基于FANUC+Oi-MC数控系统的用户指令开发
- 格式:pdf
- 大小:471.28 KB
- 文档页数:3
张俊基笔记(功能指令说明)FANUC oi系统——PMC-功能指令编号缩写注释SUB1END1第一级顺序程序结束SUB2END2第二级顺序程序结束SUB3TMR可变定时器,其设定的时间在屏幕的定时器画面中显示和设定ACT=启动信号SUB4DEC译码,当从译码地址读取的BCD码与译码指令中的给定值对比,一致输出“1”,不同输出“0”。
主要用于M或T功能的译码SUB5CTR计数器,可作预置型,环型,加/减计数器,并可选择1或0作为初始值CN0=初始值选择UPDOWN=加/减计数选择RST=复位SUB6ROT旋转控制,用于回转控制,如刀架,旋转工作台等RN0=转台的起始号1或0BYT=位置数据的位数DIR=是否执行旋转方向短路径选择POS=选择操作条件INC=选择位置数或步数SUB7COD代码转换,将BCD代码转换为两位或四位BCD数字SUB8MOVE逻辑乘数数据传送,将逻辑乘数与输入数据进行进行逻辑乘,结果输出到指定地址。
也可从输入地址中,八位信号中,排除不要的位数SUB9COM公共线控制,控制直到公共结束指令(COME)范围内的线圈工作SUB10JMP跳转,用梯形图程序的转移。
当执行时,跳至跳转结束指令(JMPE)而不执行与JMP指令之间的梯形图SUB11PARI奇偶校验,对数据进行奇偶校验,检测到异常时输出报警O.E=0时,偶数校验;O.E=1时,奇数校验SUB14DCNV数据转换,将二进制码转换为BCD码或将BCD码转换为二进制码CNV=0时,二进制码转换为BCD码;NCV=1时,BCD码转换为二进制码SUB15COMP数值大小判别,将输入值与比较值进行比较来判别大小。
输入值小于等于比较值,则输出为1BYT=0时,处理数据为两位BCD;BYT=1时,四位BCDSUB16COIN一致性检测,检测输入值与比较值是否一致。
此指令只适用于BCD数据SUB17DSCH数据检索,在数据表(D)中搜索指定的数据,如未找到指定数据,则输出为1 SUB18XMOV变址数据传送,读取或改写数据表(D)中的内容RW=0时,读出;RW=1时,写入SUB19ADD加法运算,BCD码两位或四位数据相加;运算结果超过加数指定格式,输出置1SUB20SUB减法运算,BCD码两位或四位数据相减;运算结果为负,输出置1SUB21MUL乘法运算,BCD码两位或四位数据相乘;运算结果超过加数指定的格式,输出置1SUB22DIV除法运算,BCD码两位或四位数据相除除数为0,输出置1SUB23NUME定义常数,用于指定常数SUB24TMRB固定定时器,设定时间在编程时确定,不能通过定时器画面修改SUB25DECB二进制译码,可对1,2或4个字节的二进制代码数据译码。
第四章 FANUC-Oi-MD系统数控铣床编程1.1常用编程指令一:准备功能(G功能)准备功能G代码用来规定刀具和工件的相对运动轨迹、机床坐标系、坐标平面、刀具补偿、坐标偏置等多种加工操作。
数控加工常用的G功能代码见表4-1.表4-1G代码组功能附注G0001定位 (快速移动)模态G01直线插补模态G02顺时针方向圆弧插补模态G03逆时针方向圆弧插补模态G0400停刀,准确停止非模态G1702XY平面选择模态G18XZ平面选择模态G19YZ平面选择模态G2800机床返回参考点非模态G4007取消刀具半径补偿模态G41刀具半径左补偿模态G42刀具半径右补偿模态G4308刀具长度正补偿模态G44刀具长度负补偿模态G49取消刀具长度补偿模态G5011比例缩放取消模态G51比例缩放有效模态G50.122可编程镜像取消模态G51.1可编程镜像有效模态G5200局部坐标系设定非模态G5300选择机床坐标系非模态G5414工件坐标系1选择模态G55工件坐标系2选择模态G56工件坐标系3选择模态G57工件坐标系4选择模态G58工件坐标系5选择模态G59工件坐标系6选择模态G6500宏程序调用非模态G6612宏程序模态调用模态G67宏程序模态调用取消模态G6816坐标旋转模态G69坐标旋转取消模态G7309排削钻孔循环模态G74左旋攻螺纹循环模态G76精镗循环模态G80取消固定循环模态G81钻孔循环模态G82反镗孔循环模态G83深孔钻削循环模态G84攻螺纹循环模态G85镗孔循环模态G86镗孔循环模态G87背镗循环模态G88镗孔循环模态G89镗孔循环模态G9003绝对值编程模态G91增量值编程模态G9200设置工件坐标系非模态G9405每分钟进给模态G95每转进给模态G9810固定循环返回初始点模态G99固定循环返回R点模态二:辅助功能(M代码)辅助功能代码用于指令数控机床辅助装置的接同和关断,如主轴转/停、切削液开/关,卡盘夹紧/松开、刀具更换等动作。
法拉克OiM数控系统操作及主要编程命令的使用方法撰写人:王成凯(严正声明:该文稿的著作权归原作者所有,谨以交流学习之用。
未经许可,不得用于商业或其他用途,否则追究法律责任。
)世界第一台数控机床于1952年在美国麻省理工学院诞生,经历了半个多世纪的发展,目前已经出现最先进的六轴联动加工数控机床,进入新世纪以来,国内先后多家公司研制出五轴加工数控机床,数控机床不仅仅是一台先进的机器,更代表着一个国家的工业机械水平。
在国防,科研人民生活生产方面正发挥着不可替代的作用。
数控编程主要步骤方法:1.程序号;(法拉克OiM系统一般默认以O开头的四位数值,即O0001或其他。
法拉克机床中的程序都是保留的,便于下次的再次调用。
但是每一个程序号都不得重复。
我们如果删除全部程序可以按O-9999,然后按delete键删除全部程序。
)2.设置零点,系统初始状态;(建立机床坐标系以及工件坐标系)3.快速定位至下刀点;4.下刀;(下刀时,我们应当圆弧切入尽量避免刀具与实际轮廓的碰擦,导致工件的受伤进而影响工件的表面粗糙度。
)5.建立刀具半径及长度补偿;6.走刀;(该部分为主要编程部分)7.抬刀;8.取消刀具半径及长度补偿;9.程序结束;(值得注意的是:机床在加工前,我们首先应将机床复位,即建立机床坐标系,然后才能够建立工件坐标系。
在解决超行程问题时,我们首先应当释放行程,然后将超行程的坐标轴方向,向反方向空行程返回,当然,解决超行程问题的方法很多,每个人的解决方法也不尽相同。
另外,在法拉克系统中,我们要知道的是始终假定工件不动,而刀具围绕工件进行的切削加工。
)主要数控编程命令:我们在编程之前,有几个字母应当首先理解。
即F,S等等。
他们是编程的基础,这些代码控制着机床主轴正转的速度及进给量间接影响着工件温度(温度对工件的热变形影响),对机床主轴的使用寿命也起着至关重要的影响。
对工件加工精度的影响尤为重要。
一般情况:铣刀转速为:45m min钻头转速为:15m min麻花钻转速:8m min攻丝转速为:3m min(以上都是经验所得,具体转速应当结合实际。
Fanuc系统数控车床设置工件零点常用方法1.直接用刀具试切对刀1.用外园车刀先试车一外园,记住当前X坐标,测量外园直径后,用X坐标减外园直径,所得的值输入off set界面的几何形状X值里。
2.用外园车刀先试车一外园端面,记住当前Z坐标,输入off set界面的几何形状Z值里。
2.用G50设置工件零点1.用外园车刀先试车一外园,测量外园直径后,把刀沿Z轴正方向退点,切端面到中心。
2.选择MDI方式,输入G50 X0 Z0,启动START键,把当前点设为零点。
3.选择MDI方式,输入G0 X150 Z150 ,使刀具离开工件进刀加工。
4.这时程序开头:G50 X150 Z150 …….。
5.注意:用G50 X150 Z150,你起点和终点必须一致即X150 Z150,这样才能保证重复加工不乱刀。
6.如用第二参考点G30,即能保证重复加工不乱刀,这时程序开头G30U0 W0 G50 X150 Z1507.在FANUC系统里,第二参考点的位置在参数里设置,在Yhcnc软件里,按鼠标右键出现对话框,按鼠标左键确认即可。
3.用工件移设置工件零点1.在FANUC0-TD系统的Offset里,有一工件移界面,可输入零点偏移值。
2.用外园车刀先试切工件端面,这时Z坐标的位置如:Z200,直接输入到偏移值里。
3.选择“Ref”回参考点方式,按X、Z轴回参考点,这时工件零点坐标系即建立。
4.注意:这个零点一直保持,只有从新设置偏移值Z0,才清除。
4.用G54-G59设置工件零点1.用外园车刀先试车一外园,测量外园直径后,把刀沿Z轴正方向退点,切端面到中心。
2.把当前的X和Z轴坐标直接输入到G54----G59里,程序直接调用如:G54X50Z50……。
3.注意:可用G53指令清除G54-----G59工件坐标系。
Fanuc系统数控车床常用固定循环G70-G80祥解1.外园粗车固定循环(G71)如果在下图用程序决定A至A’至B的精加工形状,用△d(切削深度)车掉指定的区域,留精加工预留量△u/2及△w。
FANUC Series OI 0iMC系统操作说明书手册B4一、概述FANUC Series OI 0iMC系统是FANUC公司推出的一款高性能数控系统,专为现代机床控制而设计。
该系统结合了FANUC多年的数控技术积累和先进的计算机控制技术,为机床制造商和用户提供了稳定、高效、便捷的数控解决方案。
本操作说明书手册将详细介绍该系统的操作说明和常见问题解答,希望能为您提供帮助。
二、操作说明1、系统启动与关机按下系统面板上的电源按钮,系统将自动启动。
等待系统自检完成后,进入操作界面。
关机时,选择主菜单中的“关机”选项,按照提示进行操作。
2、手动操作在操作界面上,可以通过手动模式对机床进行点动、连续进给、快速移动等操作。
手动模式下,可以通过按下相应的轴控制按钮和进给倍率调整旋钮来实现机床的运动。
3、自动操作在自动模式下,可以通过编写程序来实现机床的自动加工。
程序编写需遵循FANUC数控编程语言标准,通过M代码来实现各种动作。
程序编写完成后,通过操作界面上的“运行”按钮启动程序。
4、参数设置在自动模式下,可以通过参数设置来调整机床的运动轨迹、加工速度、切削用量等参数。
参数设置在主菜单中的“参数”选项中,可以根据加工需求进行调整。
三、常见问题解答1、系统无法启动可能原因:电源故障、主板故障。
解决方法:检查电源连接是否正常,专业技术人员进行维修。
2、系统死机可能原因:程序运行异常、系统资源占用过多。
解决方法:重启系统,检查程序是否存在异常,优化系统资源。
21、坐标轴运动不准确可能原因:机械故障、控制系统故障。
解决方法:检查机械传动部分是否正常,专业技术人员进行维修。
211、加工表面质量差可能原因:刀具选择不当、切削参数设置不合理。
解决方法:选择合适的刀具和切削参数,提高加工工艺水平。
FANUC Series 系统OI TD用户手册说明书B4标题:FANUC Series系统OI TD用户手册说明书B4一、介绍FANUC Series系统OI TD是一种先进的数控系统,广泛应用于机械加工、汽车制造、航空航天等领域。
基于FANUC数控机床的操作界面的PMC程序设计前言本文阐述了数控机床操作面板的PLC实现方法和思路设计,以TK7460数控铣床为例,阐述了基于FANUC-oi系统的操作面板的各个功能的作用、硬件的连接和参数设置,以及PLC的梯形图及通信方法,同时本文还对提供了机床的英文的资料进行了翻译。
一.绪论1.数控技术数控技术及装备是发展新兴高新技术产业和尖端工业的使能技术和最基本的装备。
世界各国信息产业、生物产业、航空、航天等国防工业广泛采用数控技术,以提高制造能力和水平,提高对市场的适应能力和竞争能力。
工业发达国家还将数控技术及数控装备列为国家的战略物资,不仅大力发展自己的数控技术及其产业,而且在“高精尖”数控关键技术和装备方面对我国实行封锁和限制政策。
因此大力发展以数控技术为核心的先进制造技术已成为世界各发达国家加速经济发展、提高综合国力和国家地位的重要途径。
FANUC数控系统应用越来越广泛,FANUC数控系统的优越性表现越来越广泛。
FANUC 数控系统以其高质量、低成本、高性能,得到了广大用户的认可,并得以大量使用, 就其系统本身而言,经受了连续长时间的工作考验,故障率较低。
而故障多发于外围行程、限位开关等外围信号检测电路上。
2.数控机床专用 PLC可编程控制器(PLC)是将继电器控制的概念和设计思想与计算机技术及微电子技术相结合而形成的专门从事逻辑控制的微机系统,梯形图是PLC的程序主要表达方式之一,在工业上最为普级的控制器,它原以是来代替继电器控制回路的,发展到今天出现了通讯、模拟、运算、等功能,它的优点是:控制稳定、操作简单、编程效率高等优点;在PLC系统应用中,梯形图的设计往往是最主要的问题。
梯形图不但沿用和发展了电气控制技术,而且其功能和控制指令已远远超过电气控制范畴。
它不仅可实现逻辑运算,还具有算术运算、数据处理、联网通信等功能,是具有工业控制指令的微机系统。
由于梯形图的设计是计算机程序设计与电气控制设计思想结合的产物,因此,在设计方法上与计算机程序设计和电气控制设计既有着相同点,也有着不同点。