则()P A =-12523C C 1071031=-=. ………………………………5分因此,至少有一人是“高个子”的概率是107. ……………………………6分(2)依题意,ξ的取值为0,1,2,3. ……………………………7分5514C C )0(31238===ξP , 5528C C C )1(3122814===ξP , 5512C C C )2(3121824===ξP , 551C C )3(31234===ξP . …………………………9分 因此,ξ的分布列如下:………………10分15513551225528155140=⨯+⨯+⨯+⨯=ξ∴E . …………………………12分【说明】本题主要考察茎叶图、分层抽样、随机事件的概率、对立事件的概率、随机变量的分布列以及数学期望等基础知识,考查运用概率统计知识解决简单实际问题的能力,数据处理能力和应用意识.18.(本小题满分14分)如图,AC 是圆O 的直径,点B 在圆O 上,︒=∠30BAC ,AC BM ⊥交AC 于点 M ,⊥EA 平面ABC ,EA FC //,134===FC EA AC ,,. (1)证明:BF EM ⊥;(2)求平面BEF 与平面ABC 所成的锐二面角的余弦值. 解:(法一)(1)⊥EA 平面ABC ,⊂BM 平面ABC , BM EA ⊥∴.……………1分又AC ,BM ⊥ A AC EA =⋂, ⊥∴BM 平面ACFE , 而⊂EM 平面ACFE ,EM BM ⊥∴. ………………………………………3分AC 是圆O 的直径,90ABC ∴∠= . 又,BAC ︒=∠30 4=AC ,,,BC AB 232==∴1,3==CM AM . ⊥EA 平面ABC ,EA FC //,1=FC ,⊥∴FC 平面ABCD .∴EAM ∆与FCM ∆都是等腰直角三角形. ︒=∠=∠∴45FMC EMA .︒=∠∴90EMF ,即MF EM ⊥(也可由勾股定理证得). (5)分M BM MF =⋂ , ⊥∴EM 平面MBF . 而⊂BF 平面MBF ,⊥∴EM BF . (6)分(2)延长EF 交AC 于G ,连BG ,过C 作CH BG ⊥,连结FH . 由(1)知FC ⊥平面ABC ,BG ⊂平面ABC , FC BG ∴⊥.A B CE F MO ∙ E而FC CH C ⋂=,BG ∴⊥平面FCH . FH ⊂ 平面FCH , FH BG ∴⊥,FHC ∴∠为平面BEF 与平面ABC 所成的 二面角的平面角. ……………………8分 在ABC Rt ∆中, ︒=∠30BAC ,4=AC ,330sin =⋅=∴ AB BM .由13FC GC EA GA ==,得2GC =. 3222=+=MG BM BG .又GBM GCH ∆∆~ ,BM CH BG GC =∴,则13232=⨯=⋅=BG BM GC CH . ………………………………11分 FCH ∴∆是等腰直角三角形, 45=∠FHC .∴平面BEF 与平面ABC所成的锐二面角的余弦值为2. ………………………12分 (法二)(1)同法一,得33==BM AM ,. ………………………3分 如图,以A 为坐标原点,垂直于AC 、AC 、AE 所在的直线为z y x ,,轴建立空间直角坐标系.由已知条件得(0,0,0),(0,3,0),(0,0,3),A M EB (0,3,3),(,1)ME BF ∴=-=. ………4由(0,3,3)(,1)0ME BF ⋅=-⋅=,得⊥, BF EM ⊥∴. ……………(2)由(1)知(3,3),(BE BF =-=设平面BEF 的法向量为),,(z y x =,由0,0,n BE n BF ⋅=⋅=得3300y z y z ⎧-+=⎪⎨++=⎪⎩,令3=x 得1,2y z ==,)2n ∴=, (9)分由已知⊥EA 平面ABC ,所以取面ABC 的法向量为(0,0,3)AE =,设平面BEF 与平面ABC 所成的锐二面角为θ,则cos cos ,2n AE θ→=<>==…………………………11分 ∴平面BEF 与平面ABC……………………12分 【说明】本题主要考察空间点、线、面位置关系,二面角等基础知识,考查应用向量知识解决数学问题的能力,考查空间想象能力、运算能力和推理论证能力.19.(本小题满分14分)已知点F 是椭圆)0(11222>=++a y a x 的右焦点,点(,0)M m 、(0,)N n 分别是x 轴、y 轴上的动点,且满足0=⋅NF MN .若点P 满足PO ON OM +=2.(1)求点P 的轨迹C 的方程;(2)设过点F 任作一直线与点P 的轨迹交于A 、B 两点,直线OA 、OB 与直线a x -=分别交于点S 、T (O 为坐标原点),试判断FS FT ⋅是否为定值?若是,求出这个定值;若不是,请说明理由.解:(1) 椭圆)0(11222>=++a y ax 右焦点F 的坐标为(,0)a ,………………1分 (,)NF a n ∴=-. (,)MN m n =-,∴由0=⋅NF MN ,得02=+am n . …………………………3分设点P 的坐标为),(y x ,由PO ON OM +=2,有(,0)2(0,)(,)m n x y =+--,⎪⎩⎪⎨⎧=-=.2,y n x m 代入02=+am n ,得ax y 42=. …………………………5分 (2)(法一)设直线AB 的方程为x ty a =+,211(,)4y A y a 、222(,)4y B y a,则x y a y l OA 14:=,x y ay l OB 24:=. ………………………………6分 由⎪⎩⎪⎨⎧-==a x x y a y ,41,得214(,)a S a y --, 同理得224(,)a T a y --. (8)分214(2,)a FS a y ∴=-- ,224(2,)a FT a y =-- ,则4212164a FS FT a y y ⋅=+. ………9分由⎩⎨⎧=+=axy a ty x 4,2,得04422=--a aty y ,2124y y a ∴=-. ……………………11分则044)4(16422242=-=-+=⋅a a a a a . …………………………13分因此,FS FT ⋅的值是定值,且定值为0. (14)分(法二)①当AB x ⊥时, (,2)A a a 、(,2)B a a -,则:2OA l y x =, :2OB l y x =-.由2,y x x a =⎧⎨=-⎩得点S 的坐标为(,2)S a a --,则(2,2)FS a a =-- .由2,y x x a =-⎧⎨=-⎩ 得点T 的坐标为(,2)T a a -,则(2,2)FT a a =- . (2)(2)(2)20FS FT a a a a ∴⋅=-⨯-+-⨯=. ………………………………………7分②当AB 不垂直x 轴时,设直线AB 的方程为()(0)y k x a k =-≠,),4(121y ayA 、),4(222y a y B ,同解法一,得4212164a FS FT a y y ⋅=+. …………………………………10分由2(),4y k x a y ax=-⎧⎨=⎩,得22440ky ay ka --=,2124y y a ∴=-.……………………11分则044)4(16422242=-=-+=⋅a a a a a . …………………………13分因此,FS FT ⋅的值是定值,且定值为0. (14)分【说明】本题主要考查椭圆的方程与性质、向量、直线与抛物线的位置关系等基础知识,考查学生运算能力、推理论证以及分析问题、解决问题的能力,考查数形结合思想、分类讨论思想、化归与转化思想.20.(本小题满分14分)已知数列{}n a 是各项均不为0的等差数列,公差为d ,n S 为其前n 项和,且满足221n n a S -=,n *N ∈.数列{}n b 满足11n n n b a a +=⋅,n T 为数列{}n b 的前n 项和.(1)求1a 、d 和n T ;(2)若对任意的n *N ∈,不等式8(1)n n T n λ<+⋅-恒成立,求实数λ的取值范围; (3)是否存在正整数,m n (1)m n <<,使得1,,m n T T T 成等比数列?若存在,求出所有,m n 的值;若不存在,请说明理由.解:(1)(法一)在221n n a S -=中,令1=n ,2=n ,得⎪⎩⎪⎨⎧==,,322121S a S a 即⎪⎩⎪⎨⎧+=+=,33)(,121121d a d a a a (2)分解得11=a ,2=d , ………………………………………3分21n a n ∴=-.111111()(21)(21)22121n n n b a a n n n n +===--+-+ , 111111(1)2335212121n n T n n n ∴=-+-++-=-++ . ……………………5分 (法二) {}n a 是等差数列, n n a a a =+∴-2121 )12(212112-+=∴--n a a S n n n a n )12(-=. …………………………2分 由221n n a S -=,得 n n a n a )12(2-=,又0n a ≠ ,21n a n ∴=-,则11,2a d ==. ………………………3分(n T 求法同法一)(2)①当n 为偶数时,要使不等式8(1)n n T n λ<+⋅-恒成立,即需不等式(8)(21)8217n n n n n λ++<=++恒成立. …………………………………6分828n n+≥ ,等号在2n =时取得.∴此时λ 需满足25λ<.…………………………………………7分 ②当n 为奇数时,要使不等式8(1)n n T n λ<+⋅-恒成立,即需不等式(8)(21)8215n n n n nλ-+<=--恒成立. (8)分82n n -是随n 的增大而增大, 1n ∴=时82n n-取得最小值6-.∴此时λ 需满足21λ<-.…………………………………………9分 综合①、②可得λ的取值范围是21λ<-. …………………………………………10分 (3)11,,32121m n m nT T T m n ===++, 若1,,m n T T T 成等比数列,则21()()21321m nm n =++,即2244163m n m m n =+++.…11分(法一)由2244163m n m m n =+++, 可得2232410m m n m -++=>, 即22410m m -++>, …………………………………12分∴11m <<+. ……………………………………13分 又m ∈N ,且1m >,所以2m =,此时12n =.因此,当且仅当2m =, 12n =时,数列{}n T 中的1,,m n T T T 成等比数列.…………14分(法二)因为1136366n n n=<++,故2214416m m m <++,即22410m m --<,∴1122m -<<+,(以下同上). …………………………………………13分 【说明】考查了等差数列、等比数列的概念及其性质,以及数列的求和、利用均值不等式求最值等知识;考查了学生的函数思想方法,及其推理论证和探究的能力. 21.(本小题满分14分)已知函数()ln ()1af x x a x =+∈+R . (1)当29=a 时,如果函数k x f x g -=)()(仅有一个零点,求实数k 的取值范围; (2)当2=a 时,试比较)(x f 与1的大小; (3)求证:121715131)1ln(+++++>+n n (n *N ∈). 解:(1)当29=a 时,)1(29ln )(++=x x x f ,定义域是),0(+∞, 22)1(2)2)(12()1(291)(+--=+-='x x x x x x x f , 令0)(='x f ,得21=x 或2=x . …2分当210<<x 或2>x 时,0)(>'x f ,当221<<x 时,0)(<'x f ,∴函数)(x f 在)21,0(、),2(+∞上单调递增,在)2,21(上单调递减. (4)分)(x f ∴的极大值是2ln 3)21(-=f ,极小值是2ln 23)2(+=f .当0+→x 时,-∞→)(x f ; 当+∞→x 时,+∞→)(x f , ∴当)(x g 仅有一个零点时,k 的取值范围是2ln 3->k 或2ln 23+<k .……………5分 (2)当2=a 时,12ln )(++=x x x f ,定义域为),0(+∞. 令112ln 1)()(-++=-=x x x f x h , 0)1(1)1(21)(222>++=+-='x x x x x x h ,)(x h ∴在),0(+∞上是增函数. …………………………………7分①当1>x 时,0)1()(=>h x h ,即1)(>x f ; ②当10<<x 时,0)1()(=<h x h ,即1)(<x f ;③当1=x 时,0)1()(==h x h ,即1)(=x f . (9)分(3)(法一)根据(2)的结论,当1>x 时,112ln >++x x ,即11ln +->x x x . 令k k x 1+=,则有1211ln +>+k k k , ∑∑==+>+∴n k nk k k k 111211ln . ……………12分 ∑=+=+nk kk n 11ln)1ln( , 1215131)1ln(++++>+∴n n . ……………………………………14分(法二)当1n =时,ln(1)ln 2n +=.3ln 2ln81=> ,1ln 23∴>,即1n =时命题成立. ………………………………10分设当n k =时,命题成立,即 111ln(1)3521k k +>++++ . 1n k ∴=+时,2l n (1k n k kk ++=++11ln 35211k k k +>++++++ . 根据(2)的结论,当1>x 时,112ln >++x x ,即11ln +->x x x . 令21k x k +=+,则有21ln 123k k k +>++,则有1111ln(2)352123k k k +>++++++ ,即1n k =+时命题也成立. (13)分因此,由数学归纳法可知不等式成立.分(法三)如图,根据定积分的定义,得1121171151⨯+++⨯+⨯n ⎰+<n dx x 1121.……11)12(1212112111++=+⎰⎰x d x dx x n n]3ln )12[ln(21)12ln(211-+=+=n x n , ∴121715131+++++n )12151(31++++=n ⎰++<n dx x 112131 ]3ln )12[ln(2131-++=n . ………………………………12分11[ln(21)ln 3]ln(1)32n n ++--+= 223ln 31[ln(21)ln(21)]62n n n -++-++, 又3ln 332<< ,)12ln()12ln(2++<+n n n ,)1ln(]3ln )12[ln(2131+<-++∴n n . )1ln(1215131+<++++∴n n . …………………………………14分 【说明】本题主要考查函数导数运算法则、利用导数求函数的极值、证明不等式等基础知识,考查分类讨论思想和数形结合思想,考查考生的计算能力及分析问题、解决问题的能力和创新意识.命题人:喻秋生 周后来 李樱梅 殷木森。
2011年广东省高考数学试卷(文科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.(5分)(2011•广东)设复数z满足iz=1,其中i为虚数单位,则z=()A.﹣i B.i C.﹣1 D.1【考点】复数代数形式的乘除运算.【专题】数系的扩充和复数.【分析】我们可以利用待定系数法求出Z,我们设Z=x+yi,结合已知中iz=1,结合复数相等的充要条件,我们易构造出一个关于x,y的方程组,解方程组即可求出满足条件的复数Z的值.【解答】解:设Z=x+yi∵iz=1,∴i(x+yi)=﹣y+xi=1故x=0,y=﹣1∴Z=﹣i故选A【点评】本题考查的知识点是复数代数形式的乘除运算,其中利用复数相等的充要条件,构造出一个关于x,y的方程组,是解答本题的关键.2.(5分)(2011•广东)已知集合A={(x,y)|x,y为实数,且x2+y2=1},B=|(x,y)|x,y为实数,且x+y=1},则A∩B的元素个数为()A.4 B.3 C.2 D.1【考点】交集及其运算.【专题】集合.【分析】观察两集合发现,两集合表示两点集,要求两集合交集元素的个数即为求两函数图象交点的个数,所以联立两函数解析式,求出方程组的解,有几个解就有几个交点即为两集合交集的元素个数.【解答】解:联立两集合中的函数关系式得:,由②得:x=1﹣y,代入②得:y2﹣y=0即y(y﹣1)=0,解得y=0或y=1,把y=0代入②解得x=1,把y=1代入②解得x=0,所以方程组的解为或,有两解,则A∩B的元素个数为2个.故选C【点评】此题考查学生理解交集的运算,考查了求两函数交点的方法,是一道基础题.本题的关键是认识到两集合表示的是点坐标所构成的集合即点集.3.(5分)(2011•广东)已知向量=(1,2),=(1,0),=(3,4).若λ为实数,(+λ)∥,则λ=()A.B.C.1 D.2【考点】平面向量共线(平行)的坐标表示.【专题】平面向量及应用.【分析】根据所给的两个向量的坐标,写出要用的+λ向量的坐标,根据两个向量平行,写出两个向量平行的坐标表示形式,得到关于λ的方程,解方程即可.【解答】解:∵向量=(1,2),=(1,0),=(3,4).∴=(1+λ,2)∵(+λ)∥,∴4(1+λ)﹣6=0,∴故选B.【点评】本题考查两个向量平行的坐标表示,考查两个向量坐标形式的加减数乘运算,考查方程思想的应用,是一个基础题.4.(5分)(2011•广东)函数f(x)=+lg(1+x)的定义域是()A.(﹣∞,﹣1)B.(1,+∞)C.(﹣1,1)∪(1,+∞)D.(﹣∞,+∞)【考点】函数的定义域及其求法.【专题】函数的性质及应用.【分析】根据题意,结合分式与对数函数的定义域,可得,解可得答案.【解答】解:根据题意,使f(x)=+lg(1+x)有意义,应满足,解可得(﹣1,1)∪(1,+∞);故选:C.【点评】本题考查函数的定义域,首先牢记常见的基本函数的定义域,如果涉及多个基本函数,取它们的交集即可.5.(5分)(2011•广东)不等式2x2﹣x﹣1>0的解集是()A.(﹣,1)B.(1,+∞)C.(﹣∞,1)∪(2,+∞)D.(﹣∞,﹣)∪(1,+∞)【考点】一元二次不等式的解法.【专题】不等式的解法及应用.【分析】将不等式的左边分解因式得到相应的方程的根;利用二次方程解集的形式写出解集.【解答】解:原不等式同解于(2x+1)(x﹣1)>0∴x>1或x<故选:D【点评】本题考查二次不等式的解法:判断相应的方程是否有根;若有根求出两个根;据二次不等式解集的形式写出解集.6.(5分)(2011•广东)已知平面直角坐标系xOy上的区域D由不等式组给定.若M(x,y)为D上的动点,点A的坐标为,则z=•的最大值为()A.3 B.4 C.3D.4【考点】二元一次不等式(组)与平面区域;数量积的坐标表达式.【专题】不等式的解法及应用.【分析】首先做出可行域,将z=•的坐标代入变为z=,即y=﹣x+z,此方程表示斜率是﹣的直线,当直线与可行域有公共点且在y轴上截距最大时,z有最大值.【解答】解:首先做出可行域,如图所示:z=•=,即y=﹣x+z做出l0:y=﹣x,将此直线平行移动,当直线y=﹣x+z经过点B时,直线在y轴上截距最大时,z有最大值.因为B(,2),所以z的最大值为4故选:B【点评】本题考查线性规划、向量的坐标表示,考查数形结合思想解题.7.(5分)(2011•广东)正五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五棱柱对角线的条数共有()A.20 B.15 C.12 D.10【考点】棱柱的结构特征.【专题】立体几何.【分析】抓住上底面的一个顶点,看从此顶点出发的对角线有多少条即可解决.【解答】解:由题意正五棱柱对角线一定为上底面的一个顶点和下底面的一个顶点的连线,因为不同在任何侧面内,故从一个顶点出发的对角线有2条.正五棱柱对角线的条数共有2×5=10条.故选D【点评】本题考查计数原理在立体几何中的应用,考查空间想象能力.8.(5分)(2011•广东)设圆C与圆x2+(y﹣3)2=1外切,与直线y=0相切,则C的圆心轨迹为()A.抛物线B.双曲线C.椭圆 D.圆【考点】圆的切线方程;圆与圆的位置关系及其判定;抛物线的定义.【专题】直线与圆.【分析】由动圆与定圆相外切可得两圆圆心距与半径的关系,然后利用圆与直线相切可得圆心到直线的距离与半径的关系,借助等量关系可得动点满足的条件,即可的动点的轨迹.【解答】解:设C的坐标为(x,y),圆C的半径为r,圆x2+(y﹣3)2=1的圆心为A,∵圆C与圆x2+(y﹣3)2=1外切,与直线y=0相切∴|CA|=r+1,C到直线y=0的距离d=r ∴|CA|=d+1,即动点C定点A的距离等于到定直线y=﹣1的距离由抛物线的定义知:C的轨迹为抛物线.故选A【点评】本题考查了圆的切线,两圆的位置关系及抛物线的定义,动点的轨迹的求法,是个基础题.9.(5分)(2011•广东)如图,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体体积为()A.B.4 C. D.2【考点】由三视图求面积、体积.【专题】立体几何.【分析】根据已知中的三视图及相关视图边的长度,我们易判断出该几何体的形状及底面积和高的值,代入棱锥体积公式即可求出答案.【解答】解:由已知中该几何中的三视图中有两个三角形一个菱形可得这个几何体是一个四棱锥由图可知,底面两条对角线的长分别为2,2,底面边长为2故底面棱形的面积为=2侧棱为2,则棱锥的高h==3故V==2故选C【点评】本题考查的知识点是由三视图求面积、体积其中根据已知求出满足条件的几何体的形状及底面面积和棱锥的高是解答本题的关键.10.(5分)(2011•广东)设f(x),g(x),h(x)是R上的任意实值函数,如下定义两个函数(f°g)(x)和((f•g)(x)对任意x∈R,(f°g)(x)=f(g(x));(f•g)(x)=f(x)g (x),则下列等式恒成立的是()A.((f°g)•h)(x)=((f•h)°(g•h))(x)B.((f•g)°h)(x)=((f°h)•(g°h))(x)C.((f°g)°h)(x)=((f°h)°(g°h))(x)D.((f•g)•h)(x)=((f•h)•(g•h))(x)【考点】抽象函数及其应用.【专题】函数的性质及应用.【分析】根据定义两个函数(f°g)(x)和((f•g)(x)对任意x∈R,(f°g)(x)=f(g(x));(f•g)(x)=f(x)g(x),然后逐个验证即可找到答案.【解答】解:A、∵(f°g)(x)=f(g(x)),(f•g)(x)=f(x)g(x),∴((f°g)•h)(x)=(f°g)(x)h(x)=f(g(x))h(x);而((f•h)°(g•h))(x)=(f•h)((g•h)(x))=f(g(x)h(x))h(g(x)h(x));∴((f°g)•h)(x)≠((f•h)°(g•h))(x)B、∵((f•g)°h)(x)=(f•g)(h(x))=f(h(x))g(h(x))((f°h)•(g°h))(x)=(f°h)•(x)(g°h)(x)=f(h(x))g(h(x))∴((f•g)°h)(x)=((f°h)•(g°h))(x)C、((f°g)°h)(x)=((f°g)(h(x))=f(g(h(x))),((f°h)°(g°h))(x)=f(h(g(h(x))))∴((f°g)°h)(x)≠((f°h)°(g°h))(x);D、((f•g)•h)(x)=f(x)g(x)h(x),((f•h)•(g•h))(x)=f(x)h(x)g(x)h(x),∴((f•g)•h)(x)≠((f•h)•(g•h))(x).故选B.【点评】此题是个基础题.考查学生分析解决问题的能力,和知识方法的迁移能力.二、填空题(共5小题,考生作答4小题每小题5分,满分20分)11.(5分)(2011•广东)已知{a n}是递增等比数列,a2=2,a4﹣a3=4,则此数列的公比q= 2.【考点】等比数列的通项公式.【专题】等差数列与等比数列.【分析】由已知{a n}是递增等比数列,a2=2,我们可以判断此数列的公比q>1,又由a2=2,a4﹣a3=4,我们可以构造出一个关于公比q的方程,解方程即可求出公比q的值.【解答】解:∵{a n}是递增等比数列,且a2=2,则公比q>1又∵a4﹣a3=a2(q2﹣q)=2(q2﹣q)=4即q2﹣q﹣2=0解得q=2,或q=﹣1(舍去)故此数列的公比q=2故答案为:2【点评】本题考查的知识点是等比数列的通项公式,其中利用等比数列的通项公式及a2=2,a4﹣a3=4,构造出一个关于公比q的方程,是解答本题的关键.12.(5分)(2011•广东)设函数f(x)=x3cosx+1,若f(a)=11,则f(﹣a)=﹣9.【考点】函数奇偶性的性质.【专题】函数的性质及应用.【分析】由于函数f(x)=x3cosx+1,是一个非奇非偶函数,故无法直接应用函数奇偶性的性质进行解答,故可构造函数g(x)=f(x)﹣1=x3cosx,然后利用g(x)为奇函数,进行解答.【解答】解:令g(x)=f(x)﹣1=x3cosx则g(x)为奇函数,又∵f(a)=11,∴g(a)=f(a)﹣1=11﹣1=10∴g(﹣a)=﹣10=f(﹣a)﹣1∴f(﹣a)=﹣9故答案为:﹣9【点评】本题考查的知识点是函数奇偶性的性质,其中构造出奇函数g(x)=f(x)﹣1=x3cosx,是解答本题的关键.13.(5分)(2011•广东)工人月工资y(元)与劳动生产率x(千元)变化的回归方程为=50+80x,下列判断正确的是②①劳动生产率为1千元时,工资为130元;②劳动生产率提高1千元,则工资提高80元;③劳动生产率提高1千元,则工资提高130元;④当月工资为210元时,劳动生产率为2千元.【考点】线性回归方程.【专题】概率与统计.【分析】回归方程═50+80x变量x增加一个单位时,变量产生相应变化,从而对选项一一进行分析得到结果.【解答】解::∵对x的回归直线方程=50+80x,∴=(x+1)+50,∴﹣=80(x+1)+50﹣80x﹣50=80.所以劳动生产率提高1千元,则工资提高80元,②正确,③不正确.①④不满足回归方程的意义.故答案为:②.【点评】主要考查知识点:统计.本题主要考查线性回归方程的应用,考查线性回归方程自变量变化一个单位,对应的预报值是一个平均变化,这是容易出错的知识点.14.(5分)(2011•广东)已知两曲线参数方程分别为(0≤θ<π)和(t∈R),它们的交点坐标为(1,).【考点】参数方程化成普通方程;直线的参数方程;椭圆的参数方程.【专题】坐标系和参数方程.【分析】利用同角三角函数的基本关系及代入的方法,把参数方程化为普通方程,再利用消去参数t化曲线的参数方程为普通方程,最后解方程组求得两曲线的交点坐标即可.【解答】解:曲线参数方程(0≤θ<π)的直角坐标方程为:;曲线(t∈R)的普通方程为:;解方程组:得:∴它们的交点坐标为(1,).故答案为:(1,).【点评】本题考查同角三角函数的基本关系,参把数方程化为普通方程的方法,以及求两曲线的交点坐标的方法,考查运算求解能力.属于基础题.15.(2011•广东)如图,在梯形ABCD中,AB∥CD,AB=4,CD=2.E,F分别为AD,BC上点,且EF=3,EF∥AB,则梯形ABFE与梯形EFCD的面积比为7:5.【考点】相似三角形的性质.【专题】解三角形.【分析】根据EF的长度和与上下底平行知是梯形的中位线,设出中位线分成的两个梯形的高,根据梯形的面积公式写出两个梯形的面积,都是用含有高的代数式来表示的,求比值得到结果.【解答】解:∵E,F分别为AD,BC上点,且EF=3,EF∥AB,∴EF是梯形的中位线,设两个梯形的高是h,∴梯形ABFE的面积是,梯形EFCD的面积∴梯形ABFE与梯形EFCD的面积比为=,故答案为:7:5【点评】本题考查梯形的中位线,考查梯形的面积公式是一个基础题,解题的时候容易出的一个错误是把两个梯形看成相似梯形,根据相似多边形的面积之比等于相似比的平方.三、解答题(共6小题,满分80分)16.(12分)(2011•广东)已知函数f(x)=2sin(x﹣),x∈R.(1)求f(0)的值;(2)设α,β∈,f(3)=,f(3β+)=.求sin(α+β)的值.【考点】两角和与差的正弦函数.【专题】三角函数的图像与性质.【分析】(1)把x=0代入函数解析式求解.(2)根据题意可分别求得sinα和sinβ的值,进而利用同角三角函数基本关系求得cosα和cosβ的值,最后利用正弦的两角和公式求得答案.【解答】解:(1)∵f(x)=2sin(x﹣),x∈R,∴f(0)=2sin(﹣)=﹣1(2)∵f(3)=2sinα=,f(3β+)=2sinβ=.∴sinα=,sinβ=∵α,β∈,∴cosα==,cosβ==∴sin(α+β)=sinαcosβ+cosαsinβ=【点评】本题主要考查了两角和与差的正弦函数.考查了对三角函数基础公式的熟练记忆.17.(13分)(2011•广东)在某次测验中,有6位同学的平均成绩为75分.用x n表示编号为n(n=1,2,…,6)的同学所得成绩,且前5位同学的成绩如下:编号n 1 2 3 4 5成绩x n70 76 72 70 72(1)求第6位同学的成绩x6,及这6位同学成绩的标准差s;(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率.【考点】极差、方差与标准差;古典概型及其概率计算公式.【专题】概率与统计.【分析】(1)根据平均数公式写出这组数据的平均数表示式,在表示式中有一个未知量,根据解方程的思想得到结果,求出这组数据的方差,再进一步做出标准差.(2)本题是一个古典概型,试验发生包含的事件是从5位同学中选2个,共有C52种结果,满足条件的事件是恰有一位成绩在区间(68,75)中,共有C41种结果,根据概率公式得到结果.【解答】解:(1)根据平均数的个数可得75=,∴x6=90,这六位同学的方差是(25+1+9+25+9+225)=49,∴这六位同学的标准差是7(2)由题意知本题是一个古典概型,试验发生包含的事件是从5位同学中选2个,共有C52=10种结果,满足条件的事件是恰有一位成绩在区间(68,75)中,共有C41=4种结果,根据古典概型概率个数得到P==0.4.【点评】本题考查一组数据的平均数公式的应用,考查求一组数据的方差和标准差,考查古典概型的概率公式的应用,是一个综合题目.18.(13分)(2011•广东)如图所示的几何体是将高为2,底面半径为1的直圆柱沿过轴的平面切开后,将其中一半沿切面向右水平平移后得到的,A,A′,B,B′分别为的中点,O1,O1′,O2,O2′分别为CD,C′D′,DE,D′E′的中点.(1)证明:O1′,A′,O2,B四点共面;(2)设G为A A′中点,延长A′O1′到H′,使得O1′H′=A′O1′.证明:BO2′⊥平面H′B′G.【考点】直线与平面垂直的判定;棱柱的结构特征;平面的基本性质及推论.【专题】空间位置关系与距离;立体几何.【分析】(1)要证O1′,A′,O2,B四点共面,即可证四边形BO2A′O1′为平面图形,根据A′O1′与B′O2′在未平移时属于同一条直径知道A′O1′∥B′O2′即BO2∥A′O1′再根据BO2=A′O1′=1即可得到四边形BO2A′O1′是平行四边形,则证.(2)建立空间直角坐标系,要证BO2′⊥平面H′B′G只需证,,根据坐标运算算出•,的值均为0即可【解答】证明:(1)∵B′,B分别是中点∴BO2∥B′O2′∵A′O1′与B′O2′在未平移时属于同一条直径∴A′O1′∥B′O2′∴BO2∥A′O1′∵BO2=A′O1′=1∴四边形BO2A′O1′是平行四边形即O1′,A′,O2,B四点共面(2)以D为原点,以向量DE所在的直线为X轴,以向量DD′所在的直线为Z轴,建立如图空间直角坐标系,则B(1,1,0),O2′(0,1,2),H′(1,﹣1,2),A(﹣1,﹣1,0),G(﹣1,﹣1,1),B′(1,1,2)则=(﹣1,0,2),=(﹣2,﹣2,﹣1),=(0,﹣2,0)∵•=0,=0∴BO2′⊥B′G,BO2′⊥B′H′即,∵B′H′∩B′G=B′,B′H′、B′G⊂面H′GB′∴BO2′⊥平面H′B′G【点评】本题考查了直线与平面垂直的判定,棱柱的结构特征,平面的基本性质及推论以及空间向量的基本知识,属于中档题.19.(14分)(2011•广东)设a>0,讨论函数f(x)=lnx+a(1﹣a)x2﹣2(1﹣a)x的单调性.【考点】利用导数研究函数的单调性.【专题】导数的综合应用.【分析】求出函数的定义域,求出导函数,设g(x)=2a(1﹣a)x2﹣2(1﹣a)x+1,x∈(0,+∞),讨论a=1,a>1与0<a<1三种情形,然后利用函数的单调性与导函数符号的关系求出单调性.【解答】解:定义域{x|x>0}f′(x)==设g(x)=2a(1﹣a)x2﹣2(1﹣a)x+1,x∈(0,+∞)①若a=1,则g(x)=1>0∴在(0,+∞)上有f'(x)>0,即f(x)在(0,+∞)上是增函数.②若a>1则2a(1﹣a)<0,g(x)的图象开口向下,此时△=[﹣2(1﹣a)]2﹣4×2a(1﹣a)×1=4(1﹣a)(1﹣3a)>0方程2a(1﹣a)x2﹣2(1﹣a)x+1=0有两个不等的实根不等的实根为x1=,x2=且x1<0<x2∴在(0,)上g(x)>0,即f'(x)>0,f(x)是增函数;在(,+∞)上g(x)<0,即f'(x)<0,f(x)是减函数;③若0<a<1则2a(1﹣a)>0,g(x)的图象开口向上,此时△=[﹣2(1﹣a)]2﹣4×2a(1﹣a)×1=4(1﹣a)(1﹣3a)可知当≤a<1时,△≤0,故在(0,+∞)上,g(x)≥0,即f'(x)≥0,f(x)是增函数;当0<a<时,△>0,方程2a(1﹣a)x2﹣2(1﹣a)x+1=0有两个不等的实根不等的实根满足>>0故在(0,)和(,+∞)上g(x)>0,即f'(x)>0,f(x)是增函数;在(,)上g(x)<0,即f'(x)<0,f(x)是减函数.【点评】本题考查利用导函数讨论函数的单调性:导函数为正函数递增;导函数为负,函数递减,同时考查了分类讨论的数学思想方法,属于难题.20.(14分)(2011•广东)设b>0,数列{a n}满足a1=b,a n=(n≥2)(1)求数列{a n}的通项公式;(2)证明:对于一切正整数n,2a n≤b n+1+1.【考点】数列递推式;数列与不等式的综合.【专题】等差数列与等比数列.【分析】(1)由题设形式可以看出,题设中给出了关于数列a n的面的一个方程,即一个递推关系,所以应该对此递推关系进行变形整理以发现其中所蕴含的规律,观察发现若对方程两边取倒数则可以得到一个类似等差数列的形式,对其中参数进行讨论,分类求其通项即可.(2)由于本题中条件较少,解题思路不宜用综合法直接分析出,故求解本题可以采取分析法的思路,由结论探究其成立的条件,再证明此条件成立,即可达到证明不等式的目的.【解答】解:(1)∵(n≥2),∴(n≥2),当b=1时,(n≥2),∴数列{}是以为首项,以1为公差的等差数列,∴=1+(n﹣1)×1=n,即a n=1,当b>0,且b≠1时,(n≥2),即数列{}是以=为首项,公比为的等比数列,∴=×=,即a n=,∴数列{a n}的通项公式是(2)证明:当b=1时,不等式显然成立当b>0,且b≠1时,a n=,要证对于一切正整数n,2a n≤b n+1+1,只需证2×≤b n+1+1,即证∵==(b n+1+1)×(b n﹣1+b n﹣2+…+b+1)=(b2n+b2n﹣1+…+b n+2+b n+1)+(b n﹣1+b n﹣2+…+b+1)=b n[(b n+b n﹣1+…+b2+b)+(++…+)]≥b n(2+2+…+2)=2nb n所以不等式成立,综上所述,对于一切正整数n,有2a n≤b n+1+1,【点评】本题考点是数列的递推式,考查根据数列的递推公式求数列的通项,研究数列的性质的能力,本题中递推关系的形式适合用取倒数法将所给的递推关系转化为有规律的形式,两边取倒数,条件许可的情况下,使用此技巧可以使得解题思路呈现出来.数列中有请多成熟的规律,做题时要注意积累这些小技巧,在合适的情况下利用相关的技巧,可以简化做题.在(2)的证明中,采取了分析法的来探究解题的思路,通过本题希望能进一步熟悉分析法证明问题的技巧.21.(14分)(2011•广东)在平面直角坐标系xOy中,直线l:x=﹣2交x轴于点A,设P 是l上一点,M是线段OP的垂直平分线上一点,且满足∠MPO=∠AOP.(1)当点P在l上运动时,求点M的轨迹E的方程;(2)已知T(1,﹣1),设H是E上动点,求|HO|+|HT|的最小值,并给出此时点H的坐标;(3)过点T(1,﹣1)且不平行与y轴的直线l1与轨迹E有且只有两个不同的交点,求直线l1的斜率k的取值范围.【考点】轨迹方程;直线与圆锥曲线的综合问题.【专题】综合题;压轴题;转化思想.【分析】(1)由于直线l:x=﹣2交x轴于点A,所以A(﹣2,0),由于P是l上一点,M 是线段OP的垂直平分线上一点,且满足∠MPO=∠AOP,可以设点P,由于满足∠MPO=∠AOP,所以分析出MN∥AO,利用相关点法可以求出动点M的轨迹方程;(2)由题意及点M的轨迹E的方程为y2=4(x+1),且已知T(1,﹣1),又H是E 上动点,点O及点T都为定点,利用图形即可求出;(3)由题意设出过定点的直线方程l1并与点M的轨迹E的方程联立,利用有两个交点等价与联立之后的一元二次方程的判别式大于0,即可得到所求.【解答】解:(1)如图所示,连接OM,则|PM|=|OM|,∵∠MPO=∠AOP,∴动点M满足MP⊥l或M在x的负半轴上,设M(x,y)①当MP⊥l时,|MP|=|x+2|,|om|=,|x+2|=,化简得y2=4x+4 (x≥﹣1)②当M在x的负半轴上时,y=0(x≤﹣1),综上所述,点M的轨迹E的方程为y2=4x+4(x≥﹣1)或y=0(x<﹣1).(2)由题意画出图形如下:∵由(1)知道动点M 的轨迹方程为:y2=4(x+1).是以(﹣1,0)为顶点,以O(0,0)为焦点,以x=﹣2为准线的抛物线,由H引直线HB垂直准线x=﹣2与B点,则利用抛物线的定义可以得到:|HB|=|HO|,∴要求|HO|+|HT|的最小值等价于求折线|HB|+|HT|的最小值,由图可知当由点T直接向准线引垂线是与抛物线相交的H使得HB|+|HT|的最小值,故|HO|+|HT|的最小值时的H.(3)如图,设抛物线顶点A(﹣1,0),则直线AT的斜率,∵点T(1,﹣1)在抛物线内部,∴过点T且不平行于x,y轴的直线l1必与抛物线有两个交点,则直线l1与轨迹E的交点个数分以下四种情况讨论:①当K时,直线l1与轨迹E有且只有两个不同的交点,②当时,直线l1与轨迹E有且只有一个不同的交点,③当K=0时,直线l1与轨迹E有且只有一个交点,④当K>0时,直线l1与轨迹E有且只有两个不同的交点.综上所述,直线l1的斜率K的取值范围是(﹣]∪(0,+∞).【点评】此题重点考查了利用相关点法求动点的轨迹方程,还考查了利用抛物线的定义求出HO|+|HT|的最小值时等价转化的思想,还考查了直线与曲线有两个交点的等价转化思想.。
绝密★启用前 试卷类型:A2011年深圳市高三年级第一次调研考试数学(文科) 2011.3本试卷共6页,21小题,满分150分.考试用时120分钟.参考结论:若锥体的底面积为S ,高为h ,则锥体的体积为13V Sh =.一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}0 1 2A =,,,集合{}2B x x =>,则A B =A .{}2B .{}0 1 2,,C .{}2x x >D .∅2.复数34i i +()(其中i 为虚数单位)在复平面上对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限3.双曲线2214y x -=的渐近线方程为A .1x =±B .2y =±C .2y x =±D .2x y =±4.已知:p 直线1:10l x y --=与直线2:20l x ay +-=平行,:1q a =-,则p 是q 的A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件5.设数列{}1n -()的前n 项和为n S ,则对任意正整数n ,n S =A .112n n ⎡⎤--⎣⎦()B .1112n --+()C .112n -+()D .112n --()6.如图所示的方格纸中有定点 O P Q E F G H ,,,,,,,则OP OQ +=A .OHB .OGC .FOD .EO7.在同一平面直角坐标系中,画出三个函数2sin 24f x x π=+()(),sin 23g x x π=+()(),cos 6h x x π=-()()的部分图象(如图),则 A .a 为f x (),b 为g x (),c 为h x ()F EPGOQH频率组距月收入(元)0.00050.00040.00030.00020.00014000350030002500200015001000B .a 为h x (),b 为f x (),c 为g x () C .a 为g x (),b 为f x (),c 为h x () D .a 为h x (),b 为g x (),c 为f x ()8.已知圆面2221C x a y a -+≤-:()的面积为S ,平面区域24D x y +≤:与圆面C 的公共区域的面积大于12S ,则实数a 的取值范围是 A .() 2-∞,B .(] 2-∞,C .()() 1 1 2-∞- ,,D .()(] 1 1 2-∞- ,,9.如图所示程序框图,其作用是输入空间直角坐标平面中一点 P a b c (),,,输出相应的点 Q a b c (),,.若P 的坐标为2 3 1(),,,则 P Q ,间的距离为 (注:框图中的赋值符号“=”也可以写成“←”或“:=” )A .0B .2C .6D .2210.若实数t 满足f t t =-(),则称t 是函数f x ()的一个次不动点.设函数ln f x x=()与函数e x g x =()(其中e 为自然对数的底数)的所有次不动点之和为m ,则 A .0m < B .0m = C .01m << D .1m >二、填空题:本大题共4小题,每小题5分,满分20分.本大题分为必做题和选做题两部分.(一)必做题:第11、12、13题为必做题,每道试题考生都必须作答. 11.某机构就当地居民的月收入调查了1万人,并根据所得数据画出了样本频率分布直方图(如图).为了深入调查,要从这1万人中按月收入用分层抽样方法抽出100人,则月收入在2500 3000[,)(元)段应抽出 人.12.已知正三棱柱(侧棱与底面垂直,底面是正三角形)的高与底面边长均为2,其直观图和正(主)视图如下,则它的左(侧)视图的面积是 .1 1是 否_ 结束开始 输入P (a ,b ,c )a>b ? a>c ?b>c ?输出Q (a ,b ,c )是 是 否否e=aa=b b=e e=a a=c c=e e=b b=c c=e13.已知y 与100x x ≤()之间的部分对应关系如下表:x11 12 13 14 15 … y297 148 295 147 293…则x 和y 可能满足的一个关系式是 .(二)选做题:第14、15题为选做题,考生只能选做一题,两题全答的,只计算第一题的得分. 14.(坐标系与参数方程)在极坐标系中, P Q ,是曲线C :4sin ρθ=上任意两点,则线段PQ 长度的最大值为 .15.(几何证明选讲)如图,AB 是半圆O 的直径,C 是半圆O 上异于 A B ,的点,CD AB ⊥,垂足为D ,已知2AD =,43CB =,则CD = .三、解答题:本大题6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分14分)已知向量 1 sin 2a α=-(,)与向量4 2cos 52b α= (,)垂直,其中α为第二象限角.(1)求tan α的值;(2)在ABC ∆中,a b c ,,分别为A B ∠∠,,C ∠所对的边,若2222b c a bc +-=,求tan A α+()的值.17.(本小题满分12分)如图,在四棱锥S ABCD -中,AB AD ⊥,//AB CD ,3CD AB =,平面SAD ⊥平面ABCD ,M 是线段AD 上一点,AM AB =,DM DC =,SM AD ⊥.(1)证明:BM ⊥平面SMC ;(2)设三棱锥C SBM -与四棱锥S ABCD -的体积分别为1V 与V ,求1V V的值.18.(本小题满分14分)已知函数313f x x ax b =-+(),其中实数 a b ,是常数. (1)已知{}0 1 2a ∈,,,{}0 1 2b ∈,,,求事件A “10f ≥()”发生的概率;(2)若f x ()是R 上的奇函数,g a ()是f x ()在区间[]11-,上的最小值,求当1a ≥时g a ()的解析式.C DOEMSDCBA A BCD O19.(本题满分12分)如图,有一正方形钢板ABCD 缺损一角(图中的阴影部分),边缘线OC 是以直线AD 为对称轴,以线段AD 的中点O 为顶点的抛物线的一部分.工人师傅要将缺损一角切割下来,使剩余的部分成为一个直角梯形.若正方形的边长为2米,问如何画切割线EF ,可使剩余的直角梯形的面积最大?并求其最大值.20.(本题满分14分)已知椭圆222210x y C a b a b +=>>:()的左焦点F 及点0 A b (,),原点O 到直线FA 的距离为22b . (1)求椭圆C 的离心率e ;(2)若点F 关于直线20l x y +=:的对称点P 在圆224O x y +=:上,求椭圆C 的方程及点P 的坐标.21.(本小题满分14分)设数列{}n a 是公差为d 的等差数列,其前n 项和为n S .(1)已知11a =,2d =,(ⅰ)求当n ∈N *时,64n S n +的最小值; (ⅱ)当n ∈N *时,求证:132********n n n S S S S S S +++++< ; (2)是否存在实数1a ,使得对任意正整数n ,关于m 的不等式m a n ≥的最小正整数解为32n -?若存在,则求1a 的取值范围;若不存在,则说明理由.2011年深圳市高三年级第一次调研考试数学(文科)答案及评分标准说明:一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、对计算题当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数,选择题和填空题不给中间分数. 一、选择题:本大题每小题5分,满分50分. 1 2 3 4 5 6 7 8 9 10 DBCADCBCCB5. 数列{}(1)n-是首项与公比均为1-的等比数列.6. ,a OP OQ =+利用平行四边形法则做出向量OP OQ + ,再平移即发现. .a FO =7.从振幅、最小正周期的大小入手:b 的振幅最大,故b 为()f x ;a 的最小正周期最大,故a 为(),h x 从而c 为()g x .8. 圆面222:()1C x a y a -+≤-的圆心(,0)a 在平面区域:24x y +<内,23则210(,1)(1,2).204a a a ⎧->⇔∈-∞-⎨+<⎩9. 程序框图的作用是将三个实数按从小到大的顺序排列,若(2,3,1)P ,则(1,2,3)Q . 10.画图即知:函数ln y x =的图象与直线y x =-有唯一公共点(,),t t -e ln().x x x x x t =-⇔=-⇔=- 故两个函数的所有次不动点之和()0.m t t =+-=或利用函数ln y x =的图象与函数e x y =的图象关于直线y x =对称即得出答案.二、填空题:本大题每小题5分;第14、15两小题中选做一题,如果两题都做,以第14题的得分为最后得分),满分20分. 11.25. 12.. 23 13.(108)2y x -=. 14.4. 15.23. 第13题写或不写100x ≤都可以,写成如2108y x=-等均可.11. 画出左(侧)视图如图,其面积为2 3. 12.每个个体被抽入样的概率均为100110000100=,在)3000,2500[内的频率为 0.0005×(3000-2500)=0.25,频数为10 000×0.25=2 500人,则该范围内应当抽取的人数为2 500×1001=25人. 13. 将各11 ,12,13,14,15对应的函数值分别写成297,296,295,294,293, 分母成等差数列,可知分母11(11)(1)9711108.n a a n n n =+--=-+=- 14. 最长线段PQ 即圆22(2)4x y +-=的直径. 15. 根据射影定理得222(43)(2)6,12.CB BD BA BD BD BD CD AD BD =⨯⇔=+⇔==⨯=三、解答题:本大题6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分14分)已知向量 1 sin 2a α=-(,)与向量4 2cos 52b α= (,)垂直,其中α为第二象限角.(1)求tan α的值;(2)在ABC ∆中,a b c ,,分别为A B ∠∠,,C ∠所对的边,若2222b c a bc +-=,求tan A α+()的值.【命题意图】本题主要考查向量的数量积、二倍角公式、同角间三角函数关系、余弦定理、两角和的正切公式等基础知识,以及运算求解能力.解: (1) (1,sin )2a α=-,4(,2cos ),52b α= a b ⊥42s i nc o s 0,522a b αα∴⋅=-+=即4sin .5α=……………………3分 α为第二象限角,23sin 4cos 1sin ,tan .5cos 3ααααα∴=--=-==- ………………………6分(2) 在ABC ∆中,2222,b c a bc +-=2222cos .22b c a A bc +-∴== …………………………………………9分(0,π)A ∈ , π,tan 1,4A A ∴== ……………………11分 tan tan 1tan().1tan tan 7A A A ααα+∴+==-- ……………………14分17.(本小题满分12分)如图,在四棱锥S ABCD -中,AB AD ⊥,//AB CD ,3CD AB =,平面SAD ⊥平面ABCD ,M 是线段AD 上一点,AM AB =,DM DC =,SM AD ⊥.(1)证明:BM ⊥平面SMC ;别为1V 与V ,(2)设三棱锥C SBM -与四棱锥S ABCD -的体积分求1V V的值.【命题意图】本小题主要考查空间线面关系、几何体的体积等知识,考查数空间想象能力、推理论证能力和运算求解能力.(1) 证明: 平面SAD ⊥平面ABCD ,平面SAD 平面ABCD AD =,SM ⊂平面SAD ,SM AD ⊥SM ∴⊥平面ABCD ,…………………1分 BM ⊂ 平面,ABCD.SM BM ∴⊥ …………………2分四边形ABCD 是直角梯形,AB //CD ,,AM AB =,DM DC =,MAB MDC ∴∆∆都是等腰直角三角形,45,90,.AMB CMF BMC BM CM ∴∠=∠=︒∠=︒⊥………………4分 SM ⊂ 平面SMC ,CM ⊂平面SMC ,SM CM M = ,MSDC BABM ∴⊥平面SMC …………………………………………6分(2) 解: 三棱锥C SBM -与三棱锥S CBM -的体积相等,由( 1 ) 知SM ⊥平面ABCD , 得1113211()32SM BM CMV V SM AB CD AD ⨯⨯=⨯+⨯,……………………………………………9分设,AB a =由3CD AB =,,AM AB =,DM DC = 得3,2,32,4,CD a BM a CM a AD a ====从而12323.(3)48V a a V a a a ⨯==+⨯ ……………………………12分18.(本小题满分14分)已知函数313f x x ax b =-+(),其中实数 a b ,是常数. (1)已知{}0 1 2a ∈,,,{}0 1 2b ∈,,,求事件A “10f ≥()”发生的概率;(2)若f x ()是R 上的奇函数,g a ()是f x ()在区间[]1 1-,上的最小值,求当1a ≥时g a ()的解析式.【命题意图】本小题主要考查古典概型、函数的奇偶性与零点、导数、解不等式等知识, 考查化归与转化、分类列举等数学思想方法,以及运算求解能力.解:(1) 当{}{}0,1,2,0,1,2a b ∈∈时,等可能发生的基本事件(,)a b 共有9个:(00)(01)(02),(10)(11)(12)(20)(21)(22).,,,,,,,,,,,,,,,,…………………………4分其中事件A “1(1)03f a b =-+≥”,包含6个基本事件: (00)(01)(02)(11)(12)(22).,,,,,,,,,,, …………………………4分故62()93P A ==.…………………………6分 答:事件“(1)0f ≥”发生的概率23.………………7分(2) 31(),3f x x a x b =-+是R 上的奇函数,得(0)0,0.f b ==………………8分 ∴31(),3f x x ax =- 2()f x x a '=-, ………………………9分① 当1a ≥时,因为11x -≤≤,所以()0f x '≤,()f x 在区间[]1,1-上单调递减, 从而1()(1)3g a f a ==-;……………………11分 ② 当1a ≤-时,因为11x -≤≤,所以()0f x '>,()f x 在区间[]1,1-上单调递增,从而1()(1)3g a f a =-=-+. ……………………13分 综上,知1,13().1,13a a g a a a ⎧-≤-⎪⎪=⎨⎪-+≥⎪⎩……………………14分 19.(本题满分12分)如图,有一正方形钢板ABCD 缺损一角(图中的阴影部分),边缘线OC 是以直线AD 为对称轴,以线段AD 的中点O 为顶点的抛物线的一部分.工人师傅要将缺损一角切割下来,使剩余的部分成为一个直角梯形.若正方形的边长为2米,问如何画切割线EF ,可使剩余的直角梯形的面积最大?并求其最大值.【命题意图】本小题主要考查二次函数的切线、最值等知识,考查坐标思想、数形结合、化归与转化等数学思想方法,以及将实际问题转化为数学问题的能力.解法一:以O 为原点,直线AD 为y 轴,建立如图所示的直角坐标系,依题意可设抛物线弧OC 的方程为2(02)y ax x =≤≤ ∵点C 的坐标为(2,1),∴221a =,14a = 故边缘线OC 的方程为21(02)4y x x =≤≤. ……4分 要使梯形ABEF 的面积最大,则EF 所在的直线必与抛物线弧OC 相切,设切点坐标为21(,)(02)4P t t t <<,∵12y x '=, ∴直线EF 的的方程可表示为211()42y t t x t -=-,即21124y tx t =-,…………6分 由此可求得21(2,)4E t t -,21(0,)4F t -.∴2211|||(1)|144AF t t =---=-,2211|||()(1)|144BE t t t t =---=-++,…8分 设梯形ABEF 的面积为()S t ,则[]1()||||||2S t AB AF BE =⋅+2211(1)(1)44t t t =-+-++2122t t =-++ A B CDO FEABCDOF Exy P2155(1)222t =--+≤. ……………………………………………………………10分∴当1t =时,5().2S t =,故()S t 的最大值为2.5. 此时||0.75,|| 1.75AF BE ==.………11分答:当0.75m, 1.75m AF BE ==时,可使剩余的直角梯形的面积最大,其最大值为22.5m . ………………………………………………………………………12分解法二:以A 为原点,直线AD 为y 轴,建立如图所示的直角坐标系,依题意可设抛物线弧OC 的方程为21(02)y a x x =+≤≤ ∵点C 的坐标为(2,2),∴2212a +=,14a = 故边缘线OC 的方程 为211(02)4y x x =+≤≤. ………4分 要使梯形ABEF 的面积最大,则EF 所在的直线必与抛物线弧OC 相切,设切点坐标为21(,1)(02)4P t t t +<<,∵12y x '=, ∴直线EF 的的方程可表示为2111()42y t t x t --=-,即211124y tx t =-+,…6分 由此可求得21(2,1)4E t t -+,21(0,1)4F t -+.∴21||14AF t =-,21||14BE t t =-++,……………7分 设梯形ABEF 的面积为()S t ,则[]1()||||||2S t AB AF BE =⋅+2211(1)(1)44t t t =-+-++2122t t =-++ 2155(1)222t =--+≤. ……………………………………………………………10分∴当1t =时,5().2S t =,故()S t 的最大值为2.5. 此时||0.75,|| 1.75AF BE ==.………11分答:当0.75m, 1.75m AF BE ==时,可使剩余的直角梯形的面积最大,其最大值为22.5m . ………………………………………………………………………12分20.(本题满分14分)已知椭圆222210x y C a b a b+=>>:()的左焦点F 及点0 A b (,),原点O 到直线FA 的距离为22b . (1)求椭圆C 的离心率e ;(2)若点F 关于直线20l x y +=:的对称点P 在圆224O x y +=:上,求椭圆C 的方程及点P 的坐标.【命题意图】本小题主要考查椭圆的标准方程与简单几何性质、点关于直线对称等知识,考查数形结合、方程等数学思想方法,以及运算求解能力.解:(1)由点(,0)F ae -,点(0,)A b 及21b e a =-得直线FA 的方程为211x y ae e a+=--,即22110e x ey ae e --+-=,…………………2分 ∵原点O 到直线FA 的距离为22122e b a-=, ∴2222112,.221ae e e a e e e--==-+………………………………………5分故椭圆C 的离心率22e =. …………………………………7分(2) 解法一:设椭圆C 的左焦点F 2(,0)2a -关于直线:20l x y +=的对称点为00(,)P x y ,则有00001,2222220.22y x a x a y ⎧=⎪⎪+⎪⎨⎪-⎪⋅+=⎪⎩ …………………………………………10分 解之,得003242,1010x a y a ==.P 在圆224x y +=上∴223242()()41010a a +=, ∴22228,(1) 4.a b e a ==-=……………………………………13分故椭圆C 的方程为22184x y +=, 点P 的坐标为68(,).55………………………………………14分解法二:因为F 2(,0)2a -关于直线l 的对称点P 在圆O 上,又直线:20l x y +=经过 圆22:4O x y +=的圆心(0,0)O ,所以F 2(,0)2a -也在圆O 上, ………9分从而222()042a -+=,22228,(1) 4.ab e a ==-= ………………………10分 故椭圆C 的方程为22184x y +=. ………………………………………11分 (2,0)F - 与00(,)P x y 关于直线l 的对称,00001,22220.22y x x y ⎧=⎪+⎪∴⎨-⎪⋅+=⎪⎩ …………………………………………12分 解之,得0068,55x y ==.…………………………………………13分 故点P 的坐标为68(,).55………………………………………14分21.(本小题满分14分)设数列{}n a 是公差为d 的等差数列,其前n 项和为n S .(1)已知11a =,2d =,(ⅰ)求当n ∈N *时,64n S n+的最小值; (ⅱ)当n ∈N *时,求证:132********n n n S S S S S S +++++< ; (2)是否存在实数1a ,使得对任意正整数n ,关于m 的不等式m a n ≥的最小正整数解为32n -?若存在,则求1a 的取值范围;若不存在,则说明理由.【命题意图】本小题主要考查等差数列通项、求和与不等式等知识,考查化归与转化的数学思想方法,以及抽象概括能力、运算求解能力.(1) (ⅰ) 解: 11,2,a d ==21(1),2n n n d S na n -∴=+=646464216,n S n n n n n +=+≥⨯= 当且仅当64,n n =即8n =时,上式取等号. 故64n S n+的最大值是16.……………………………………………………4分 (ⅱ) 证明: 由(ⅰ)知2n S n =,当n ∈N *时,2222211111(2)4(2)n n n n S S n n n n +⎡⎤++==-⎢⎥++⎣⎦,……6分222222132422311111111114134244(2)n n n S S S S S S n n +⎡⎤+⎛⎫⎛⎫+++=-+-++- ⎪ ⎪⎢⎥+⎝⎭⎝⎭⎣⎦ , 2222222111111111412435(1)(2)n n n ⎡⎤⎛⎫=+++-++++ ⎪⎢⎥++⎝⎭⎣⎦222211111,412(1)(2)n n ⎡⎤=+--⎢⎥++⎣⎦……………………………………8分 22110,(1)(2)n n +>++ 22132422311115().41216n n n S S S S S S ++∴+++<+< ……………………………………9分 (2)对n ∀∈N *,关于m 的不等式1(1)m a a m d n =+-≥的最小正整数解为32n c n =-, 当1n =时,111(1)1a c d a +-=≥;……………………10分当2n ≥时,恒有11(1)(2)n n a c d n a c d n +-≥⎧⎨+-<⎩,即11(31)(3)0(31)(4)0d n a d d n a d -+-≥⎧⎨-+-<⎩, 从而111310(31)2(3)014,1.31033(31)2(4)0d d a d d a d d a d -≥⎧⎪-⨯+-≥⎪⇔=≤<⎨-≤⎪⎪-⨯+-<⎩……………………12分 当114,133d a =≤<时,对n ∀∈N *,且2n ≥时, 当正整数n m c <时, 有1111.33n c m a a n --+<+<……………………13分 所以存在这样的实数1a ,且1a 的取值范围是41,3⎡⎫⎪⎢⎣⎭.……………………14分。