2020学年人教版数学九年级下册第二十八章锐角三角函数28.2解直角三角形及其应用教案
- 格式:docx
- 大小:1.31 MB
- 文档页数:40
师:尝试写出∠A 的三角函数。
生:∠A 的正弦值:sin A=∠A 所对的边斜边= ac∠A 的余弦值:cos A= ∠A 所邻的边斜边= bc∠A 的正切值:tan A=∠A 所对的边邻边= ab师:将 30°、45°、60°角的正弦值、余弦值和正切值填入下表:生:变式1-1 在Rt △ABC 中,∠C =90°,a = 30, b = 20,根据条件解直角三角形.变式1-2 在△ABC 中,∠C =90∘, AB =6, cosA =13,则AC 等于( )A .18B .2C .12D .118变式1-3在Rt △ABC 中,斜边AB 的长为m ,∠A =35°,则直角边BC 的长是( ) A .msin35° B .mcos35° C .m sin35°D .mcos35°变式1-4 如图,在Rt △ABC 中,∠C=90°,∠B=35° ,b=20,解这个直角三角形(结果保留小数点后一位). 变式1-5 如图,太阳光线与水平线成70°角,窗子高AB =2米, 要在窗子外面上方0.2米的点D 处安装水平遮阳板DC ,使光线不 能直接射入室内,则遮阳板DC 的长度至少是( ) A .2tan70°米 B .2sin70°米 C .2.2tan70°米 D .2.2cos70°米平线下方的叫做俯角。
指南或指北的方向线与目标方向线构成小于900的角,叫做方位角. 师:尝试说出A,B关于坐标原点O的位置?生:点A位于点O北偏东30°位置,点B位于点O南偏西45°位置[多媒体展示]热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30°,看这栋高楼底部的俯角为60°,热气球与高楼的水平距离为120m,这栋高楼有多高(结果精确到0.1m)。
第28章锐角三角函数【思维导图】28.1锐角三角函数【知识点】1.Rt△ABC中,∠C=90°.(1)∠A的对边与斜边比,叫做∠A的正弦,记为sinA,即sinA=∠A的对边斜边=aa(2)∠A的邻边与斜边比,叫做∠A的余弦,记为cosA,即cosA=∠A的邻边斜边=aa(3)∠A的对边与邻边比,叫做∠A的正切,记为tanA,即tanA=∠A的对边∠A的邻边=aa∠A的正弦、余弦、正切统称为∠A的锐角三角函数.提示:sin A 不是sin与A的乘积,而是一个整体,cosA和tanA同理;锐角三角函数的三种表示方法:sin A,sin 56°,sin∠DEF.2.一个锐角的三角函数值是一个比值,它与三角形的大小无关,它没有单位.在Rt△ABC中,当锐角A的度数一定时,无论这个直角三角形大小如何,∠A的锐角三角函数值为定值.锐角三角函数锐角α30°45°60°sin α12√22√32cos α√32√2212tan α√331√3(1)正弦值、正切值随角度的增大而增大,余弦值随角度的增大而减小.(2)sin α=cos(90°-α)cos α=sin(90°-α)tan α·tan(90°-α)=1(3)锐角A 的正弦、余弦的取值范围分别为:0<sin A<1,0<cos A<1, (4)cos 2A+sin 2A=1 sin 2A+sin 2(90°-α)=1(5)tan A=sin A cos A4.锐角三角函数值是个常数值,它只与角的度数有关,将来离开了直角三角形也存在.5.若α=45°,则sin α=cos α; 若α<45°,则sin α<cos α; 若α>45°,则sin α>cos α;28.2解直角三角形及其应用 28.2.1 解直角三角形【知识点】1.在直角三角形中,由已知元素求出其余未知元素的过程就是解直角三角形.2.在直角三角形中,三边之间的关系是a 2+b 2=c 2(勾股定理); 两锐角之间的关系是∠A+∠B=90° 边角之间的关系有sinA=∠A 的对边斜边,cosA=∠A 的邻边斜边,tanA=∠A 的对边∠A 的邻边3.在直角三角形的六个元素中,除直角外的五个元素只要知道其中的两个元素,就可以求出其余三个元素,其中至少有一个是边.4.在Rt △ABC 中,∠C=90°,若已知∠A=α,AB=c ,较简便的方法是用正弦求出BC ,用余弦求出AC ,也可用勾股定理求出AC ,根据直角三角形的两锐角互余求出∠B.单元练习一、选择题1.已知∠α为锐角,且sin a=12,则∠α=( )A.30°B.45°C.60°D.90°2.sin 60°的相反数是( )A.-12B.−√33C.−√32D.−√223.如图,在∠ABC中,∠B=90°,BC=2AB,则cosA的值为( )A.52B.12C.255D.554.如图,在4×5 的正方形网格中,每个小正方形的边长都是1,∠ABC的顶点都在这些小正方形的顶点上,那么sin∠ACB 的值为( )A.3√55B.√175C. 35D. 455.在∠ABC中,∠A,∠B均为锐角,且|2sin A-1|与(cos a-√22)2互为相反数,则∠C的度数是( )A.45°B.75°C.105°D.120°6.如图,在∠ABC中,∠C=90°,AB=15,sinB=35,则AC的长为( )A.3 B.9 C.4 D.127.如图,在离铁塔150米的A处,用测倾仪测得塔顶的仰角为α,测倾仪的高A D为1.5米,则铁塔的高BC为( )A.(1.5+150tanα)米a.(1.5+150tan a)米C.(1.5+150sinα)米a.(1.5+150sin a)米8.在Rt∠ABC 中,∠C=90°,AB=2BC,则cos A 的值为 ( ) A.√32 B .12 C .√33 D .√229.如图,在∠ABC 中,CA =CB =4,cosC =14 ,则sinB 的值为( )A.102 B .153 C .64 D .10410.如图,电线杆CD 的高度为h ,两根拉线 AC 与BC 相互垂直,∠CAB=α,则拉线 BC 的长度为(点 A,D,B 在同一条直线上)( ) a .asin a a .acos a a .atan a D. h·cosα11.定义一种运算:cos(α+β)=cos αcos β-sin αsin β,cos(α-β)=cos αcos β+sin αsin β.例如:当α=60°,β=45°时,cos(60°-45°)=12×√22+√32×√22=√2+√64,则cos 75°的值为 ( )A.√6+√24 B .√6-√24C.√6-√22 D .√6+√2212.如图,由边长为1的小正方形构成的网格中,点A ,B ,C 都在格点上,以AB 为直径的圆经过点C ,D ,则cos∠ADC 的值为( )A .21313B .31313C .23D .53 二、填空题,则cos B=_______.13.在∠ABC中, aa=90°,tan a=√3314.已知α为锐角,当无意义时,cos α的值是_______.√3tan a-115.如图,在Rt∠ABC中,∠ACB=90°,CD∠AB,垂足为D,若AC= 5 ,BC =2,则sin∠ACD的值为_________.16.某物体沿着坡比为4:3的坡面上升了8米,那么在坡面上移动了_______米.17.如图,已知正方形ABCD和正方形BEFG,点G在AD上,GF与CD交于点,正方形ABCD的边长为8,则BH的长为_______.H,tan∠ABG=1218.如图,在平面直角坐标系中,点A的坐标为(3,0),点B为y轴正半轴上的一点,点C是第一象限内一点,且AC=2,设tan∠BOC=m,则m的取值范围是_________.三、解答题19.图1是一种三角车位锁,其主体部分是由两条长度相等的钢条组成.当位于顶端的小挂锁打开时,钢条可放入底盒中(底盒固定在地面下),此时汽车可以进入车位;当车位锁上锁后,钢条按图1的方式立在地面上,以阻止底盘高度低于车位锁高度的汽车进入车位.图2是其示意图,经测量,钢条AB=AC=50 cm,∠AB C=47°.(1)求车位锁的底盒BC的长;(2)若一辆汽车的底盘高度为30cm,当车位锁上锁时,问这辆汽车能否进入该车位? (参考数据:aaa47°≈0.73,aaa47°≈0.68,aaa47°≈1.07)20.某景区为给游客提供更好的游览体验,拟在如图∠所示的景区内修建观光索道.其设计示意图如图∠所示,以山脚A为起点,沿途修建AB、CD两段长度相等的观光索道,最终到达山顶D处,中途设计了一段与AF平行的观光平台BC,BC长为50 m.索道AB与AF的夹角为15°,CD与水平线的夹角为45°,A、B两处的水平距离AE为576 m,DF∠AF,垂足为点F.(图∠中所有点都在同一平面内,点A、E、F 在同一水平线上)(1)求索道AB的长(结果精确到1 m);(2)求AF的长(结果精确到1 m).(参考数据:sin 15°≈0.25,cos 15°≈0.96,tan 15°≈0.26,√2≈1.41)21.八年级二班学生到某劳动教育实践基地开展实践活动,当天,他们先从基地门口A处向正北方向走了450米,到达菜园B处锄草,再从B处沿正西方向到达果园C处采摘水果,再向南偏东37°方向走了300米,到达手工坊D处进行手工制作,最后从D处回到门口A处,手工坊在基地门口北偏西65°方向上,求菜园与果园之间的距离.(结果保留整数.参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)。
28.2解直角三角形及其应用1.理解直角三角形中五个元素之间的关系及什么是解直角三角形.2.会利用勾股定理、直角三角形的两个锐角互余及锐角三角函数解直角三角形.3.了解仰角、俯角、方位角、坡度、坡角等有关概念,知道坡度与坡角之间的关系.4.经历对实际问题的探究,会利用解直角三角形的知识解决实际问题.5.在具体情景中从数学的角度发现问题和提出问题,并综合运用数学知识解决简单实际问题.1.综合运用所学知识解直角三角形,逐步培养学生分析问题、解决问题的能力.培养学生思维能力的灵活性.2.通过学习,发展分析、归纳、抽象、概括的能力,培养学生从已有的知识、特殊图形中去感知、迁移.3.通过画示意图,将实际问题转化为数学问题,发展学生的抽象概括能力,提高应用数学知识解决实际问题的能力.4.经历从实际问题中建立数学模型的过程,增强应用意识,体会数形结合思想的应用.1.在探索解直角三角形的过程中,渗透数形结合思想,培养学生综合运用知识的能力和良好的学习习惯.2.在探究活动中,培养学生的合作交流意识,让学生在学习中感受成功的喜悦,增强学习数学的信心.3.通过根据实际问题画示意图的过程,培养学生的动手能力,激发学生对数学的好奇心和求知欲.4.通过将实际问题转化为数学问题,培养建模思想,提高分析问题、解决问题的能力.5.调动学生学习数学的积极性和主动性,培养学生认真思考等学习习惯,形成实事求是的科学态度.【重点】1.理解解直角三角形的概念,掌握解直角三角形的方法.2.用三角函数有关知识解决仰角、俯角、方位角、坡度、坡角等有关问题.3.能根据题意画出示意图,将实际问题的数量关系转化为直角三角形元素之间的关系.【难点】理解并掌握解直角三角形的方法;正确理解题意,将实际问题转化为数学模型.28.2.1解直角三角形1.理解直角三角形中五个元素之间的关系及什么是解直角三角形.2.会利用勾股定理、直角三角形的两个锐角互余及锐角三角函数解直角三角形.1.综合运用所学知识解直角三角形,逐步培养学生分析问题、解决问题的能力.2.通过学习,发展分析、归纳、抽象、概括的能力,培养学生从已有的知识、特殊图形中去感知、迁移.1.在探索解直角三角形的过程中,渗透数形结合思想,培养学生综合运用知识的能力和良好的学习习惯.2.在探究活动中,培养学生的合作交流意识,让学生在学习中感受成功的喜悦,增强学习数学的信心.【重点】理解解直角三角形的概念,掌握解直角三角形的方法.【难点】理解并掌握解直角三角形的方法.【教师准备】多媒体课件.【学生准备】复习、记忆特殊三角函数值.导入一:【复习提问】1.在Rt△ABC中,∠C=90°,∠A,∠B,∠C所对的边分别为a,b,c,则a,b,c,∠A,∠B这五个元素之间有哪些等量关系呢?【学生活动】学生独立思考后,小组合作交流,小组代表回答问题,教师点拨,并归纳五个元素之间的关系.【课件展示】(1)三边之间关系:a2+b2=c2(勾股定理);(2)两锐角之间关系:∠A+∠B=90°;(3)边角之间关系:sin A=,cos A=,tan A=.2.回忆30°,45°,60°角的正弦、余弦、正切值.导入二:在本章引言中我们曾经描述过比萨斜塔倾斜程度的问题,把1972年的情形抽象为数学问题为:设塔顶中心点为B,塔身中心线与垂直中心线的夹角为∠A,过点B向垂直中心线引垂线,垂足为C(如图).在Rt△ABC中,∠C=90°,BC=5.2m,AB=54.5m,求∠A的度数.【师生活动】学生独立思考后回答,教师点评.sin A==≈0.0954.利用计算器可得∠A≈5°28'.【追问】在Rt△ABC中,你还能求出其他的边和角吗?【师生活动】学生思考后回答解题思路,教师把问题一般化,引出本节课课题.[过渡语]一般地,在直角三角形中,除直角外,共有五个元素,即三条边和两个锐角.在直角三角形中,已知三角形的一些边角元素,我们可以求解直角三角形中的其他元素,什么情况能求解、如何求解就是我们这节课要学习的主要内容.[设计意图]通过回顾直角三角形中边与角、边与边、角与角之间的数量关系,为本节课的学习做好铺垫,以实际问题导入新课,体会数学来源于生活,激发学生学习兴趣,同时通过已知直角三角形的一些元素求出直角三角形的其他元素,很自然地过渡到本节课的课题.一、共同探究思路一探究:(1)在Rt△ABC中,∠A=60°,AB=30,你能求出这个直角三角形的其他元素吗?(2)在上图中,若AC=,BC=,你能求出这个直角三角形的其他元素吗?(3)在上图中,若∠A=60°,∠B=30°,你能求出这个直角三角形的其他元素吗?(4)在直角三角形中,知道几个元素就可以求出其他元素?【师生活动】小组合作交流解题思路,注意在解题过程中方法的多样性,教师根据学生的回答进行汇总归纳.【课件展示】(1)在直角三角形的六个元素中,除直角外的五个元素,只要知道两个元素(其中至少有一条边),就可以求出其余的三个未知元素.(2)定义:由直角三角形中的已知元素,求出其余未知元素的过程,叫做解直角三角形.(3)解直角三角形,只有两种:①已知两条边;②已知一条边和一个锐角.思路二【思考】如图,在Rt△ABC中,∠C=90°,已知直角三角形的几个元素可以求出其他元素?(1)已知直角三角形中的一个元素,能求其他元素吗?(2)已知直角三角形中的两个元素,有几种可能的情况?(一边和一角、两边、两角)(3)举例说明已知直角三角形的两个元素,怎样求其他元素?(4)你能归纳解直角三角形有几种基本类型吗?具体解法步骤是什么?【师生活动】学生在教师提出的问题的引导下,小组合作交流,回答解题思路,教师根据学生的回答进行汇总归纳,学生回答问题过程中注意解题方法的多样性.【课件展示】(1)在直角三角形的六个元素中,除直角外的五个元素,只要知道两个元素(其中至少有一条边),就可以求出其余的三个未知元素.(2)定义:由直角三角形中的已知元素,求出其余未知元素的过程,叫做解直角三角形.(3)解直角三角形,只有两种:①已知两条边;②已知一条边和一个锐角.(4)解直角三角形的步骤:图形已知类型已知条件解法步骤两边斜边,一直角边(如c,a)(1)b=(2)由sin A=求∠A(3)∠B=90°-∠A两直角边(a,b)(1)c=(2)由tan A=求∠A(3)∠B=90°-∠A一边一角斜边,一锐角(如c,∠A)(1)∠B=90°-∠A(2)由sin A=,得a=c·sin A(3)由cos A=,得b=c·cos A一直角边,一锐角(如a,(1)∠B=90°-∠A(2)由tan A=,得b=∠A) (3)由sin A=,得c=[设计意图]学生在教师问题的引导下思考分析,合作交流并归纳结论,学生经历概念的形成过程,理解掌握解直角三角形的概念,提高学生分析问题的能力,培养学生的发散思维能力.二、例题讲解如图,在Rt△ABC中,∠C=90°,AC=,BC=,解这个直角三角形.教师引导分析:(1)已知线段AC,BC是∠A的邻边和对边,用哪个三角函数可以表示它们之间的等量关系?(2)已知∠A的三角函数值可以求∠A的度数吗?(3)已知∠A的度数怎样求∠B的度数?(4)你有几种方法可以求斜边AB的长?【学生活动】思考后独立完成,小组内交流答案,小组代表板书过程.【课件展示】解:∵tan A===,∴∠A=60°,∠B=90°-∠A=90°-60°=30°,AB=2AC=2.如图,在Rt△ABC中,∠C=90°,∠B=35°,b=20,解这个直角三角形(结果保留小数点后一位).教师引导分析:由∠B=35°,可得∠A==°;由∠B=35°及它的对边b=20,根据可得a==;由∠B=35°及它的对边b=20,根据可得c==.【追问】你还有其他方法求c的值吗?【学生活动】在教师提出的问题的引导下,独立完成解答过程,小组内交流答案,组长指出组内成员的错误,并帮助改正.教师对学生的板书进行点评,强调规范性,并鼓励学生用多种方法求解.【课件展示】解:∠A=90°-∠B=90°-35°=55°.∵tan B=,∴a==≈28.6.∵sin B=,∴c==≈34.9.[设计意图]通过例题理解和掌握解直角三角形的思路和方法,进一步训练学生学会灵活运用直角三角形的有关知识解直角三角形,并体会从计算简便的角度选用适当的关系式求解,同时提高学生分析问题和解决问题的能力,通过规范书写过程,培养学生严谨的学习态度. [知识拓展](1)直角三角形中一共有六个元素,即三条边和三个角,除直角外,另外的五个元素中,只要已知一条边和一个角或两条边,就可以求出其余的所有未知元素.(2)运用关系式解直角三角形时,常用到下列变形:①锐角之间的关系:∠A=90°-∠B,∠B=90°-∠A.②三边之间的常用变形:a=,b=,c=.(3)边角之间的常用变形:a=c·sin A,b=c·cos A,a=b·tan A,a=c·cos B,b=c·sin B,b= a·tan B.(4)虽然求未知元素时可选择的关系式有很多种,但为了计算方便,最好遵循“先求角后求边”和“宁乘不除”的原则.(5)选择关系式时要尽量利用原始数据,以防“累积误差”.(6)遇到不是直角三角形的图形时,要适当添加辅助线,将其转化为直角三角形求解.1.解直角三角形的概念2.直角三角形中五个元素之间的关系:(1)三边之间关系:a2+b2=c2(勾股定理);(2)两锐角之间关系:∠A+∠B=90°;(3)边角之间关系:sin A=,cos A=,tan A=.3.解直角三角形的基本类型及解法步骤(参考前面表格).1.由直角三角形中已知的元素,求出所有未知元素的过程叫做解直角三角形.已知一个直角三角形中:(1)两条边的长度;(2)两个锐角的度数;(3)一个锐角的度数和一条边的长度.利用上述条件中的一个,能解这个直角三角形的是()A.(1)(2)B.(1)(3)C.(2)(3)D.(1)(2)(3)2.在△ABC中,a,b,c分别是∠A,∠B,∠C的对边,如果a2+b2=c2,那么下列结论正确的是()A.c sin A=aB.b cos B=cC.a tan A=bD.c tan B=b3.在Rt△ABC中,∠C=90°,∠B=30°,BC=6,则AB的长为.4.根据下列条件解直角三角形.(1)在Rt△ABC中,∠C=90°,b=4,c=8;(2)在Rt△ABC中,∠C=90°,∠A=60°,a=12.【答案与解析】1.B 解析:能解的直角三角形有两种:已知两边;已知一边和一锐角.故选B.2.A 解析:由a2+b2=c2,得∠C=90°,∴sin A=,cos B=,tan A=,tan B=,∴c sin A=a,c cos B=a,b tan A=a,a tan B=b.故选A.3. 4解析:∵cos B==,BC=6,∴AB==4.4.解:(1)∵∠C=90°,b=4,c=8,∴a===4.∵cos B==,∴∠B=30°,∴∠A=180°-90°-30°=60°.(2)∵∠C=90°,∠A=60°,∴∠B=180°-90°-60°=30°.∵tan A=tan 60°==,a=12,∴b=4,∴c=2b=8.28.2.1解直角三角形1.共同探究3.例题讲解例1例2一、教材作业二、课后作业【基础巩固】1.在Rt△ABC中,∠C=90°,sin A=,则∠B等于()A.30°B.45°C.60°D.90°2.在Rt△ABC中,∠C=90°,∠B=35°,AB=7,则BC的长为()A.7sin35°B.C.7cos35°D.7tan35°3.在Rt△ABC中,∠C=90°,AC=1,BC=2,则下列结论正确的是()A.sin B=B.cos B=C.tan B=2D.AB=4.在Rt△ACB中,∠C=90°,AB=10,sin A=,则BC的长为()A.6B.7.5C.8D.12.55.如果等腰三角形的底角为30°,腰长为6cm,那么这个三角形的面积为()A.4.5cm2B.9cm2C.18cm2D.36cm26.在Rt△ABC中,∠C=90°,b=10,∠A=30°,则a=.7.在Rt△ABC中,∠C=90°,AC=5,AB=5,则∠A=,BC=.8.如图,在Rt△ABC中,斜边BC上的高AD=4,cos B=,则AC=.9.根据下列条件解直角三角形.(1)在Rt△ABC中,∠C=90°,AB=10,BC=5.(2)在Rt△ABC中,∠C=90°,∠A=60°,BC=.10.如图,已知在△ABC中,AD是BC边上的高,E为边AC的中点,BC=14,AD=12,sin B=.求:(1)线段DC的长;(2)tan∠EDC的值.【能力提升】11.如图,在Rt△ABC中,∠ACB=90°,若AB=4,sin A=,则斜边AB上的高CD为.12.如图,在△ABC中,AB=2,AC=,以点A为圆心,1为半径的圆与边BC相切于点D,则∠BAC 的度数是.13.如图,在△ABC中,∠A=30°,∠B=45°,AC=2,则AB的长为.14.如图,在菱形ABCD中,DE⊥AB于点E,cos A=,BE=4,求tan∠DBE的值.【拓展探究】15.如图,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD,AE分别与CD,CB相交于点H,E,AH=2CH.(1)求sin B的值;(2)如果CD=,求BE的长.【答案与解析】1.C解析:由sin A=,得∠A=30°,则∠B=90°-∠A=60°.故选C.2.C解析:∵cos B==,∴BC=7cos B=7cos35°.故选C.3.A解析:∵在Rt△ABC中,∠C=90°,AC=1,BC=2,∴AB=,sin B=,cos B=,tan B=.故选A.4.A解析:∵∠C=90°,AB=10,∴sin A==,∴BC=×10=6.故选A.5.B解析:如图,作底边上的高AD.若∠B=30°,AB=6cm,则AD=AB sin B=6×=3(cm),BD=AB cos B=6×=3(cm).∴BC=2BD=6cm,∴=AD·BC=×3×6=9(cm2).故选B.6.解析:∵cos A==,b=10,∴c=,∴a=c=.7.45°5解析:∵cos A==,∴∠A=45°.∵∠C=90°,∴∠B=∠A=45°,∴BC=AC=5.8.5解析:∵在Rt△ABC中,cos B=,∴sin B=,tan B==.在Rt△ABD中,AD=4,∴AB===.在Rt△ABC中,∵tan B=,∴AC=×=5.9.解:(1)根据勾股定理可得AC==5,又sin A==,∴∠A=30°,∴∠B=90°-∠A=60°.(2)在Rt△ABC中,∠C=90°,∴∠B=90°-∠A=30°.又sin A==,∴AB=2,由勾股定理可得AC==1.10.解:(1)∵AD是BC边上的高,∴△ABD和△ACD都是直角三角形.在Rt△ABD中,∵sin B=,∴=.又AD=12,∴AB=15,∴BD==9.又∵BC=14,∴CD=5.(2)在Rt△ACD中,∵E为斜边AC的中点,∴ED=EC=AC,∴∠C=∠EDC,∴tan∠EDC=tan C==.11.解析:在Rt△ABC中,AB=4,sin A=,∴BC=AB sin A=.根据勾股定理得AC==.∵=AC·BC=AB·CD,∴CD===.12.105°解析:如图,连接AD,则AD⊥BC.在Rt△ABD中,AB=2,AD=1,则sin B==,∴∠B=30°,∴∠BAD=60°.同理,在Rt△ACD中,得到∠CAD=45°,因而∠BAC的度数是105°.13.3+解析:如图,过C作CD⊥AB于D,∴∠ADC=∠BDC=90°.∵∠B=45°,∴∠BCD=∠B=45°,∴CD=BD.∵∠A=30°,AC=2,∴CD=,∴BD=CD=,由勾股定理得AD==3,∴AB=AD+BD=3+.14.解:∵四边形ABCD是菱形,∴AD=AB.∵cos A=,BE=4,DE⊥AB,∴设AD=AB=5x,AE=3x,则5x-3x=4,∴x=2,即AD=10,AE=6.在Rt△ADE中,由勾股定理得DE==8.在Rt△BDE 中,tan∠DBE===2.15.解:(1)∵AE⊥CD,∠ACB=90°,∴∠AHC=∠ACB=90°.∵CD是AB上的中线,∴CD=AD=BD =AB,∴∠DAC=∠DCA,∠B=∠DCB,∴∠B=∠CAH.∵AH=2CH,∴CH∶AH∶AC=1∶2∶,∴sin B=sin∠CAH==.(2)由(1)可知AC∶BC∶AB=1∶2∶,CE∶AC∶AE=1∶2∶.∵CD=,∴AB=2,∴AC=2,BC=4,CE=1,∴BE=BC-CE=4-1=3.在教学设计中,通过回顾复习直角三角形中边与边、角与角、边与角之间的关系,为下一步解直角三角形打下基础,再通过解决比萨斜塔问题引入解直角三角形知识的必要性,激发学生学习本节课的学习兴趣,同时解决章前导入问题,做到首尾呼应.通过解含有特殊角的直角三角形的探究活动,归纳出解直角三角形的概念及基本形式和方法步骤,由浅入深地引导探究,学生更易于掌握本节课的重点和难点,同时培养了学生的归纳总结能力.通过例题学会灵活运用直角三角形知识解决问题,加深对解直角三角形的认识,培养学生分析问题、解决问题的能力及严谨地求学精神.本节课的重点是解直角三角形,教学设计中追求新理念在课堂中的应用,重视学生参与课堂,所以教学设计中以问题为引领,小组合作交流为主要教学活动形式,预期学生课堂气氛活跃,人人参与课堂,让每个学生体验成功的快乐,但在授课过程中过于追求形式,课堂中的讨论交流只是流于形式,所以在以后的教学活动中多关注学生小组交流时的效率.复习直角三角形三边之间的关系、角之间的关系及边角之间的关系,为本节课的学习打下基础,同时以生活实际问题导入新课,激发学生学习兴趣,调动学生学习的积极性.通过探究已知直角三角形的两个元素求其他元素的过程,很自然地引出解直角三角形的概念,学生经历概念的形成过程,更利于理解与掌握.例题的分析讲解,让学生体会解直角三角形的方法,提高学生学习能力,培养良好的思维习惯.更新教学理念,提高课堂效率(1)新课程改革要求:让学生通过交流、合作、讨论的方式,积极探索,改进学习方法,提高学习质量,逐步形成正确地数学价值观.以这一理念为前提,在教学设计中以解决章前比萨斜塔问题导入新课,让学生体会数学与生活之间的联系,激发学生的学习兴趣.在各个环节的教学设计中,始终以学生活动为主,教师只是课堂的引导者,通过动手操作、动脑思考、小组合作、共同归纳等数学活动,让学生参与课堂活动,注重学生对待学习的态度是否积极主动,注重以问题形式引导学生从数学的角度去思考问题,同时利用尝试教学,让学生暴露思维过程,通过学生之间的质疑解决问题.在课堂上留给学生足够的空间思考和展示自己,让学生在充满情感的、和谐的课堂氛围中体验成功的快乐,从而提高了学生在课堂上的学习效率. (2)本节课是《解直角三角形》的第一课时,在本章内容中起着承上启下的作用,通过前边学过的三角函数知识,结合勾股定理和直角三角形中的有关性质,求出直角三角形中的未知元素是本节课的重点,它是下节课解决实际问题的基础,要注重培养学生数学能力和数学思维的提高.如图,在Rt△ABC中,∠C=90°,点O在AB上,以O为圆心,OA长为半径的圆与AC,AB 分别交于点D,E,且∠CBD=∠A,若AD∶AO=8∶5,BC=2,求BD的长.解:连接DE.∵AE是☉O的直径,∴∠ADE=90°.∵AD∶AO=8∶5,∴cos A==.∵∠C=90°,∠CBD=∠A,∴cos∠CBD==.∵BC=2,∴BD=.如图,AC是矩形ABCD的对角线,AB=2,BC=2,点E,F分别是线段AB,AD上的点,连接CE,CF,当∠BCE=∠ACF,且CE=CF时,AE+AF=.〔解析〕如图,作FG⊥AC于G,易证△BCE≌△GCF,∴BE=GF,BC=CG.在Rt△ABC中, tan∠ACB===,∴∠ACB=30°,AC=2AB=4,∠DAC=∠ACB=30°.∵FG⊥AC,∴AF=2GF,∴AE+AF=AE+2BE=AB+BE.设BE=x,在Rt△AFG中,AG=GF=x,∴AC=AG+CG=x+2=4,解得x=-2,∴AE+AF=AB+BE=2+-2=.28.2.2应用举例1.了解仰角、俯角、方位角、坡度、坡角等有关概念,知道坡度与坡角之间的关系.2.经历对实际问题的探究,会利用解直角三角形的知识解决实际问题.3.在具体情景中从数学的角度发现问题和提出问题,并综合运用数学知识解决简单实际问题.1.通过画示意图,将实际问题转化为数学问题,发展学生的抽象概括能力,提高应用数学知识解决实际问题的能力.2.经历从实际问题中建立数学模型的过程,增强应用意识,体会数形结合思想的应用.3.通过探究将实际问题转化为数学问题的过程,培养学生分析问题和解决问题的能力,培养学生思维能力的灵活性.1.通过根据实际问题画示意图的过程,培养学生的动手能力,激发学生对数学的好奇心和求知欲.2.通过自主学习、合作交流,体验成功的快乐,增强学习数学的自信心,培养学生勇于探索的创新精神.3.调动学生学习数学的积极性和主动性,培养学生认真思考等学习习惯,形成实事求是的科学态度.【重点】1.用三角函数有关知识解决仰角、俯角、方位角、坡度、坡角等有关问题.2.能根据题意画出示意图,将实际问题的数量关系转化为直角三角形元素之间的关系.【难点】正确理解题意,将实际问题转化为数学问题.第课时1.了解仰角、俯角等有关概念,经历对实际问题的探究,会利用解直角三角形的知识解决实际问题.2.通过在具体情景中从数学的角度发现问题和提出问题,并综合运用数学知识解决简单实际问题.1.经历将实际问题转化为数学问题的探究过程,提高应用数学知识解决实际问题的能力.2.通过探索用解直角三角形知识解决仰角、俯角等有关问题,让学生体会数学知识的发生、发展、应用过程,并发展学生的动手能力.3.经历从实际问题构建数学模型的过程,体会数学来源于生活又应用于生活.1.学生积极参与探索活动,并在探索过程中发表自己的见解,体会三角函数是解决实际问题的有效工具.2.通过探索三角函数在实际问题中的应用,感受数学来源于生活又应用于生活以及勇于探索的创新精神.3.让学生在自主探索、合作交流中获得成功的体验,建立自信心,让学生在解决问题的过程中体会学数学、用数学的乐趣.【重点】能根据题意画出示意图,将实际问题的数量关系转化为直角三角形元素之间的关系.【难点】正确理解题意,将实际问题转化为数学模型的建模过程.导入一:【复习提问】1.如图,在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边分别为a,b,c.(1)三边a,b,c有什么关系?(2)∠A,∠B有怎样的关系?(3)边与角之间有怎样的关系?2.解直角三角形应具备怎样的条件?【师生活动】学生回答问题,教师点评归纳.导入二:如图,要想使人安全地攀上斜靠在墙面上的梯子AB的顶端,梯子与地面所成的角α一般要满足50°≤α≤75°.现有一架长6m的梯子.(1)使用这架梯子最高可以安全攀上多高的墙?(2)当梯子底端距离墙面2.4m时,α等于多少度?此时人能否安全使用这架梯子?【师生活动】学生小组内讨论解题思路,小组代表回答解题思路,教师巡视中帮助有困难的学生,对学生的回答作出点评,然后导出新课.[设计意图]通过复习解直角三角形的有关知识,为本节课的用解直角三角形解决实际问题做好铺垫,以旧引新,帮助学生建立新旧知识间的联系,以解决生活实际问题引出新课,激发学生的好奇心和求知欲,感受数学应用的意义.[过渡语]刚才的导入中用解直角三角形的知识解决了实际生活问题,在生活实际中还有许多问题可以用解直角三角形的知识解决,让我们一起去探究吧!一、活动一2012年6月18日,“神舟”九号载人航天飞船与“天宫”一号目标飞行器成功实现交会对接.“神舟”九号与“天宫”一号的组合体在离地球表面343km的圆形轨道上运行,如图,当组合体运行到地球表面P点的正上方时,从中能直接看到的地球表面最远的点在什么位置?最远点与P点的距离是多少(地球半径约为6400km,π取3.142,结果取整数)?思路一师生合作探究:(1)从组合体上最远能直接看到的地球上的点,应该是视线与地球相切时的切点.(2)根据题意画出平面图形.(3)所要求的距离是图形中的哪条线段的长度?(4)已知中有哪些条件?求弧长需要知道哪些条件?(5)弧所对的圆心角在哪个三角形中?你能求出这个角的度数吗?(如图②,☉O表示地球,点F是组合体的位置,FQ是☉O的切线,切点Q是从组合体中观测地球时的最远点.弧PQ的长就是地面上P,Q两点间的距离.为计算弧PQ的长需先求出∠POQ(即α)的度数)【师生活动】教师通过提出的问题引导学生分析思考,指导学生画出平面图形,分析已知条件和所求的结论,师生共同分析题意及解题思路后,学生独立完成并板书解题过程.【课件展示】解:设∠POQ=α,在图②中,FQ是☉O的切线,△FOQ是直角三角形.∵cosα==≈0.9491,∴α≈18.36°.∴弧PQ的长为×6400≈×6400≈2051(km).由此可知,当组合体在P点正上方时,从中观测地球表面时的最远点距离P点约2051km.思路二教师引导思考:(1)要解决实际问题,首先要做什么?(将实际问题抽象成数学问题)(2)如何根据题意画出平面图形?(地球平面图形是圆,组合体近似看作点)(3)从组合体中看到的地球表面最远的点在什么位置?(过点作圆的切线,切点即为所求) 学生操作:画出平面示意图.(4)最远点与P点的距离在示意图中指的是什么的长?(5)如何求这段距离?和圆有什么关系?(6)如何将所需数据转化为解直角三角形的知识?【师生活动】学生尝试根据图形写出解题思路,教师巡视过程中及时帮助有困难的学生,课件展示解题过程,规范解题格式.【课件展示】解答同思路一.[设计意图]引导学生画出示意图,把实际问题转化为数学问题,分析实际问题中的数量关系,利用解直角三角形的知识解决实际问题,让学生经历作图、分析过程,体会数形结合思想在数学中的应用,提高学生分析问题、解决问题的能力.二、活动二【思考】平时我们观察物体时,我们的视线相对于水平线来说可有几种情况?【归纳】视线与水平线所成的角中,视线在水平线上方的角是仰角,视线在水平线下方的角是俯角.热气球的探测器显示,从热气球看一栋楼顶部的仰角为30°,看这栋楼底部的俯角为60°,热气球与楼的水平距离为120m,这栋楼有多高(结果取整数)?教师引导分析:(1)如何根据题意画出符合题意的几何图形?(画出示意图如图)(2)分析题意,已知条件有哪些?(3)你能直接求出AB的长吗?(4)如何求出BC的长?(线段BD与线段CD的和)(5)在Rt△ABD中,能否求线段BD的长?(6)在Rt△ACD中,能否求线段CD的长?【师生活动】教师引导学生思考问题,然后独立完成解题过程,教师巡视过程中及时发现问题,并帮助有困难的学生解决问题,然后课件展示解题过程,规范解题格式.【课件展示】解:如图,α=30°,β=60°,AD=120.∵tanα=,tanβ=,∴BD=AD·tanα=120×tan30°=120×=40,CD=AD·tanβ=120×tan60°=120×=120.∴BC=BD+CD=40+120=160≈277(m).因此,这栋楼高约为277m.[设计意图]学生在教师设计的问题串的引导下思考,独立完成解题过程,进一步让学生体会将实际问题转化为数学问题的建模过程,培养学生建模思想,灵活应用解直角三角形知识解决有关线段的长的计算问题,提高学生的数学思维及解题能力.三、活动三:【思考】你能总结利用解直角三角形的有关知识解决实际问题的一般过程吗?【师生活动】学生思考后小组合作交流,共同归纳解题过程,教师对学生的回答以鼓励为主,将学生的回答补充完整.【归纳】(1)将实际问题抽象成数学问题(画出示意图,将其转化为解直角三角形的问题);(2)根据问题中的条件,适当选用锐角三角函数解直角三角形;(3)得到数学问题的答案;(4)得到实际问题的答案.[设计意图]通过例题的探究,归纳解决实际问题的一般步骤,培养学生归纳总结能力和建模思想.[知识拓展]仰角与俯角都是视线与水平线的夹角.用解直角三角形的有关知识解决实际问题的一般过程:(1)将实际问题抽象成数学问题(画出示意图,将其转化为解直角三角形的问题);(2)根据问题中的条件,适当选用锐角三角函数等解直角三角形;(3)得到数学问题的答案;(4)得到实际问题的答案.1.如图,由D点测塔顶A点和塔基B点的仰角分别为60°和30°.已知塔基高出地平面20米(即BC长为20米),塔身AB的高为()A.60米B.40米C.40米D.20米。