河南省洛阳市2015-2016学年高二下学期期中考试 数学(理)试题(扫描版,含答案)
- 格式:doc
- 大小:506.00 KB
- 文档页数:7
2015-2016学年河南省洛阳市高二(下)期末数学试卷(文科)(A卷)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.用分析法证明:欲使①A>B,只需②C<D,这里①是②的()A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件2.命题“若﹣1<x<0,则x2<1”的逆否命题是()A.若x≥0或x≤﹣1,则x2≥1B.若x2<1,则﹣1<x<0C.若x2>1,则x>0或x<﹣1D.若x2≥1,则x≥0或x≤﹣13.对两个变量y和x进行回归分析,得到一组样本数据:(x1,y1),(x2,y2),…,(x n,y n),则下列说法中不正确的是()A.由样本数据得到的回归方程=x+必过样本中心(,)B.残差平方和越小的模型,拟合的效果越好C.用相关指数R2来刻画回归效果,R2越小,说明模型的拟合效果越好D.两个随机变量的线性相关性越强,相关系数的绝对值越接近于14.如图,程序输出的结果s=11880,则判断框中应填()A.i≥11?B.i≥10?C.i≤9?D.i≥9?5.若a>0,b>0且ln(a+b)=0,则的最小值是()A. B.1C.4D.86.在△ABC中,角A,B,C所对的边分别为a,b,c.若a=1,B=,△ABC的面积S=2,则的值为()A.5B.5C. D.7.若函数f(x)=x3+ax2+(a+6)x+1有极大值和极小值,则实数a的取值范围是()A.(﹣1,2)B.(﹣∞,﹣3)∪(6,+∞)C.(﹣3,6)D.(﹣∞,﹣1)∪(2,+∞)8.在极坐标系中,已知直线方程为ρsin(θ+)=,则点A(2,)到这条直线的距离为()A. B.2﹣C. D.9.设变量x、y满足约束条件,则z=2x×()y的最小值为()A. B. C. D.10.下列类比推理的结论正确的是()①类比“实数的乘法运算满足结合律”,得到猜想“向量的数量积运算满足结合律”;②类比“平面内,同垂直于一直线的两直线相互平行”,得到猜想“空间中,同垂直于一直线的两直线相互平行”;③类比“设等差数列{a n}的前n项和为S n,则S4,S8﹣S4,S12﹣S8成等差数列”,得到猜想“设等比数列{b n}的前n项积为T n,则T4,,成等比数列”;④类比“设AB为圆的直径,p为圆上任意一点,直线PA,PB的斜率存在,则k PA.k PB为常数”,得到猜想“设AB为椭圆的长轴,p为椭圆上任意一点,直线PA,PB的斜率存在,则k PA.k PB为常数”.A.①②B.③④C.①④D.②③11.已知双曲线与抛物线y2=8x有一个公共的焦点F,且两曲线的一个交点为P,若|PF|=5,则双曲线的渐近线方程为()A. B. C. D.12.已知偶函数F(x)=,且f(﹣1)=0,当x>0时,xf′(x)﹣f(x)<0,则使得f(x)>0的x的取值范围是()A.(﹣∞,﹣1)∪(0,1)B.(﹣1,0)∪(1,+∞)C.(﹣∞,﹣1)∪(﹣1,0)D.(0,1)∪(1,+∞)二、填空题:本大题共4小题,每小题5分,共20分。
第二章 2.2 2.2.2考查知识点及角度 难易度及题号基础 中档 稍难 向量加减法运算的综合 2、3、4 6 用已知向量表示其他向量 1 12 向量加、减法运算的应用7、8、9、1113 相反向量及运用5101.四边形ABCD 中,设AB→=a ,AD →=b ,BC →=c ,则DC →=( )A .a -b +cB .b -(a +c )C .a +b +cD .b -a +c解析:DC →=DA →+AB →+BC →=-AD →+AB →+BC →=a -b +c . 答案:A2.如图在平行四边形ABCD 中,下列结论中错误的是( )A.AB→=DC → B.AD→+AB →=AC → C.AB→-AD →=BD → D.AD→+CB →=0 解析:AB →-AD →=DB →,故C 项错. 答案:C3.已知a ,b ,c 是非零向量,则(a +c )+b ,b +(a +c ),b +(c +a ),c +(a +b ),c +(b +a )中,与向量a +b +c 相等的个数为( )A .5B .4C .3D .2解析:依据向量加法的交换律及结合律,每个向量式均与a +b +c 相等,故选A.答案:A4.如图,AB→+BC →-AD →等于( ) A.AD → B.DC → C.DB→ D.AB→ 解析:AB →+BC →-AD →=AB →-AD →+BC →=DB →+BC →=DC →. 答案:B5.若a ,b 为非零向量,且|a +b |=|a |+|b |,则( ) A .a ∥b ,且a 与b 方向相同 B .a ,b 是共线向量 C .a =-bD .a ,b 无论什么关系均可解析:当a 与b 不共线时,一定有|a +b |<|a |+|b |;当a 与b 共线且同向时,有|a +b |=|a |+|b |.选A.答案:A6.如图,在梯形ABCD 中,AD ∥BC ,AC 与BD 交于O 点,则BA→-BC →-OA →+OD →+DA →=________. 解析:由题图知BA→-BC →-OA →+OD →+DA →=CA →-OA →+OA →=CA →.答案:CA→ 7.已知菱形ABCD 边长都是2,求向量AB →-CB →+CD →的模. 解:如图,∵AB→-CB →+CD →=AB →+BC →+CD →=AD →, ∴|AB→-CB →+CD →|=|AD →|=2.8.平面内有四边形ABCD 和点O ,若OA →+OC →=OB →+OD →,则四边形ABCD 的形状是( )A .梯形B .平行四边形C .矩形D .菱形解析:因为OA→+OC →=OB →+OD →,所以OA →-OB →=OD →-OC →,即BA →=CD→.又A ,B ,C ,D 四点不共线,所以|BA →|=|CD →|,且BA ∥CD .故四边形ABCD 为平行四边形.答案:B9.若O 是△ABC 内一点,OA →+OB →+OC →=0,则O 是△ABC 的( )A .内心B .外心C .重心D .垂心解析:如下图,以OB →,OC →为邻边作平行四边形OBDC ,则OD →=OB→+OC →,又OA →+OB →+OC →=0.∴OB→+OC →=-OA →.∴OD →=-OA →. ∴A ,O ,D 三点共线.设OD 与BC 的交点为E ,则E 是BC 的中点,∴AE 是△ABC 的中线.同理可证BO ,CO 都在△ABC 的中线上,∴O 是△ABC 的重心.答案:C10.给出以下五个命题: ①|a |=|b |,则a =b ;②任一非零向量的方向都是唯一的; ③|a |-|b |<|a +b |;④若|a |-|b |=|a |+|b |,则b =0;⑤已知A ,B ,C 是平面上任意三点,则AB →+BC →+CA →=0. 其中正确的命题是________.(填序号)解析:由|a |=|b |,得不到a =b ,因为两个向量相等需要模相等,方向相同,故①不正确;若b =0,|a |-|b |=|a +b |,故③不正确,其他均正确. 答案:②④⑤11.在平行四边形ABCD 中,AB→=a ,AD →=b ,先用a ,b 表示向量AC→和DB →,并回答:当a ,b 分别满足什么条件时,四边形ABCD为矩形、菱形、正方形?解:由向量加法的平行四边形法则,得AC →=a +b ,DB →=AB →-AD →=a -b .当a ,b 满足|a +b |=|a -b |时,平行四边形的两条对角线相等,四边形ABCD 为矩形;当a ,b 满足|a |=|b |时,平行四边形的两条邻边相等,四边形ABCD 为菱形;当a ,b 满足|a +b |=|a -b |且|a |=|b |时,四边形ABCD 为正方形. 12.已知△ABC 为等腰直角三角形,∠ACB =90°,M 为斜边AB 的中点,CM→=a ,CA →=b . 求证:(1)|a -b |=|a |; (2)|a +(a -b )|=|b |.证明:如图,在等腰Rt △ ABC 中,由M 是斜边AB 的中点,有|CM→|=|AM →|,|CA →|=|CB →|. (1)在△ACM 中,AM→=CM →-CA →=a -b . 于是由|AM→|=|CM →|,得|a -b |=|a |. (2)在△MCB 中,MB→=AM →=a -b , 所以CB →=MB →-MC →=a -b +a =a +(a -b ). 从而由|CB→|=|CA →|,得|a +(a -b )|=|b |.13.三个大小相同的力a ,b ,c 作用在同一物体P 上,使物体P 沿a 方向做匀速运动,设P A →=a ,PB →=b ,PC →=c ,判断△ABC 的形状.解:由题意得|a |=|b |=|c |,由于合力作用后做匀速运动,故合力为0,即a +b +c =0.所以a +c =-b .如图,作平行四边形APCD 为菱形.PD→=a +c =-b . 所以∠APC =120°.同理:∠APB =∠BPC =120°. 又因为|a |=|b |=|c |, 所以△ABC 为等边三角形.1.向量减法的实质是向量加法的逆运算.利用相反向量的定义,-AB→=BA →就可以把减法转化为加法.即:减去一个向量等于加上这个向量的相反向量.如a -b =a +(-b ).2.在用三角形法则作向量减法时,要注意“差向量连接两向量的终点,箭头指向被减数”.解题时要结合图形,准确判断,防止混淆.→=a,3.以平行四边形ABCD的两邻边AB、AD分别表示向量AB→=b,则两条对角线表示的向量为AC→=a+b,BD→=b-a,DB→=a AD-b,这一结论在以后应用非常广泛,应该加强理解并记住.沁园春·雪 <毛泽东>北国风光,千里冰封,万里雪飘。
2015-2016学年度下学期高二第一次阶段测试数学(文科)试卷答题时间:120分钟 满分:150分 命题人:杨冠男,刘芷欣第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若是虚数单位,则乘积的值是A.15-B.3C.3-D.52.有一段“三段论”推理是这样的:对于可导函数()f x ,如果0()0f x '=,那么0x x =是 函数()f x 的极值点,因为函数3()f x x =在0x =处的导数值(0)0f '=,所以,0x =是函17(,),2ia bi ab R i i+=+∈-ab数3()f x x =的极值点.以上推理中A .大前提错误B .小前提错误C .推理形式错误D .结论正确 3.给出下列命题(1)实数的共轭复数一定是实数; (2)满足2z i z i -++=的复数z 的轨迹是椭圆;(3)若2,1m Z i ∈=-,则1230;m m m m i ii i ++++++= 其中正确命题的序号是( )A.(1)B.(2)(3)C.(1)(3)D.(1)(4)4.不等式3529x ≤-<的解集为( )A .[2,1)[4,7)-B .(2,1](4,7]-C .(2,1][4,7)--D .(2,1][4,7)-5.已知函数x ax f ππsin )(-=,且2)1()1(lim=-+→hf h f h ,则a 的值为A.2-B.2C.π2D.π2- 6.设,,(,0),a b c ∈-∞则111,,a b c b c a+++( ) A .都不大于2- B .都不小于2- C .至少有一个不大于2- D .至少有一个不小于2- 7.在一次实验中,测得的四组值分别为,,,,则与的线性 回归方程可能是( )A .B .C .D .(,)x y ()1,2()2,3()3,4()4,5y x 1y x =+2y x =+21y x =+1y x =-8. 设0a >b >,则()211a ab a a b ++-的最小值是( ) A .1 B .2 C .3D .49.若1322i ω=-+,则等于421ωω++=( ) A .1 B .13i -+ C .33i + D . 0 10. 若1x >,则函数21161xy x x x =+++的最小值为( ) A .16 B .8 C .4 D .非上述情况11.设,且,若,则必有( )A .B .C .D . 12.已知定义在R 上的可导函数()=y f x 的导函数为()f x ',满足()()f x f x '<,且(1)y f x =+为偶函数,(2)1=f ,则不等式()<xf x e 的解集为A.(,0)-∞B.(0,)+∞C.4(,)-∞eD.4(,)+∞e第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.若复数i m m m m )3()65(22-++-是纯虚数,则实数m 的值是 .AC =14.如图,已知AB 是⊙O 的直径,AB =2,AC 和AD 是⊙O 的两条弦,,,a b c R +∈1a b c ++=111(1)(1)(1)M a b c=---8M ≥118M ≤<18M ≤<108M ≤<,AD =,则∠CAD 的弧度数为 .15.参数方程()2()t tt tx e et y e e --⎧=+⎪⎨=-⎪⎩为参数的普通方程为_____. 16.在Rt ABC ∆中,若090,,C AC b BC a ∠===,则ABC ∆外接圆半径222a b r +=.运用类比方法,若三棱锥的三条侧棱两两互相垂直且长度分别为c b a ,,,则其外接球的半径R = .三、解答题(本大题共6小题,共70分. 解答应写出文字说明、证明过程或演算步骤)17. (本小题满分l0分)如图,,,,A B C D 四点在同一圆上,BC 与AD 的延长线交于点E ,点F 在BA 的延长线上.(Ⅰ)若11,32EC ED EB EA ==,求DCAB的值; (Ⅱ)若2EF FA FB =⋅,证明://EF CD .18.(本小题满分l2分)某校高二年级共有1600名学生,其中男生960名,女生640名,该校组织了一次满分为100分的数学学业水平模拟考试,根据研究,在正式的学业水平考试中,本次成绩在[80,100]的学生可取得A 等(优秀),在[60,80)的学生可取得B 等(良好),在[40,60)的学生可取得C 等(合格),在不到40分的学生只能取得D 等(不合格),为研究这次考试成绩优秀是否与性别有关,现23按性别采用分层抽样的方法抽取100名学生,将他们的成绩按从低到高分成[30,40)、[40,50)、[50,60)、[60,70)、[70,80)、[80,90)、[90,100]七组加以统计,绘制成频率分布直方图,如图是该频率分布直方图.(Ⅰ)估计该校高二年级学生在正式的数学学业水平考试中,成绩不合格的人数;(Ⅱ) 请你根据已知条件将下列2×2列联表补充完整,并判断是否有90%的把握认为“该校高二年级学生在本次考试中数学成绩优秀与性别有关”?数学成绩优秀 数学成绩不优秀 合计男生 a=12 b= 女生 c= d=34 合计n=100附:.P (k 2≥k 0) 0.15 0.10 0.05 0.01k 0 2.0722.7063.841 6.63519.(本小题满分l2分)设函数()|21||4|f x x x =+--.(1)解不等式()0f x >;(2)若()3|4|f x x m +->对一切实数x 均成立,求m 的取值范围.20.(本小题满分l2分)设函数2()f x ax bx c =++且(1)2af =-,322.a c b >> (1)试用反证法证明:0a > (2)证明:33.4b a -<<-21.(本小题满分l2分)在以直角坐标原点O 为极点,x 轴的非负半轴为极轴的极坐标系下,曲线1C 的方程是1ρ=,将1C 向上平移1个单位得到曲线2C .(Ⅰ)求曲线2C 的极坐标方程;(Ⅱ)若曲线1C 的切线交曲线2C 于不同两点,M N ,切点为T ,求||||TM TN ⋅的取值范围.22.(本小题满分l2分)已知函数1()ln (0,)f x a x a a R x=+≠∈ (Ⅰ)若1a =,求函数()f x 的极值和单调区间;(Ⅱ)若在区间[1,]e 上至少存在一点0x ,使得0()0f x <成立,求实数a 的取值范围.2015-2016学年度下学期高二第一次阶段测试数学(文科)试卷答题时间:120分钟 满分:150分 命题人:杨冠男,刘芷欣第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若是虚数单位,则乘积的值是 CA.15-B.3C.3-D.52.有一段“三段论”推理是这样的:对于可导函数()f x ,如果0()0f x '=,那么0x x =是 函数()f x 的极值点,因为函数3()f x x =在0x =处的导数值(0)0f '=,所以,0x =是函 数3()f x x =的极值点.以上推理中 A A .大前提错误 B .小前提错误 C .推理形式错误 D .结论正确 3.给出下列命题(1)实数的共轭复数一定是实数; (2)满足2z i z i -++=的复数z 的轨迹是椭圆;(3)若2,1m Z i ∈=-,则1230;m m m m i ii i ++++++= 其中正确命题的序号是( )CA.(1)B.(2)(3)C.(1)(3)D.(1)(4)4.不等式3529x ≤-<的解集为( )D17(,),2ia bi ab R i i+=+∈-abA .[2,1)[4,7)-B .(2,1](4,7]-C .(2,1][4,7)--D .(2,1][4,7)-5.已知函数x ax f ππsin )(-=,且2)1()1(lim=-+→hf h f h ,则a 的值为 BA.2-B.2C.π2D.π2- 6.设,,(,0),a b c ∈-∞则111,,a b c b c a+++( )c A .都不大于2- B .都不小于2-C .至少有一个不大于2-D .至少有一个不小于2-7.在一次实验中,测得的四组值分别为,,,,则与的线性回归方程可能是( )A .B .C .D .解析:A 线性回归直线一定过样本中心点,故选A .8. 设0a >b >,则()211a ab a a b ++-的最小值是 (A )1 (B )2 (C )3 (D )49.若1322i ω=-+,则等于421ωω++=( )D A .1 B .13i -+ C .33i + D . 0 10. 若1x >,则函数21161xy x x x =+++的最小值为( )B (,)x y ()1,2()2,3()3,4()4,5y x 1y x =+2y x =+21y x =+1y x =-()2.5,3.5A .16B .8C .4D .非上述情况11.设,且,若,则必有( )AA .B .C .D .12.已知定义在R 上的可导函数()=y f x 的导函数为()f x ',满足()()f x f x '<,且(1)y f x =+为偶函数,(2)1=f ,则不等式()<xf x e 的解集为 BA.(,0)-∞B.(0,)+∞C.4(,)-∞e D.4(,)+∞e第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.若复数i m m m m )3()65(22-++-是纯虚数,则实数m 的值是 .2 AC =14.如图,已知AB 是⊙O 的直径,AB =2,AC 和AD 是⊙O 的两条弦,,AD =,则∠CAD 的弧度数为 . 15.15.参数方程()2()t tt tx e et y e e --⎧=+⎪⎨=-⎪⎩为参数的普通方程为_____.)2(116422≥=-x y x 16.在Rt ABC ∆中,若090,,C AC b BC a ∠===,则ABC ∆外接圆半径222a b r +=.运用,,a b c R +∈1a b c ++=111(1)(1)(1)M a b c=---8M ≥118M ≤<18M ≤<108M ≤<23512π类比方法,若三棱锥的三条侧棱两两互相垂直且长度分别为c b a ,,,则其外接球的半径R= . 2222a b c ++三、解答题(本大题共6小题,共70分. 解答应写出文字说明、证明过程或演算步骤) 17. (本小题满分l0分)如图,A ,B ,C ,D 四点在同一圆上,BC 与AD 的延长线交于点E ,点F 在BA 的延长线上. (Ⅰ)若,求的值;(Ⅱ)若EF 2=FA•FB,证明:EF∥CD.【解答】解:(Ⅰ)∵A,B ,C ,D 四点共圆, ∴∠ECD=∠EAB,∠EDC=∠B∴△EDC∽△EBA,可得,∴,即∴(Ⅱ)∵EF2=FA•FB,∴,又∵∠EFA=∠BFE,∴△FAE∽△FEB,可得∠FEA=∠EBF,又∵A,B,C,D四点共圆,∴∠EDC=∠EBF,∴∠FEA=∠EDC,∴EF∥CD.18(本小题满分l2分)某校高二年级共有1600名学生,其中男生960名,女生640名,该校组织了一次满分为100分的数学学业水平模拟考试,根据研究,在正式的学业水平考试中,本次成绩在[80,100]的学生可取得A等(优秀),在[60,80)的学生可取得B等(良好),在[40,60)的学生可取得C等(合格),在不到40分的学生只能取得D等(不合格),为研究这次考试成绩优秀是否与性别有关,现按性别采用分层抽样的方法抽取100名学生,将他们的成绩按从低到高分成[30,40)、[40,50)、[50,60)、[60,70)、[70,80)、[80,90)、[90,100]七组加以统计,绘制成频率分布直方图,如图是该频率分布直方图.(Ⅰ)估计该校高二年级学生在正式的数学学业水平考试中,成绩不合格的人数;(Ⅱ)请你根据已知条件将下列2×2列联表补充完整,并判断是否有90%的把握认为“该校高二年级学生在本次考试中数学成绩优秀与性别有关”?数学成绩优秀数学成绩不优秀合计男生a=12 b=女生c= d=34合计n=100附:.P(k2≥k0)0.15 0.10 0.05 0.01k0 2.072 2.706 3.841 6.635解:(Ⅰ)抽取的100名学生中,本次考试成绩不合格的有x人,根据题意得x=100×[1﹣10×(0.006+0.012×2+0.018+0.024+0.026)]=2.…(2分)据此估计该校高二年级学生在正式的数学学业水平考试中,成绩不合格的人数为(人).…(4分)(Ⅱ)根据已知条件得2×2列联表如下:数学成绩优秀数学成绩不优秀合计男生a=12 b=48 60女生c=6 d=34 40合计18 82 n=100 …(10分)∵,所以,没有90%的把握认为“该校高二年级学生在本次考试中数学成绩优秀与性别有关”.…(12分)19.设函数f(x)=|2x+1|﹣|x﹣4|.(1)解不等式f(x)>0;(2)若f(x)+3|x﹣4|>m对一切实数x均成立,求m的取值范围.【解答】解:(1)当x≥4时f(x)=2x+1﹣(x﹣4)=x+5>0得x>﹣5,所以,x≥4时,不等式成立.当时,f(x)=2x+1+x﹣4=3x﹣3>0,得x>1,所以,1<x<4时,不等式成立.当时,f(x)=﹣x﹣5>0,得x<﹣5,所以,x<﹣5成立综上,原不等式的解集为:{x|x>1或x<﹣5}.(2)f(x)+3|x﹣4|=|2x+1|+2|x﹣4|≥|2x+1﹣(2x﹣8)|=9,当且仅当﹣≤x≤4时,取等号,所以,f(x)+3|x﹣4|的最小值为9,故m<9.20.(本小题满分l2分)设函数f(x)=ax2+bx+c且f(1)=﹣,3a>2c>2b.(1)试用反证法证明:a>0(2)证明:﹣3<.【解答】证明:(1)假设a≤0,∵3a>2c>2b,∴3a≤0,2c<0<,2b<0,将上述不等式相加得3a+2c+2b<0,∵f(1)=﹣,∴3a+2c+2b=0,这与3a+2c+2b<0矛盾,∴假设不成立,∴a>0;(2)∵f(1)=a+b+c=﹣,∴c=﹣a﹣b∴3a>2c=﹣3a﹣2b,∴3a>﹣b,∵2c>2b,∴﹣3a>4b;∵a>0,∴﹣3<<﹣.21.(本小题满分l2分)在以直角坐标原点O为极点,x轴的非负半轴为极轴的极坐标系下,曲线C1的方程是ρ=1,将C1向上平移1个单位得到曲线C2.(Ⅰ)求曲线C2的极坐标方程;(Ⅱ)若曲线C1的切线交曲线C2于不同两点M,N,切点为T,求|TM|•|TN|的取值范围.【解答】解:(I)曲线C1的方程是ρ=1,即ρ2=1,化为x2+y2=1,将C1向上平移1个单位得到曲线C2:x2+(y﹣1)2=1,展开为x2+y2﹣2y=0.则曲线C2的极坐标方程为ρ2﹣2ρsinθ=0,即ρ=2sinθ.(II)设T(cosθ,sinθ),θ∈[0,π].切线的参数方程为:(t为参数),代入C2的方程化为:t2+2t[cos(θ﹣α)﹣sinα]+1﹣2sinθ=0,∴t1t2=1﹣2sinθ,∴|TM|•|TN|=|t1t2|=|1﹣2sinθ|∈[0,1],∴|TM|•|TN|的取值范围是[0,1].22.(本小题满分l2分)已知函数f(x)=+alnx(a≠0,a∈R)(Ⅰ)若a=1,求函数f(x)的极值和单调区间;(Ⅱ)若在区间[1,e]上至少存在一点x0,使得f(x0)<0成立,求实数a的取值范围.【解答】解:(I)因为,(2分)当a=1,,令f'(x)=0,得x=1,(3分)又f(x)的定义域为(0,+∞),f'(x),f(x)随x的变化情况如下表:x (0,1) 1 (1,+∞)f'(x)﹣0 +f(x)↘极小值↗所以x=1时,f(x)的极小值为1.(5分)f(x)的单调递增区间为(1,+∞),单调递减区间为(0,1);(6分)(II)因为,且a≠0,令f'(x)=0,得到,若在区间[1,e]上存在一点x0,使得f(x0)<0成立,其充要条件是f(x)在区间[1,e]上的最小值小于0即可.(7分)(1)当a<0时,f'(x)<0对x∈(0,+∞)成立,所以,f(x)在区间[1,e]上单调递减,故f(x)在区间[1,e]上的最小值为,由,得,即(9分)(2)当a>0时,①若,则f'(x)≤0对x∈[1,e]成立,所以f(x)在区间[1,e]上单调递减,所以,f(x)在区间[1,e]上的最小值为,显然,f(x)在区间[1,e]上的最小值小于0不成立(11分)②若,即1>时,则有xf'(x)﹣0 +f(x)↘极小值↗所以f(x)在区间[1,e]上的最小值为,由,得1﹣lna<0,解得a>e,即a∈(e,+∞)舍去;当0<<1,即a>1,即有f(x)在[1,e]递增,可得f(1)取得最小值,且为1,f(1)>0,不成立.综上,由(1)(2)可知a<﹣符合题意.(14分)…。
2015年河南省中考数学试题(满分120分,考试时间100分钟)一、选择题(每小题3分,共24分) 1. 下列各数中最大的数是( )A .5B .3C .πD .-82. 如图所示的几何体的俯视图是( )正面A .B .C .D .3. 据统计,2014年我国高新技术产品出口总额达40 570亿元,将数据40 570亿用科学记数法表示为( ) A .4.0570×109 B .0.40570×1010 C .40.570×1011D .4.0570×10124. 如图,直线a ,b 被直线c ,d 所截,若∠1=∠2,∠3=125°,则∠4的度数为( ) A .55°B .60°C .70°D .75°cd ba 43215. 不等式组5031x x +⎧⎨->⎩≥的解集在数轴上表示为( )-522-5A .B .-522-5C .D .6. 小王参加某企业招聘测试,他的笔试,面试、技能操作得分分别为85分,80分,90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是( )A .255分B .84分C .84.5分D .86分7. 如图,在□ABCD 中,用直尺和圆规作∠BAD 的平分线AG 交BC 于点E ,若BF =6,AB =5,则AE 的长为( ) A .4B .6C .8D .10GCBADEFO 1O 2O 3Oy x P第7题图 第8题图8. 如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,…组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度,则第2015秒时,点P 的坐标是( )A .(2014,0)B .(2015,-1)C .(2015,1)D .(2016,0) 二、填空题(每小题3分,共21分) 9. 计算:(-3)0+3-1=___________.10. 如图,△ABC 中,点D ,E 分别在边A B ,BC 上,DE ∥AC ,若DB =4,DA =2,BE =3,则EC =_________.CBADE AO yx第10题图 第11题图11. 如图,直线y =kx 与双曲线20y x x =>()交于点A (1,a ),则k =________.12. 已知点A (4,y 1),B (2,y 2),C (-2,y 3)都在二次函数y =(x -2)2-1的图象上,则y 1,y 2,y 3的大小关系是_________.13. 现有四张分别标有数字1,2,2,3的卡片,它们除数字外完全相同,把卡片背面朝上洗匀,从中随机抽取一张后放回,再背面朝上洗匀,从中随机抽取一张,则两次抽出的卡片所标数字不同的概率是__________.14. 如图,在扇形AOB 中,∠AOB =90°,点C 为OA 的中点,CE ⊥OA 交AB ︵于点E ,以点O 为圆心,OC 的长为半径作CD ︵交OB 于点D ,若OA =2,则阴影部分的面积为___________.BDEB'CB ADE F第14题图 第15题图15. 如图,正方形ABCD 的边长是16,点E 在边AB 上,AE =3,点F 是边BC上不与点B ,C 重合的一个动点,把△EBF 沿EF 折叠,点B 落在B ′处,若△CDB ′恰为等腰三角形,则DB ′的长为____________. 三、解答题(本大题共8个小题,满分75分)16. (8分)先化简,再求值:2221122a ab b a bb a -+⎛⎫÷- ⎪-⎝⎭,其中15+=a ,15-=b .17. (9分)如图,AB 是半圆O 的直径,点P 是半圆上不与点A ,B 重合的一个动点,延长BP 到点C ,使PC =PB ,D 是AC 的中点,连接PD ,PO . (1)求证:△CDP ≌△POB ; (2)填空:①若AB =4,则四边形AOPD 的最大面积为________;②连接OD ,当∠PBA 的度数为_________时,四边形BPDO 是菱形.PO CBAD18. (9分)为了了解市民“获取新闻的最主要途径”,某市记者开展了一次抽样调查,根据调查结果绘制了如下尚不完整的统计图.40%26%10%9%调查结果扇形统计图电视报纸其他手机上网电脑上网选项人数上网上网调查结果条形统计图根据以上信息解答下列问题:(1)这次接受调查的市民总人数是___________;(2)扇形统计图中,“电视”所对应的圆心角的度数是__________; (3)请补全条形统计图;(4)若该市约有80万人,请你估计其中将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数.19. (9分)已知关于x 的一元二次方程(x -3)(x -2)=|m |.(1)求证:对于任意实数m ,方程总有两个不相等的实数根;(2)若方程的一个根是1,求m 的值及方程的另一个根.20. (9分)如图所示,某数学活动小组选定测量小河对岸大树BC 的高度,他们在斜坡上D 处测得大树顶端B 的仰角是30°,朝大树方向下坡走6米到达坡底A 处,在A 处测得大树顶端B 的仰角是48°.若坡角∠FAE =30°,求大树的高度.(结果保留整数,参考数据:sin48°≈0.74,cos48°≈0.67,tan48°≈1.11,3≈1.73)48°30°FEBAD C21. (10分)某游泳馆普通票价20元/张,暑假为了促销,新推出两种优惠卡:①金卡售价600元/张,每次凭卡不再收费; ②银卡售价150元/张,每次凭卡另收10元.暑期普通票正常出售,两种优惠卡仅限暑期使用,不限次数. 设游泳x次时,所需总费用为y元.(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;(2)在同一个坐标系中,若三种消费方式对应的函数图象如图所示,请求出点A,B,C的坐标;(3)请根据函数图象,直接写出选择哪种消费方式更合算.22.(10分)如图1,在Rt△ABC中,∠B=90°,BC=2AB=8,点D,E分别是边BC,AC的中点,连接DE.将△EDC绕点C按顺时针方向旋转,记旋转角为α.(1)问题发现①当︒=0α时,_____________=BD AE; ②当︒=180α时,__________AEBD=. (2)拓展探究 试判断:当0°≤α<360°时,DBAE的大小有无变化?请仅就图2的情况给出 证明. (3)问题解决当△EDC 旋转至A ,D ,E 三点共线时,直接写出线段BD 的长.BA图1D EEDAC图2备用图AC23. (11分)如图,边长为8的正方形OABC 的两边在坐标轴上,以点C 为顶点的抛物线经过点A ,点P 是抛物线上点A ,C 间的一个动点(含端点),过点P 作PF ⊥BC 于点F .点D ,E 的坐标分别为(0,6),(-4,0),连接PD ,PE ,DE .(1)请直接写出抛物线的解析式.(2)小明探究点P的位置发现:当点P与点A或点C重合时,PD与PF 的差为定值.进而猜想:对于任意一点P,PD与PF的差为定值.请你判断该猜想是否正确,并说明理由.(3)小明进一步探究得出结论:若将“使△PDE的面积为整数”的点P记作“好点”,则存在多个“好点”,且使△PDE的周长最小的点P也是一个“好点”.请直接写出所有“好点”的个数,并求出△PDE的周长最小时“好点”的坐标.1112。
洛阳市2015——2016学年第二学期期中考试高二数学试卷(理A )第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、复数z 满足(3)(2)5(z i i --=为虚数单位),则z 为( ) A .2i -+ B .2i - C .5i + D .5i -2、向量1OZ 对应的复数是54i -,向量2OZ 对应的复数是54i -+,则向量12Z Z对应的复数是( )A .108i -+B .108i -C .810i -+D .810i +-3、某餐厅的原料费支出x 与销售额y (单位:万元)之间有如下数据,根据表中提供的全部数据,用最小二乘法得出y 与x 的线性回归方程ˆ8.57.5y=+,则表中的m 的值为( )A .50B .55C .60D .654、在对吸烟与患肺病转这两个分类变量的独立性减压中,下列说法真确的是:( ) ①若2K 的观测值满足26.635K ≥,我们有99%的把握恩威吸烟与患肺病有关系; ②若2K 的观测值满足26.635K ≥,那么在100个吸烟的人中有99人患肺病;③动独立性检验可知,如果有99%的把握恩威吸烟与患肺病有关系时,那么我们就认为:每个吸烟的人有99%的可能性会患肺病;④从统计量中得到由99%的把握认为吸烟与患肺病有关系时,是指与1%的可能性使判断出现错误。
A .① B .②③ C .①④ D .①②③④ 5、下面几种推理过程中是演绎推理的是( )A .两条直线平行,同旁内角互补,如果A ∠和B ∠是两条平行线的同旁内角,则180A B ∠+∠=B .由平面三角形的性质,推测空间四面体的性质;C .某校共有10个班,1班有51人,2班有53人,3班有52人,由此推测各班都超过50人;D .数列{}n a 中,111111,()(2)2n n n a a a n a --==+≥,由此归纳出{}n a 的通项公式。
洛阳市2015―― 2016学年第二学期期中考试高二数学试卷(理A)一、选择题(本大题共12个小题,每小题 5 分,共60分)1、已知i为虚数单位,(1 i)(2 i) a bi ,其中a,b R,则()A. a 1,b 1 B . ,a 3,b 1 C . a 1,b 0 D . a 3,b 02、已知函数f x x23x,则limtf(2)f(2 3t)的值为(t)1A. -2 B . - C3.1 D .31 2i3、已知i为虚数单位,复数z 在复平面内对应的点所在的象限为()iA.第一象限B •第二象限 C •第三象限D •第四象限4、给出下列数阵第1列第2列第3列第4列第1行 1第2行 2 3第3行 4 5 6第4行7 8 9 10L L设第i行第j列的数字为a jj,则2016为()A. a32,33 B . a2016,1 C . a63,62 D .玄63,635、若函数f x ax3bx2ex d(a,b,c,d R)有极值点,则导函数f x的图象可能是(6、已知i 为虚数单位,若复数 z 满足|z 3 4i | 1,则| z 的最大值为( )A. 4B . 5 C.4、2D ..67、 lim n(1(-! sin -) ()ni 1 n nA. 1cos1B .1 Sin1CD . —2 28已知核 黄糸f x6x 2 12x a(a R ),则核黄素1f x 的极值点的个数为()A. 0B . 1C .2D .与实数a 的取值有关9、过点(1,0)作曲线y x 2的切线,切线方程为( )A. y 0或3x y 30 B . y 0或27x 4y 27C. y 0或 x 1 D . x 1或 3x y 3需添加的式子是(1 1厂 2r ~21^k 1丿2112、已知定义在 R 上的可导函数 f x 图象既关于直线二、填空题:本大题共 4小题,每小题5分,共20分,把答案填在答题卷的横线上。
白云中学2015—2016学年第二学期期中测试高二理科数学试卷一、选择题(每题5分,共60分)1.函数),1)(1()(-+=x x x f 则=')2(f ( )A. 3B. 2C. 4D. 0 2.已知函数,2)(2+-=x x x f 则⎰=10)(dx x f ( )A.613 B. 611 C. 2 D. 33.已知a 为实数,若2321>++i a i ,则=a ( ) A .1 B .2- C . 31 D .214.“所有金属都能导电,铁是金属,所以铁能导电”这种推理方法属于( )A .演绎推理B .类比推理C .合情推理D .归纳推理5.已知抛物线2y ax bx c =++通过点(11)P ,,且在点(21)Q -,处的切线平行于直线3y x =-,则抛物线方程为( )A.23119y x x =-+ B.23119y x x =++C.23119y x x =-+D.23119y x x =--+6.命题p :∃x ∈R ,使得3x >x ;命题q :若函数y=f (x ﹣1)为偶函数,则函数y=f (x )关于直线x=1对称,则( )A .p ∨q 真B .p ∧q 真C .¬p 真D .¬q 假7.在复平面内,复数2(13)1iz i i =+++对应的点在( ) A.第一象限 B.第二象限 C.第三象限D.第四象限8.如图,阴影部分的面积是( )A.23B.23-C.323D.3539.函数2()sin f x x =的导数是( )A.2sin xB.22sin xC.2cos x D.sin 2x10.下列说法正确的是()A.函数y x =有极大值,但无极小值 B.函数y x =有极小值,但无极大值 C.函数y x =既有极大值又有极小值 D.函数y x =无极值11.下列函数在点0x =处没有切线的是( )A.23cos y x x =+ B.sin y x x =· C.12y x x=+D.1cos y x=12.已知抛物线C 的方程为x 2=y ,过点A (0,﹣1)和点B (t ,3)的直线与抛物线C 没有公共点,则实数t 的取值范围是( )A .(﹣∞,﹣1)∪(1,+∞)B .(﹣∞,﹣)∪(,+∞)C .(﹣∞,﹣2)∪(2,+∞)D .(﹣∞,﹣)∪(,+∞)二、填空题(每小题5分 ,共20分)13.函数23)(x x x f +=单调递减区间是14.若复数22(2)(2)z a a a a i =-+--为纯虚数,则实数a 的值等于 . 15.已知函数32()39f x x x x m =-+++在区间[22]-,上的最大值是20,则实数m 的值等于 .16.通过观察下面两等式的规律,请你写出一般性的命题:23150sin 90sin 30sin 222=++23125sin 65sin 5sin 222=++________________________________________________高二理科数学试卷答题卡1 2 3 4 5 6 7 8 9 10 11 12二、填空题(每小题5分 ,共20分)13.___________, 14.____________,15.____________,16.______________________________.三、解答题(共70分)17.(本小题满分12分)已知抛物线2y x bx c =++在点(12),处的切线与直线20x y ++=垂直,求函数2y x bx c =++的最值.18.(本小题满分12分)求函数5224+-=x x y 在区间[-2,2]上的最大值与最小值19.(本小题满分10分)求曲线2xy 过点P(1,-1)的切线方程。