一元二次方程整理
- 格式:doc
- 大小:142.00 KB
- 文档页数:5
一元二次方程归纳总结1、一元二次方程的一般式:20 (0)ax bx c a ++=≠,a 为二次项系数,b 为一次项系数,c 为常数项。
2、一元二次方程的解法(1)直接开平方法 (也可以使用因式分解法) ①2(0)xa a =≥解为:x = ②2()(0)x a b b +=≥解为:x a += ③2()(0)ax b c c +=≥解为:ax b += ④22()()()ax b cx d a c +=+≠ 解为:()ax b cx d +=±+(2)因式分解法:提公因式分,平方公式,平方差,十字相乘法(3)公式法:一元二次方程20 (0)ax bx c a ++=≠,用配方法将其变形为:2224()24b b ac x a a -+= ①当240b ac ∆=->时,右端是正数.因此,方程有两个不相等的实根:1,22b x a-=② 当240b ac ∆=-=时,右端是零.因此,方程有两个相等的实根:1,22b x a=-③ 当240bac ∆=-<时,右端是负数.因此,方程没有实根。
注意:虽然所有的一元二次都可以用公式法来求解,但它往往并非最简单的,一定要注意方法的选用。
备注:公式法解方程的步骤:①把方程化成一般形式:一元二次方程的一般式:20 (0)ax bx c a ++=≠,并确定出a 、b 、c②求出24bac ∆=-,并判断方程解的情况。
③代公式:1,2x =3、一元二次方程的根与系数的关系法1:一元二次方程20 (0)axbx c a ++=≠的两个根为:1222b b x x a a-+-==所以:12bx x a+=+=-,221222()422(2)4b b b ac cx x a a a a a-+----⋅=⋅===定理:如果一元二次方程20 (0)axbx c a ++=≠定的两个根为12,x x ,那么:1212,b cx x x x a a+=-=法2:如果一元二次方程20 (0)axbx c a ++=≠定的两个根为12,x x ;那么2120()()0ax bx c a x x x x ++=⇔--= 两边同时除于a ,展开后可得:2212120()0b c x x x x x x x x a a++=⇔-++= 12b x x a ⇒+=-;12cx x a •=法3:如果一元二次方程20 (0)axbx c a ++=≠定的两个根为12,x x ;那么21122200ax bx c ax bx c ⎧++=⎪⎨++=⎪⎩①-②得:12bx x a+=-(余下略) 常用变形:222121212()2x x x x x x +=+-,12121211x x x x x x ++=,22121212()()4x x x x x x -=+-,12||x x -=2212121212()x x x x x x x x +=+,22111212121222212()4x x x x x x x x x x x x x x ++-+==等 练习:【练习1】若12,x x 是方程2220070xx +-=的两个根,试求下列各式的值:(1)2212x x +;(2)1211x x +;(3)12(5)(5)x x --;(4)12||x x -.【练习2】已知关于x 的方程221(1)104xk x k -+++=,根据下列条件,分别求出k 的值.(1) 方程两实根的积为5; (2) 方程的两实根12,x x 满足12||x x =.【练习3】已知12,x x 是一元二次方程24410kxkx k -++=的两个实数根.(1) 是否存在实数k ,使12123(2)(2)2x x x x --=-成立?若存在,求出k 的值;若不存在, 请您说明理由.(2) 求使12212x x x x +-的值为整数的实数k 的整数值. 4、应用题(1)平均增长率的问题:(1)n a x b += 其中:a 为基数,x 为增长率,n 表示连续增长的次数,①②b 表示增长后的数量。
一元二次方程典型例题整理版一元二次方程专题一:一元二次方程的定义典例分析:1.下列方程中是关于x的一元二次方程的是()2.若方程(m+2)x|m|+3mx+1=0是关于x的一元二次方程,则()3.关于x的一元二次方程(a-1)x²+x+a²-l=0的一个根是。
则a的值为( )4.若方程(m-1)x²+m·x=1是关于x的一元二次方程,则m的取值范围是。
5.关于x的方程(a+a-2)x+a·x+b=0是一元二次方程的条件是()专题二:一元二次方程的解典例分析:1.关于x的一元二次方程(a-2)x²+x+a²-4=0的一个根为-2,则a的值为。
2.已知方程x²+kx-10=0的一根是2,则k为-5,另一根是-8.3.已知a是x²-3x+1=0的根,则2a²-6a+3=0.4.若方程ax²+bx+c=0(a≠0)中,a,b,c满足a+b+c=0和a-b+c=0,则方程的根是1和-1.5.方程(a-b)x²+(b-c)x+c-a=0的一个根为1,则另一个根为-b/c。
课堂练:1.已知一元二次方程x²+3x+m=0的一个根为-1,则另一个根为-2-m。
2.已知x=1是一元二次方程x²+bx+5=0的一个解,则b=-6,另一个根为-5.3.已知2y²+y-3=2,则4y²+2y+1=11/2,xy=-3/2.4.已知关于x的一元二次方程ax²+bx+c=(a≠0)的系数满足a+c=b,则此方程必有一根为1.专题三:一元二次方程的求解方法典例分析:1.直接开平方法:(1-x)²-9=0,解得x=-2或4.2.配方法:x²-2x+3>0,解得x∈(-∞,1)∪(3,+∞)。
难度训练:1.如果二次三项式x²-(2m+1)x+16是一个完全平方式,那么m的值是1.2.试用配方法说明x²-2x+3的XXX大于2.3.已知x²+y²+4x-6y+13=0,x、y为实数,求xy的值。
一元二次方程归纳总结1、一元二次方程的一般式:20 (0)ax bx c a ++=≠,a 为二次项系数,b 为一次项系数,c 为常数项。
2、一元二次方程的解法(1)直接开平方法 (也可以使用因式分解法) ①2(0)xa a =≥解为:x = ②2()(0)x a b b +=≥解为:x a += ③2()(0)ax b c c +=≥解为:ax b += ④22()()()ax b cx d a c +=+≠ 解为:()ax b cx d +=±+(2)因式分解法:提公因式分,平方公式,平方差,十字相乘法(3)公式法:一元二次方程20 (0)ax bx c a ++=≠,用配方法将其变形为:2224()24b b ac x a a -+= ①当240b ac ∆=->时,右端是正数.因此,方程有两个不相等的实根:1,22b x a-=② 当240b ac ∆=-=时,右端是零.因此,方程有两个相等的实根:1,22b x a=-③ 当240bac ∆=-<时,右端是负数.因此,方程没有实根。
注意:虽然所有的一元二次都可以用公式法来求解,但它往往并非最简单的,一定要注意方法的选用。
备注:公式法解方程的步骤:①把方程化成一般形式:一元二次方程的一般式:20 (0)ax bx c a ++=≠,并确定出a 、b 、c②求出24bac ∆=-,并判断方程解的情况。
③代公式:1,2x =3、一元二次方程的根与系数的关系法1:一元二次方程20 (0)axbx c a ++=≠的两个根为:1222b b x x a a-+-==所以:12bx x a+=+=-,221222()422(2)4b b b ac cx x a a a a a-+----⋅=⋅===定理:如果一元二次方程20 (0)axbx c a ++=≠定的两个根为12,x x ,那么:1212,b cx x x x a a+=-=法2:如果一元二次方程20 (0)axbx c a ++=≠定的两个根为12,x x ;那么2120()()0ax bx c a x x x x ++=⇔--= 两边同时除于a ,展开后可得:2212120()0b c x x x x x x x x a a++=⇔-++= 12b x x a ⇒+=-;12cx x a •=法3:如果一元二次方程20 (0)axbx c a ++=≠定的两个根为12,x x ;那么21122200ax bx c ax bx c ⎧++=⎪⎨++=⎪⎩①-②得:12bx x a+=-(余下略) 常用变形:222121212()2x x x x x x +=+-,12121211x x x x x x ++=,22121212()()4x x x x x x -=+-,12||x x -=2212121212()x x x x x x x x +=+,22111212121222212()4x x x x x x x x x x x x x x ++-+==等 练习:【练习1】若12,x x 是方程2220070xx +-=的两个根,试求下列各式的值:(1)2212x x +;(2)1211x x +;(3)12(5)(5)x x --;(4)12||x x -.【练习2】已知关于x 的方程221(1)104xk x k -+++=,根据下列条件,分别求出k 的值.(1) 方程两实根的积为5; (2) 方程的两实根12,x x 满足12||x x =.【练习3】已知12,x x 是一元二次方程24410kxkx k -++=的两个实数根.(1) 是否存在实数k ,使12123(2)(2)2x x x x --=-成立?若存在,求出k 的值;若不存在, 请您说明理由.(2) 求使12212x x x x +-的值为整数的实数k 的整数值. 4、应用题(1)平均增长率的问题:(1)n a x b += 其中:a 为基数,x 为增长率,n 表示连续增长的次数,①②b 表示增长后的数量。
一元二次方程公式大全
1. 一元二次方程的一般式:ax²+bx+c=0(a≠0)。
2. 一元二次方程的根公式:x=[-b±√(b²-4ac)]/2a。
3.一元二次方程的顶点公式:x=-b/2a,y=c-b²/4a。
4.一元二次方程的轴对称式:y=a(x-h)²+k,其中(h,k)为顶点坐标。
5. 一元二次方程的判别式公式:Δ=b²-4ac;当Δ>0时,有两个不
相等的实根;当Δ=0时,有一个重根;当Δ<0时,无实根。
6.一元二次方程的解的性质公式:两根之和=-b/a,两根之积=c/a。
7. 一元二次方程的因式分解公式:ax²+bx+c=a(x-x₁)(x-x₂),其中x₁、x₂为方程的两个实根。
8. 一元二次方程的求导公式:y'=2ax+b,其中a、b为方程系数。
9. 一元二次方程的求和差公式:(x+y)²=x²+2xy+y²,(x-y)²=x²-
2xy+y²。
10. 一元二次方程的配方法公式:根据(a±b)²=a²±2ab+b²,将一元
二次方程化为完全平方形式。
解一元二次方程的方法总结一元二次方程是一个以未知数的二次项为主要特征的方程,一般形式为ax^2 + bx + c = 0。
在解一元二次方程时,我们可以利用以下三种方法:配方法、公式法和图像法。
本文将对这三种方法进行详细介绍和总结。
一、配方法配方法也称为“完成平方”法,通过将二次项的系数的一半平方加减到二次项上,将原方程转化为一个平方完全的方程,进而求解未知数的值。
步骤如下:1. 将方程移项,使等式右边为0;2. 将二次项系数a除以2,并将结果平方,得到一个常数;3. 在方程两边同时加减这个常数,使方程形成一个完全平方;4. 整理方程,将其转化为一个平方式;5. 对方程两边开方,得到方程的解;6. 检验解的可行性。
配方法的优点是解题步骤清晰,适用于任何形式的一元二次方程。
然而,当一元二次方程的系数较复杂时,配方法的计算量可能较大。
二、公式法公式法是解一元二次方程最常用的方法之一,通过直接套用一元二次方程的通用解法,求解方程的根。
一元二次方程的通解公式是x = (-b ± √(b^2 - 4ac)) / (2a)。
步骤如下:1. 根据方程的形式,获取对应的系数a、b、c的值;2. 将系数代入一元二次方程的通解公式;3. 计算得出方程的解;4. 检验解的可行性。
公式法的优点是计算简便,适用于具有明确系数的一元二次方程。
然而,对于较复杂的方程形式,有时计算过程中可能出现精度问题。
三、图像法图像法通过绘制一元二次方程的图像,求解方程的根。
由于一元二次方程的图像是一个抛物线,通过观察抛物线与x轴的交点,可以确定方程的解。
步骤如下:1. 根据方程的形式,获取对应的系数a、b、c的值;2. 绘制一元二次方程的图像;3. 观察图像与x轴的交点;4. 确定方程的解;5. 检验解的可行性。
图像法的优点是直观易懂,能够准确求解方程。
然而,该方法对于无法绘制图像的情况不适用,且需要一定的几何知识和绘图工具的辅助。
初中数学一元二次方程知识点总结(含习题)一元二次方程知识点的总结知识结构梳理:1、概念1) 一元二次方程含有一个未知数。
2) 未知数的最高次数是2.3) 是方程。
4) 一元二次方程的一般形式是ax²+bx+c=0.2、解法1) 因式分解法,适用于能化为(x+m)(x+n)=0的一元二次方程。
2) 公式法,即把方程变形为ax²+bx+c=0的形式,一元二次方程的解为x=[-b±√(b²-4ac)]/(2a)。
3) 完全平方式,其中求根公式是(x±a)²=b,当时,方程有两个不相等的实数根。
4) 配方法,其中求根公式是(x±a)(x±b)=0,当时,方程有两个实数根。
5) 二次函数图像法,当时,方程有没有实数根。
3、应用1) 一元二次方程可用于解某些求值题。
2) 一元二次方程可用于解决实际问题的步骤包括:列方程、化简方程、解方程、检验答案。
知识点归类:考点一:一元二次方程的定义如果一个方程通过移项可以使右边为0,而左边只含有一个未知数的二次多项式,那么这样的方程叫做一元二次方程。
一元二次方程必须同时满足以下三点:①方程是整式方程。
②它只含有一个未知数。
③未知数的最高次数是2.考点二:一元二次方程的一般形式一元二次方程的一般形式为ax²+bx+c=0,其中a、b、c分别叫做二次项系数、一次项系数、常数项。
要准确找出一个一元二次方程的二次项系数、一次项系数和常数项,必须把它先化为一般形式。
考点三:解一元二次方程的方法一元二次方程的解也叫一元二次方程的根。
解一元二次方程的方法包括因式分解法、公式法、完全平方式、配方法和二次函数图像法。
解一元二次方程有四种常用方法:直接开平方法、配方法、因式分解法和公式法。
选择哪种方法要根据具体情况而定。
直接开平方法是解形如x²=a的方程的方法,解为x=±√a。
配方法是将方程的左边加上一次项系数一半的平方,再减去这个数,使得含未知数的项在一个完全平方式里,然后用因式分解法或直接开平方法解方程。
一元二次方程一、本节学习指导本节中我们要注意一元二次方程成立的条件,填空题最青睐这简单而又易忽视的知识。
其次就是根与系数的关系(韦达定理)、判别式,求根公式,这些需要我们重点记忆。
本节有配套学习视频。
二、知识要点1、定义:只含有一个未知数,且未知数最高次数为2的方程叫做一元二次方。
一元二次方程的标准式:ax2+bx+c=0 (a≠0)其中:ax2叫做二次项,bx叫做一次项,c叫做常数项a是二次项系数,b是一次项系数2、一元二次方程根的判别式(二次项系数不为0):“△”读作德尔塔,在一元二次方程ax2+bx+c=0 (a≠0)中△=b2-4ac△=b2-4ac>0 <====> 方程有两个不相等的实数根,即:x1,x2△=b2-4ac=0 <====> 方程有两个相等的实数根,即:x1=x2△=b2-4ac<0 <====> 方程没有实数根。
注:“<====>”是双向推导,也就是说上面的规律反过来也成立,如:告诉我们方程没有实数根,我们便可以得出△<03、一元二次方程根与系数的关系(二次项系数不为0;△≥0),韦达定理。
ax2+bx+c=0 (a≠0)中,设两根为x1,x2,那么有:因为:ax2+bx+c=0 (a≠0)化二次项系数为1可得,所以:韦达定理也描述为:两根之和等于一次项系数的相反数,两根之积等于常数项。
注意:(1)在一元二次方程应用题中,如果解出来得到的是两个根,那么我们要根据实际情况判断是否应舍去一个跟。
5、一元二次方程的求根公式:注:任何一元二次方程都能用求根公式来求根,虽然使用起来较为复杂,但非常有效。
三、经验之谈:对于韦达定理的文字描述希望同学们能理解,试着把二次项系数化1来观察一下。
求根公式也要牢记于心,使用很广泛。
一元二次方程所有公式汇总一、一元二次方程的一般形式。
一元二次方程的一般形式为ax^2+bx + c = 0(a≠0),其中a是二次项系数,b是一次项系数,c是常数项。
二、求根公式。
对于一元二次方程ax^2+bx + c = 0(a≠0),其求根公式为x=frac{-b±√(b^2)-4ac}{2a}。
1. 当b^2-4ac>0时,方程有两个不相等的实数根。
2. 当b^2-4ac = 0时,方程有两个相等的实数根。
3. 当b^2-4ac<0时,方程没有实数根,但在复数范围内有两个共轭复数根。
三、根与系数的关系(韦达定理)对于一元二次方程ax^2+bx + c = 0(a≠0),设其两根为x_1,x_2。
1. x_1+x_2=-(b)/(a)2. x_1· x_2=(c)/(a)四、一元二次方程的解法公式。
1. 直接开平方法。
- 对于方程x^2=k(k≥0),其解为x=±√(k)。
- 对于方程(ax + b)^2=k(k≥0),其解为ax + b=±√(k),即x=(-b±√(k))/(a)(a≠0)。
2. 配方法。
- 对于一元二次方程ax^2+bx + c = 0(a≠0),步骤如下:- 首先将二次项系数化为1,即x^2+(b)/(a)x+(c)/(a)=0。
- 然后在等式两边加上一次项系数一半的平方,即x^2+(b)/(a)x+((b)/(2a))^2=((b)/(2a))^2-(c)/(a)。
- 配方得到(x +(b)/(2a))^2=frac{b^2-4ac}{4a^2},再用直接开平方法求解。
3. 公式法。
- 直接代入求根公式x=frac{-b±√(b^2)-4ac}{2a}(a≠0)求解。
4. 因式分解法。
- 当一元二次方程ax^2+bx + c = 0(a≠0)可以分解为(mx + p)(nx+q)=0的形式时,- 则mx + p = 0或nx+q = 0,解得x =-(p)/(m)或x=-(q)/(n)。
《一元二次方程》知识梳理及经典例题【知识梳理】考点一、概念(1)定义:①只含有一个未知数........,并且②未知数的最高次数是.........2.,这样的③整式方程....就是一元二次方程。
(2)一般表达式:ax2+bx+c=0(a≠0)⑶难点:如何理解“未知数的最高次数是2”:①该项系数不为“0”;②未知数指数为“2”;③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。
考点二、方程的解⑴概念:使方程两边相等的未知数的值,就是方程的解。
⑵应用:利用根的概念求代数式的值;考点三、解法⑴方法:①直接开方法;②因式分解法;③配方法;④公式法⑵关键点:降次类型一、直接开方法:x2=m(m≥0),⇒x=±√m对于(x+a)2=m,(ax+m)2=(bx+n)2等形式均适用直接开方法类型二、因式分解法:(x−x1)(x−x2)=0⇒x=x1,或x=x2方程特点:左边可以分解为两个一次因式的积,右边为“0”,方程形式:如(ax+m)2=(bx+n)2,(x+a)(x+b)=(x+a)(x+c),x2+2ax+a2=0类型三、配方法ax2+bx+c=0(a≠0)⇒(x+b2a )2=b2−4ac4a2在解方程中,多不用配方法;但常利用配方思想求解代数式的值或极值之类的问题。
类型四、公式法⑴条件:(a≠0,且b2−4ac≥0)⑵公式:x=−b±√b2−4ac2a,(a≠0,且b2−4ac≥0)类型五、“降次思想”的应用⑴求代数式的值;⑵解二元二次方程组。
.考点四、根的判别式b2−4ac根的判别式的作用:①定根的个数;②求待定系数的值;③应用于其它。
考点五、应用解答题⑴“握手”问题;⑵“利率”问题;⑶“几何”问题;⑷“最值”型问题;⑸“图表”类问题考点六、根与系数的关系⑴前提:对于ax2+bx+c=0而言,当满足①a≠0、②Δ≥0时,才能用韦达定理。
⑵主要内容:x1+x2=−ba ,x1x2=ca⑶应用:整体代入求值。
一元二次方程
一.选择题
1.(2016•扬州)已知M=a ﹣1,N=a 2﹣a (a 为任意实数),则M 、N 的大小关系为( )A .M <N B .M =N C .M >N D .不能确定
6.(2016•枣庄)已知关于x 的方程x 2+3x+a=0有一个根为﹣2,则另一个根为( )
A .5
B .﹣1
C .2
D .﹣5
7.(2016•雅安)已知关于x 的一元二次方程x 2+mx ﹣8=0的一个实数根为2,则另一实数根及m 的值分别为( )
A .4,﹣2
B .﹣4,﹣2
C .4,2
D .﹣4,2
11.(2016•贵港)若关于x 的一元二次方程x 2﹣3x+p =0(p ≠0)的两个不相等的实数根
分别为a 和b ,且a 2﹣ab +b 2=18,则+的值是( )
A .3
B .﹣3
C .5
D .﹣5
12.(2016•烟台)若x 1,x 2是一元二次方程x 2﹣2x ﹣1=0的两个根,则x 12﹣x 1+x 2的值为( )A .﹣1 B .0 C .2 D .3
13.(2016•广州)定义运算:a ⋆b=a (1﹣b ).若a ,b 是方程x 2﹣x+m=0(m <0)的两根,则b ⋆b ﹣a ⋆a 的值为( )A .0 B .1 C .2 D .与m 有关
16.(2016•自贡)已知关于x 的一元二次方程x 2+2x ﹣(m ﹣2)=0有实数根,则m 的取值范围是( )A .m >1 B .m <1 C .m ≥1 D .m ≤1
17.(2016•莆田)关于x 的一元二次方程x 2+ax ﹣1=0的根的情况是( )
A .没有实数根
B .只有一个实数根
C .有两个相等的实数根
D .有两个不相等的实数根
18.(2016•衡阳)关于x 的一元二次方程x 2+4x+k=0有两个相等的实根,则k 的值为( )A .k=﹣4 B .k=4 C .k ≥﹣4 D .k ≥4
19.(2016·黑龙江大庆)若x 0是方程ax 2+2x +c =0(a ≠0)的一个根,设M =1﹣ac ,N =(ax 0+1)2,则M 与N 的大小关系正确的为( )A .M >N B .M =N C .M <N D .不确定
20. (2016·新疆)一元二次方程x 2﹣6x ﹣5=0配方组可变形为( )
A .(x ﹣3)2=14
B .(x ﹣3)2=4
C .(x +3)2=14
D .(x +3)2=4
21. (2016·四川乐山·3分)若t 为实数,关于x 的方程2420x
x t -+-=的两个非负实数根为a 、b ,
则代数式22(1)(1)a b --的最小值是()A 15- ()B 16- ()C 15 ()D 16
27.(2016.山东省泰安市,3分)当x 满足时,方程x 2﹣2x ﹣5=0的根是
( )A .1± B .﹣1 C .1﹣
D .1+ 9.(2016·四川巴中)定义新运算:对于任意实数m 、n 都有m ☆n =m 2n +n ,等式右边是常用的加法、减法、
乘法及乘方运算.例如:﹣3☆2=(﹣3)2×
2+2=20.根据以上知识解决问题:若2☆a 的值小于0,请判断方程:2x 2﹣bx +a =0的根的情况.
28.(2016•呼和浩特)已知a ≥2,m 2﹣2am +2=0,n 2﹣2an +2=0,则(m ﹣1)2+(n ﹣1)2的最小值是( ) A .6 B .3 C .﹣3 D .0
24.(2016·山东枣庄)若关于x 的一元二次方程2210x x kb -++=有两个不相等的实数根,则一次函数y kx b =+的图象可能是
25.(2016.山东省青岛市,3分)输入一组数据,按下列程序进行计算,输出结果如表:
分析表格中的数据,估计方程(x +8)2﹣826=0的一个正数解x 的大致范围为( )
A .20.5<x <20.6
B .20.6<x <20.7
C .20.7<x <20.8
D .20.8<x <20.9
26.(2016.山东省泰安市,3分)一元二次方程(x +1)2﹣2(x ﹣1)2=7的根的情况是( )
A .无实数根
B .有一正根一负根
C .有两个正根
D .有两个负根
27.(2016.山东省泰安市,3分)当x 满足
时,方程x 2﹣2x ﹣5=0的根是
( )A .1± B .﹣1 C .1﹣ D .1+ 30.(2016福州,12,3分)下列选项中,能使关于x 的一元二次方程ax 2﹣4x +c =0一定有实数根的是( ) A .a >0 B .a =0 C .c >0 D .c =0
5. (2016·云南)如果关于x 的一元二次方程x 2+2ax +a +2=0有两个相等的实数根,那么实数a 的值为 .
6. (2016·四川达州·
3分)设m ,n 分别为一元二次方程x 2+2x ﹣2018=0的两个实数根,则m 2+3m +n = . 7. (2016吉林长春,10,3分)关于x 的一元二次方程x 2+2x +m =0有两个相等的实数根,则m 的值是 .
8.聊城市,)如果关于x 的一元二次方程kx 2﹣3x ﹣1=0有两个不相等的实根,那么k 的取值范围是 . 9.(2016大连,14,3分)若关于x 的方程2x 2+x ﹣a =0有两个不相等的实数根,则实数a 的取值范围是 .
31.(2016大连,7,3分)某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x,则该文具店五月份销售铅笔的支数是()
A.100(1+x)B.100(1+x)2C.100(1+x2)D.100(1+2x)
二、填空题
2.(2016·湖北十堰)某种药品原来售价100元,连续两次降价后售价为81元,若每次下降的百分率相同,则这个百分率是
3. 咸宁)关于x的一元二次方程x2+bx+2=0有两个不相等的实数根,写出一个满足条件的实数b的值:b=____.
4. (2016·新疆)某加工厂九月份加工了10吨干果,十一月份加工了13吨干果.设该厂加工干果重量的月平均增长率为x,根据题意可列方程为
三、解答题
4.(2016湖北宜昌,22,10分)某蛋糕产销公司A品牌产销线,2015年的销售量为9.5万份,平均每份获利1.9元,预计以后四年每年销售量按5000份递减,平均每份获利按一定百分数逐年递减;受供给侧改革的启发,公司早在2104年底就投入资金10.89万元,新增一条B品牌产销线,以满足市场对蛋糕的多元需求,B品牌产销线2015年的销售量为1.8万份,平均每份获利3元,预计以后四年销售量按相同的份数递增,且平均每份获利按上述递减百分数的2倍逐年递增;这样,2016年,A、B两品牌产销线销售量总和将达到11.4万份,B品牌产销线2017年销售获利恰好等于当初的投入资金数.
(1)求A品牌产销线2018年的销售量;
(2)求B品牌产销线2016年平均每份获利增长的百分数.
6.(2016·广西贺州)某地区2014年投入教育经费2900万元,2016年投入教育经费3509万元.
(1)求2014年至2016年该地区投入教育经费的年平均增长率;
(2)按照义务教育法规定,教育经费的投入不低于国民生产总值的百分之四,结合该地区国民生产总值的增长情况,该地区到2018年需投入教育经费4250万元,如果按(1)中教育经费投入的增长率,到2018年该地区投入的教育经费是否能达到4250万元?请说明理由.
(参考数据:=1.1,=1.2,=1.3,=1.4)
7.(2016·山东烟台)由于雾霾天气频发,市场上防护口罩出现热销,某医药公司每月固定生产甲、乙两种型号的防雾霾口罩共20万只,且所有产品当月全部售出,原料成本、销售单价及工人生产提成如表:
(1)若该公司五月份的销售收入为300万元,求甲、乙两种型号的产品分别是多少万只?
(2)公司实行计件工资制,即工人每生产一只口罩获得一定金额的提成,如果公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元,应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大?并求出最大利润(利润=销售收入﹣投入总成本)
2.(2016•台州)有x支球队参加篮球比赛,共比赛了45场,每两队之间都比赛一场,则下列方程中符合题意的是()
A.x(x﹣1)=45 B.x(x+1)=45 C.x(x﹣1)=45 D.x(x+1)=45
3.(2016•随州)随州市尚市“桃花节”观赏人数逐年增加,据有关部门统计,2014年约为20万人次,2016年约为28.8万人次,设观赏人数年均增长率为x,则下列方程中正确的是()A.20(1+2x)=28.8 B.28.8(1+x)2=20
C.20(1+x)2=28.8 D.20+20(1+x)+20(1+x)2=28.8
4.(2016•兰州)公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m,另一边减少了2m,剩余空地的面积为18m2,求原正方形空地的边长.设原正方形的空地的边长为xm,则可列方程为()
A.(x+1)(x+2)=18 B.x2﹣3x+16=0 C.(x﹣1)(x﹣2)=18 D.x2+3x+16=0 5.(2016•衡阳)随着居民经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,抽样调查显示,截止2015年底某市汽车拥有量为16.9万辆.己知2013年底该市汽车拥有量为10万辆,设2013年底至2015年底该市汽车拥有量的平均增长率为x,根据题意列方程得()
A.10(1+x)2=16.9 B.10(1+2x)=16.9 C.10(1﹣x)2=16.9 D.10(1﹣2x)=16.9。