三多维随机变量及其分布
- 格式:ppt
- 大小:1.62 MB
- 文档页数:62
学院 交通 学号1126002026 姓名 吕立正三.多维随机变量及其分布1.二维随机变量1.设随机试验E 的样本空间为:{}()(),S e X e Y e =、 为定义在S 上的随机变量,由它们构成一个随机向量 ()X Y 、,叫二维随机向量或二维随机变量.2.定义:设二维随机变量()X Y 、,对任意实数x y 、,二元函数{}(),F X Y P X xY y =≤≤,,称为()X Y 、的(联合)概率分布函数. 二维随机变量分布函数的性质:(1)(),F x y 是变量x 和y 的不减函数,即对任意固定的y ,当21x x >时()2,F x y ≥()1,F x y ;对于任意固定的x ,当21y y >时()2,F x y ≥()1,F x y .(2)()0,1F x y ≤≤,且对于任意固定的y ,(),0F y -∞=,对于任意固定的x ,(),0F x -∞=,(),0F -∞-∞=,(), 1.F ∞∞=(3) (),F x y =()0,F x y +,(),F x y =(),0F x y +,即(),F xy 关于x 右连续,关于y 也右连续.(4) 对于任意()11,x y ,()22,x y ,21x x >,21y y >,下述不等式成立: ()()()()22211112,,,,0F x y F x y F x y F x y -+-≥.如果二维随机变量(,)X Y 全部可能取到的不相同的值是有限对或可列无限多对,则称(,)X Y 是离散型的随机变量.3. 对于二维随机变量(),X Y 的分布函数(),F x y .如果存在非负的函数(),f x y 使对于任意()X Y 、有()(),,y xF x y f d d μυμυ-∞-∞=⎰⎰,则称(),X Y 是连续型的二维随机变量,函数(),f x y 称为二维随机变量(),X Y 的概率密度,或称为随机变量X 和Y 的联合概率密度. 概率密度(),f x y 具有以下性质: (1)(,)0f x y ≥ (2) (,)(,)1f x y dxdy F ∞∞-∞-∞=∞∞=⎰⎰(3) 设G 是xOy 平面上的区域,点()X Y 、落在G 内的概率为{}(,)(,)GP X Y G f x y dxdy ∈=⎰⎰(4) 若(),f x y 在点()X Y 、连续 则有2(,)(,)F x y f x y x y∂=∂∂ 4. 两个常用的分布(1)均匀分布:定义设D 为闭区域面积为A ,若随机变量()X Y 、 的(联合)密度为: 则称: ()X Y 、服从D 上的均匀分布.(2)二维正态分布:若二维随机变量 ()X Y 、的概率密度为: 则称: ()X Y 、服从参数为μ1、μ2、σ1、σ2、ρ的二维正态分布.其中σ1>0,σ2>0,|ρ|≤1是常数.记为:()X Y 、~N (μ1、μ2、σ12、σ22、ρ) .⎩⎨⎧∈=其它),(/1),(D y x Ay x f 21222112222211221(,)211()()()()exp 22(1);f x y x x y y x y πσσρμμμμρρσσσσ=⋅-⎧⎫⎡⎤-----⎪⎪-+⎨⎬⎢⎥-⎪⎪⎣⎦⎩⎭-∞<<+∞-∞<<+∞2.边缘分布1.二维随机变量(),X Y 作为一个整体,具有分布函数(),F x y ,而X 和Y 都是随机变量,也有也有分布函数,将他们分别记为()X F x ,()Y F y ,依次称为二维随机变量(),X Y 关于X 和Y 的边缘分布函数。
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载概率公式总结-概率分配率地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容一、随机事件和概率1、随机事件及其概率2、概率的定义及其计算二、随机变量及其分布1、分布函数性质2、散型随机变量3、续型随机变量三、多维随机变量及其分布1、离散型二维随机变量边缘分布离散型二维随机变量条件分布3、连续型二维随机变量( X ,Y )的分布函数4、连续型二维随机变量边缘分布函数与边缘密度函数分布函数:密度函数:5、二维随机变量的条件分布四、随机变量的数字特征1、数学期望离散型随机变量:连续型随机变量:数学期望的性质若XY相互独立则:方差:方差的性质若XY相互独立则:协方差:若XY相互独立则:相关系数:若XY相互独立则:即XY不相关协方差和相关系数的性质常见数学分布的期望和方差五、大数定律和中心极限定理1、切比雪夫不等式若对于任意有或大数定律:若相互独立且时,(1)若相互独立,且则:(2)若相互独立同分布,且则当时:3、中心极限定理(1)独立同分布的中心极限定理:均值为,方差为的独立同分布时,当n充分大时有:拉普拉斯定理:随机变量则对任意x有:近似计算:六、数理统计1、总体和样本总体的分布函数样本的联合分布为2、统计量(1)样本平均值: (2)样本方差:(3)样本标准差: (4)样本阶原点距:(5)样本阶中心距:(6)次序统计量:设样本的观察值,将按照由小到大的次序重新排列,得到,记取值为的样本分量为,则称为样本的次序统计量。
为最小次序统计量;为最大次序统计量。
3、三大抽样分布(1)分布:设随机变量相互独立,且都服从标准正态分布,则随机变量所服从的分布称为自由度为的分布,记为性质:①②设且相互独立,则分布:设随机变量,且X与Y独立,则随机变量:所服从的分布称为自由度的的分布,记为性质:①②分布:设随机变量,且与独立,则随机变量所服从的分布称为自由度的分布,记为性质:设,则七、参数估计1、参数估计(1) 定义:用估计总体参数,称为的估计量,相应的为总体的估计值。
第三章多维随机变量及其分布第三章多维随机变量及其分布在许多随机试验中,需要考虑的指标不⽌⼀个。
例如,考查某地区学龄前⼉童发育情况,对这⼀地区的⼉童进⾏抽样检查,需要同时观察他们的⾝⾼和体重,这样,⼉童的发育就要⽤定义在同⼀个样本空间上的两个随机变量来加以描述。
⼜如,考察礼花升空后的爆炸点,此时要⽤三个定义在同⼀个样本空间上的随机变量来描述该爆炸点。
在这⼀章中,我们将引⼊多维随机变量的概念,并讨论多维随机变量的统计规律性。
1.⼆维随机变量及其分布在这⼀节中.我们主要讨论⼆维随机变量及其概率分布,并把它们推⼴到n维随机变量。
1.⼆维随机变量及其分布函数1.⼆维随机变量定义3.1 设Ω ={ω }为样本空间,X=X(ω )和Y=Y(ω )是定义在Ω上的随机变量,则由它们构成的⼀个⼆维向量(X,Y)称为⼆维随机变量或⼆维随机向量.⼆维向量(X,Y)的性质不仅与X及Y有关,⽽且还依赖于这两个随机变量的相互关系。
因此,逐个讨论X和Y的性质是不够的,需把(X,Y)作为⼀个整体来讨论。
随机变量X常称为⼀维随机变量。
2. ⼆维随机变量的联合分布函数与⼀维的随机变量类似,我们也⽤分布函数来讨论⼆维随机变量的概率分布。
定义3.2 设(X,Y)是⼆维随机变量,x,y为任意实数,事件(X≤x)和(Y≤y)的交事件的概率称为⼆维随机变量(X,Y)的联合分布或分布函数,记作F(x,y),即若把⼆维随机变量(X,Y)看成平⾯上随机点的坐标,则分布函数F (X,Y)在(x,y)处的函数值就是随机点(X,Y)落⼊以(x,y)为定点且位于该点左下⽅的⽆穷矩形区域内的概率(见图3-1)。
⽽随机点(X,Y) 落在矩形区域内的概率可⽤分布函数表⽰(见图3-2)分布函数F (x,y)具有以下的基本性质。
(1) 0≤F (x,y)≤1.对于任意固定的x和y,有(2) F (x,y)是变量x或y的单调不减函数,即对任意固定的y,当x2 ≥x1时,;对任意固定的x,当y2 ≥y1时,。
概率论与数理统计练习题系 专业 班 姓名 学号第三章 多维随机变量及其分布(一)一、填空题:1、设二维随机变量(,)X Y 的联合密度函数为2,01,01(,)0,Axy x y f x y ⎧<<<<=⎨⎩其他,则常数A = 6 。
2、设二维随机变量(,)X Y 的联合分布函数为arctan arctan ,0,0(,)0,A x y x y F x y ⋅>>⎧=⎨⎩其他,则常数A =24π。
二、计算题:1.在一箱子中装有12只开关,其中2只次品,在其中取两次,每次任取一只,考虑两种实验: (1)放回抽样;(2)不放回抽样。
我们定义随机变量X ,Y 如下:01X ⎧=⎨⎩若第一次出的是正品若第一次出的是次品 , 01Y ⎧=⎨⎩若第二次出的是正品若第二次出的是次品 试分别就(1),(2)两种情况,写出X 和Y 的联合分布律。
解:(1)放回抽样 (2)不放回抽样2.设二维离散型随机变量的联合分布见表:试求(1)13{,04}22P X Y <<<<,(2){12,34}P X Y ≤≤≤≤解:(1)13{,04}22P X Y <<<< 111213(,)(,)(,)P X Y P X Y P X Y ===+==+== 14=(2){12,34}P X Y ≤≤≤≤13142324(,)(,)(,)(,)P X Y P X Y P X Y P X Y ===+==+==+== 11516416=+=3.设随机变量(,)X Y 的联合分布律如表:求:(1)a 值; (2)(,)X Y 的联合分布函数(,)F x y (3)(,)X Y 关于X ,Y 的边缘分布函数()X F x 和()Y F y 解:(1) 由归一性1111446iji jp a =+++=∑∑ 解得 13a =(2)(,)X Y 的联合分布函数为00111210452101211202120,(,),,,x y x y F x y x y x y x y <<-⎧⎪⎪≤<-≤<⎪⎪⎪=≥-≤<⎨⎪⎪≤<≥⎪⎪≥≥⎪⎩或(3)(,)X Y 关于X ,Y 的边缘分布函数为:01112212()X x F x x x <⎧⎪⎪=≤<⎨⎪≥⎪⎩ 01510121()y y F y y y <-⎧⎪⎪=-≤<⎨⎪≥⎪⎩4.设随机变量(,)X Y 的概率密度为(6)0<x<2,2<y<4(,)0k x y f x y --⎧=⎨⎩其他,求:(1)常数k ; (2)求{1,3}P X Y <<; (3){ 1.5}P X <; (4){4}P X Y +≤ 解:(1)由归一性 242266281(,)()()F dx k x y dy k x dx k -∞+∞=--=-==⎰⎰⎰所以 1k =(2) {1,3}P X Y <<131020117368828()()dx x y dy x dx =--=-=⎰⎰⎰ (3){ 1.5}P X <1541502011276628832..()()dx x y dy x dx =--=-=⎰⎰⎰(4){4}P X Y +≤4168()x y x y dxdy +≤=--⎰⎰ 2402168()x dx x y dy -=--⎰⎰ 220112816()x x dx =-+⎰23=概率论与数理统计练习题系 专业 班 姓名 学号第三章 多维随机变量及其分布(二)一、选择题:1、设随机变量X 与Y 独立,且221122(,),(,)XN Y N μσμσ,则Z X Y =-仍服从正态分布,且有 [ D ] (A )221212(,)Z N μμσσ++ (B) 221212(,)Z N μμσσ+- (C) 221212(,)ZN μμσσ-- (D) 221212(,)ZN μμσσ-+2、若(,)X Y 服从二维均匀分布,则 [ B ] (A )随机变量,X Y 都服从均匀分布 (B )随机变量,X Y 不一定服从均匀分布 (C )随机变量,X Y 一定不服从均匀分布 (D )随机变量X Y +服从均匀分布 二、填空题:1、设二维随机变量(,)X Y 的密度函数为2,01,02(,)30,.xyx x y f x y ⎧+≤≤≤≤⎪=⎨⎪⎩其他, 则(1)P X Y +≥=3136。